vmscan.c 123.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82 83 84 85 86 87
	/*
	 * Scan pressure balancing between anon and file LRUs
	 */
	unsigned long	anon_cost;
	unsigned long	file_cost;

88 89 90 91 92 93 94
	/* Can active pages be deactivated as part of reclaim? */
#define DEACTIVATE_ANON 1
#define DEACTIVATE_FILE 2
	unsigned int may_deactivate:2;
	unsigned int force_deactivate:1;
	unsigned int skipped_deactivate:1;

95
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
96 97 98 99 100 101 102 103
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

104 105 106 107 108 109 110
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
111

112 113 114 115 116
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

117 118 119
	/* There is easily reclaimable cold cache in the current node */
	unsigned int cache_trim_mode:1;

120 121 122
	/* The file pages on the current node are dangerously low */
	unsigned int file_is_tiny:1;

G
Greg Thelen 已提交
123 124 125 126 127 128 129 130 131 132 133 134
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

135 136 137 138 139
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
140 141 142 143 144 145 146 147 148 149

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
150 151 152

	/* for recording the reclaimed slab by now */
	struct reclaim_state reclaim_state;
L
Linus Torvalds 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
};

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
170
 * From 0 .. 200.  Higher means more swappy.
L
Linus Torvalds 已提交
171 172 173
 */
int vm_swappiness = 60;

174 175 176 177 178 179 180 181 182 183 184 185
static void set_task_reclaim_state(struct task_struct *task,
				   struct reclaim_state *rs)
{
	/* Check for an overwrite */
	WARN_ON_ONCE(rs && task->reclaim_state);

	/* Check for the nulling of an already-nulled member */
	WARN_ON_ONCE(!rs && !task->reclaim_state);

	task->reclaim_state = rs;
}

L
Linus Torvalds 已提交
186 187 188
static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

189
#ifdef CONFIG_MEMCG
190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

203 204 205 206 207 208 209 210 211
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
212
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
213 214 215
	if (id < 0)
		goto unlock;

216 217 218 219 220 221
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

222
		shrinker_nr_max = id + 1;
223
	}
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}

242
static bool cgroup_reclaim(struct scan_control *sc)
243
{
244
	return sc->target_mem_cgroup;
245
}
246 247

/**
248
 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
249 250 251 252 253 254 255 256 257 258 259
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
260
static bool writeback_throttling_sane(struct scan_control *sc)
261
{
262
	if (!cgroup_reclaim(sc))
263 264
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
265
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
266 267 268 269
		return true;
#endif
	return false;
}
270
#else
271 272 273 274 275 276 277 278 279
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}

280
static bool cgroup_reclaim(struct scan_control *sc)
281
{
282
	return false;
283
}
284

285
static bool writeback_throttling_sane(struct scan_control *sc)
286 287 288
{
	return true;
}
289 290
#endif

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

309 310 311 312 313 314 315
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
316
{
317
	unsigned long size = 0;
318 319
	int zid;

320
	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
321
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
322

323 324 325 326
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
327
			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
328
		else
329
			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
330
	}
331
	return size;
332 333
}

L
Linus Torvalds 已提交
334
/*
G
Glauber Costa 已提交
335
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
336
 */
337
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
338
{
339
	unsigned int size = sizeof(*shrinker->nr_deferred);
G
Glauber Costa 已提交
340 341 342 343 344 345 346

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
347 348 349 350 351 352

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

353
	return 0;
354 355 356 357 358

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
359 360 361 362
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
363 364 365 366 367 368
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

369 370 371
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
372

373 374
void register_shrinker_prepared(struct shrinker *shrinker)
{
375 376
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
377
#ifdef CONFIG_MEMCG
378 379
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
380
#endif
381
	up_write(&shrinker_rwsem);
382 383 384 385 386 387 388 389 390
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
391
	return 0;
L
Linus Torvalds 已提交
392
}
393
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
394 395 396 397

/*
 * Remove one
 */
398
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
399
{
400 401
	if (!shrinker->nr_deferred)
		return;
402 403
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
404 405 406
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
407
	kfree(shrinker->nr_deferred);
408
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
409
}
410
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
411 412

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
413

414
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
415
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
416 417 418 419
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
420
	long freeable;
G
Glauber Costa 已提交
421 422 423 424 425
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
426
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
427

428 429 430
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

431
	freeable = shrinker->count_objects(shrinker, shrinkctl);
432 433
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
434 435 436 437 438 439 440 441 442

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
443 444 445 446 447 448 449 450 451 452 453 454
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
455

G
Glauber Costa 已提交
456 457
	total_scan += delta;
	if (total_scan < 0) {
458
		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
459
		       shrinker->scan_objects, total_scan);
460
		total_scan = freeable;
461 462 463
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
464 465 466 467 468 469 470

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
471
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
472 473 474 475 476
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
477 478
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
479 480 481 482 483 484

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
485 486
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
487 488

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
489
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
490

491 492 493 494 495 496 497 498 499 500 501
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
502
	 * than the total number of objects on slab (freeable), we must be
503 504 505 506
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
507
	       total_scan >= freeable) {
D
Dave Chinner 已提交
508
		unsigned long ret;
509
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
510

511
		shrinkctl->nr_to_scan = nr_to_scan;
512
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
513 514 515 516
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
517

518 519 520
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
521 522 523 524

		cond_resched();
	}

525 526 527 528
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
529 530 531 532 533
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
534 535
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
536 537 538 539
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

540
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
541
	return freed;
542 543
}

544
#ifdef CONFIG_MEMCG
545 546 547 548
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
549 550
	unsigned long ret, freed = 0;
	int i;
551

552
	if (!mem_cgroup_online(memcg))
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
572 573 574
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
575 576 577
			continue;
		}

578 579 580 581 582
		/* Call non-slab shrinkers even though kmem is disabled */
		if (!memcg_kmem_enabled() &&
		    !(shrinker->flags & SHRINKER_NONSLAB))
			continue;

583
		ret = do_shrink_slab(&sc, shrinker, priority);
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
608 609 610 611 612 613 614 615 616 617 618
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
619
#else /* CONFIG_MEMCG */
620 621 622 623 624
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
625
#endif /* CONFIG_MEMCG */
626

627
/**
628
 * shrink_slab - shrink slab caches
629 630
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
631
 * @memcg: memory cgroup whose slab caches to target
632
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
633
 *
634
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
635
 *
636 637
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
638
 *
639 640
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
641
 *
642 643
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
644
 *
645
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
646
 */
647 648
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
649
				 int priority)
L
Linus Torvalds 已提交
650
{
651
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
652 653
	struct shrinker *shrinker;

654 655 656 657 658 659 660 661
	/*
	 * The root memcg might be allocated even though memcg is disabled
	 * via "cgroup_disable=memory" boot parameter.  This could make
	 * mem_cgroup_is_root() return false, then just run memcg slab
	 * shrink, but skip global shrink.  This may result in premature
	 * oom.
	 */
	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
662
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
663

664
	if (!down_read_trylock(&shrinker_rwsem))
665
		goto out;
L
Linus Torvalds 已提交
666 667

	list_for_each_entry(shrinker, &shrinker_list, list) {
668 669 670
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
671
			.memcg = memcg,
672
		};
673

674 675 676 677
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
678 679
		/*
		 * Bail out if someone want to register a new shrinker to
E
Ethon Paul 已提交
680
		 * prevent the registration from being stalled for long periods
681 682 683 684 685 686
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
687
	}
688

L
Linus Torvalds 已提交
689
	up_read(&shrinker_rwsem);
690 691
out:
	cond_resched();
D
Dave Chinner 已提交
692
	return freed;
L
Linus Torvalds 已提交
693 694
}

695 696 697 698 699 700 701
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

702 703 704
		if (fatal_signal_pending(current))
			return;

705
		freed = 0;
706
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
707
		do {
708
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
709 710 711 712 713 714 715 716 717 718 719 720
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
721 722
static inline int is_page_cache_freeable(struct page *page)
{
723 724
	/*
	 * A freeable page cache page is referenced only by the caller
725 726
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
727
	 */
728
	int page_cache_pins = thp_nr_pages(page);
729
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
730 731
}

732
static int may_write_to_inode(struct inode *inode)
L
Linus Torvalds 已提交
733
{
734
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
735
		return 1;
736
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
737
		return 1;
738
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
758
	lock_page(page);
759 760
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
761 762 763
	unlock_page(page);
}

764 765 766 767 768 769 770 771 772 773 774 775
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
776
/*
A
Andrew Morton 已提交
777 778
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
779
 */
780
static pageout_t pageout(struct page *page, struct address_space *mapping)
L
Linus Torvalds 已提交
781 782 783 784 785 786 787 788
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
789
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
805
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
806 807
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
808
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
809 810 811 812 813 814 815
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
816
	if (!may_write_to_inode(mapping->host))
L
Linus Torvalds 已提交
817 818 819 820 821 822 823
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
824 825
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
826 827 828 829 830 831 832
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
833
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
834 835 836
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
837

L
Linus Torvalds 已提交
838 839 840 841
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
842
		trace_mm_vmscan_writepage(page);
843
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
844 845 846 847 848 849
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

850
/*
N
Nick Piggin 已提交
851 852
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
853
 */
854
static int __remove_mapping(struct address_space *mapping, struct page *page,
855
			    bool reclaimed, struct mem_cgroup *target_memcg)
856
{
857
	unsigned long flags;
858
	int refcount;
859
	void *shadow = NULL;
860

861 862
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
863

M
Matthew Wilcox 已提交
864
	xa_lock_irqsave(&mapping->i_pages, flags);
865
	/*
N
Nick Piggin 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
885
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
886 887
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
888
	 * and thus under the i_pages lock, then this ordering is not required.
889
	 */
890
	refcount = 1 + compound_nr(page);
891
	if (!page_ref_freeze(page, refcount))
892
		goto cannot_free;
893
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
894
	if (unlikely(PageDirty(page))) {
895
		page_ref_unfreeze(page, refcount);
896
		goto cannot_free;
N
Nick Piggin 已提交
897
	}
898 899 900

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
901
		mem_cgroup_swapout(page, swap);
902 903 904
		if (reclaimed && !mapping_exiting(mapping))
			shadow = workingset_eviction(page, target_memcg);
		__delete_from_swap_cache(page, swap, shadow);
M
Matthew Wilcox 已提交
905
		xa_unlock_irqrestore(&mapping->i_pages, flags);
906
		put_swap_page(page, swap);
N
Nick Piggin 已提交
907
	} else {
908 909 910
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;
911 912 913 914 915
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
D
dylan-meiners 已提交
916
		 * already exiting.  This is not just an optimization,
917 918 919
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
920 921 922 923 924
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
925
		 * same address_space.
926
		 */
H
Huang Ying 已提交
927
		if (reclaimed && page_is_file_lru(page) &&
928
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
929
			shadow = workingset_eviction(page, target_memcg);
J
Johannes Weiner 已提交
930
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
931
		xa_unlock_irqrestore(&mapping->i_pages, flags);
932 933 934

		if (freepage != NULL)
			freepage(page);
935 936 937 938 939
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
940
	xa_unlock_irqrestore(&mapping->i_pages, flags);
941 942 943
	return 0;
}

N
Nick Piggin 已提交
944 945 946 947 948 949 950 951
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
952
	if (__remove_mapping(mapping, page, false, NULL)) {
N
Nick Piggin 已提交
953 954 955 956 957
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
958
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
959 960 961 962 963
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
964 965 966 967 968 969 970 971 972 973 974
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
975
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
976 977 978
	put_page(page);		/* drop ref from isolate */
}

979 980 981
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
982
	PAGEREF_KEEP,
983 984 985 986 987 988
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
989
	int referenced_ptes, referenced_page;
990 991
	unsigned long vm_flags;

992 993
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
994
	referenced_page = TestClearPageReferenced(page);
995 996 997 998 999 1000 1001 1002

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	if (referenced_ptes) {
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1020
		if (referenced_page || referenced_ptes > 1)
1021 1022
			return PAGEREF_ACTIVATE;

1023 1024 1025
		/*
		 * Activate file-backed executable pages after first usage.
		 */
1026
		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1027 1028
			return PAGEREF_ACTIVATE;

1029 1030
		return PAGEREF_KEEP;
	}
1031 1032

	/* Reclaim if clean, defer dirty pages to writeback */
1033
	if (referenced_page && !PageSwapBacked(page))
1034 1035 1036
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1037 1038
}

1039 1040 1041 1042
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1043 1044
	struct address_space *mapping;

1045 1046 1047 1048
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
H
Huang Ying 已提交
1049
	if (!page_is_file_lru(page) ||
S
Shaohua Li 已提交
1050
	    (PageAnon(page) && !PageSwapBacked(page))) {
1051 1052 1053 1054 1055 1056 1057 1058
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1059 1060 1061 1062 1063 1064 1065 1066

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1067 1068
}

L
Linus Torvalds 已提交
1069
/*
A
Andrew Morton 已提交
1070
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1071
 */
1072 1073 1074 1075 1076
static unsigned int shrink_page_list(struct list_head *page_list,
				     struct pglist_data *pgdat,
				     struct scan_control *sc,
				     struct reclaim_stat *stat,
				     bool ignore_references)
L
Linus Torvalds 已提交
1077 1078
{
	LIST_HEAD(ret_pages);
1079
	LIST_HEAD(free_pages);
1080 1081
	unsigned int nr_reclaimed = 0;
	unsigned int pgactivate = 0;
L
Linus Torvalds 已提交
1082

1083
	memset(stat, 0, sizeof(*stat));
L
Linus Torvalds 已提交
1084 1085 1086 1087 1088
	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
1089
		enum page_references references = PAGEREF_RECLAIM;
1090
		bool dirty, writeback, may_enter_fs;
1091
		unsigned int nr_pages;
L
Linus Torvalds 已提交
1092 1093 1094 1095 1096 1097

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1098
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1099 1100
			goto keep;

1101
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1102

1103
		nr_pages = compound_nr(page);
1104 1105 1106

		/* Account the number of base pages even though THP */
		sc->nr_scanned += nr_pages;
1107

1108
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1109
			goto activate_locked;
L
Lee Schermerhorn 已提交
1110

1111
		if (!sc->may_unmap && page_mapped(page))
1112 1113
			goto keep_locked;

1114 1115 1116
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1117
		/*
1118
		 * The number of dirty pages determines if a node is marked
1119 1120 1121 1122 1123 1124
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
1125
			stat->nr_dirty++;
1126 1127

		if (dirty && !writeback)
1128
			stat->nr_unqueued_dirty++;
1129

1130 1131 1132 1133 1134 1135
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1136
		mapping = page_mapping(page);
1137
		if (((dirty || writeback) && mapping &&
1138
		     inode_write_congested(mapping->host)) ||
1139
		    (writeback && PageReclaim(page)))
1140
			stat->nr_congested++;
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1153 1154
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1155
		 *
1156
		 * 2) Global or new memcg reclaim encounters a page that is
1157 1158 1159
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1160
		 *    reclaim and continue scanning.
1161
		 *
1162 1163
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1164 1165 1166 1167 1168
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1169
		 * 3) Legacy memcg encounters a page that is already marked
1170 1171 1172 1173
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1174 1175 1176 1177 1178 1179 1180 1181 1182
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1183
		 */
1184
		if (PageWriteback(page)) {
1185 1186 1187
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1188
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1189
				stat->nr_immediate++;
1190
				goto activate_locked;
1191 1192

			/* Case 2 above */
1193
			} else if (writeback_throttling_sane(sc) ||
1194
			    !PageReclaim(page) || !may_enter_fs) {
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1207
				stat->nr_writeback++;
1208
				goto activate_locked;
1209 1210 1211

			/* Case 3 above */
			} else {
1212
				unlock_page(page);
1213
				wait_on_page_writeback(page);
1214 1215 1216
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1217
			}
1218
		}
L
Linus Torvalds 已提交
1219

1220
		if (!ignore_references)
1221 1222
			references = page_check_references(page, sc);

1223 1224
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1225
			goto activate_locked;
1226
		case PAGEREF_KEEP:
1227
			stat->nr_ref_keep += nr_pages;
1228
			goto keep_locked;
1229 1230 1231 1232
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1233 1234 1235 1236

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1237
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1238
		 */
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
1259
						goto activate_locked_split;
1260 1261 1262 1263
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1264 1265 1266
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1267
					if (!add_to_swap(page))
1268
						goto activate_locked_split;
1269
				}
1270

1271
				may_enter_fs = true;
L
Linus Torvalds 已提交
1272

1273 1274 1275
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1276 1277 1278 1279
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1280
		}
L
Linus Torvalds 已提交
1281

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		/*
		 * THP may get split above, need minus tail pages and update
		 * nr_pages to avoid accounting tail pages twice.
		 *
		 * The tail pages that are added into swap cache successfully
		 * reach here.
		 */
		if ((nr_pages > 1) && !PageTransHuge(page)) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}

L
Linus Torvalds 已提交
1294 1295 1296 1297
		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1298
		if (page_mapped(page)) {
1299
			enum ttu_flags flags = TTU_BATCH_FLUSH;
1300
			bool was_swapbacked = PageSwapBacked(page);
1301 1302 1303

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
1304

1305
			if (!try_to_unmap(page, flags)) {
1306
				stat->nr_unmap_fail += nr_pages;
1307 1308
				if (!was_swapbacked && PageSwapBacked(page))
					stat->nr_lazyfree_fail += nr_pages;
L
Linus Torvalds 已提交
1309 1310 1311 1312 1313
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1314
			/*
1315 1316 1317 1318 1319 1320 1321 1322
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1323
			 */
H
Huang Ying 已提交
1324
			if (page_is_file_lru(page) &&
1325 1326
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1327 1328 1329 1330 1331 1332
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1333
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1334 1335
				SetPageReclaim(page);

1336
				goto activate_locked;
1337 1338
			}

1339
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1340
				goto keep_locked;
1341
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1342
				goto keep_locked;
1343
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1344 1345
				goto keep_locked;

1346 1347 1348 1349 1350 1351
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1352
			switch (pageout(page, mapping)) {
L
Linus Torvalds 已提交
1353 1354 1355 1356 1357
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1358
				stat->nr_pageout += thp_nr_pages(page);
1359

1360
				if (PageWriteback(page))
1361
					goto keep;
1362
				if (PageDirty(page))
L
Linus Torvalds 已提交
1363
					goto keep;
1364

L
Linus Torvalds 已提交
1365 1366 1367 1368
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1369
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1389
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1400
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1401 1402
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1419 1420
		}

S
Shaohua Li 已提交
1421 1422 1423 1424 1425 1426 1427 1428
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1429

S
Shaohua Li 已提交
1430
			count_vm_event(PGLAZYFREED);
1431
			count_memcg_page_event(page, PGLAZYFREED);
1432 1433
		} else if (!mapping || !__remove_mapping(mapping, page, true,
							 sc->target_mem_cgroup))
S
Shaohua Li 已提交
1434
			goto keep_locked;
1435 1436

		unlock_page(page);
N
Nick Piggin 已提交
1437
free_it:
1438 1439 1440 1441 1442
		/*
		 * THP may get swapped out in a whole, need account
		 * all base pages.
		 */
		nr_reclaimed += nr_pages;
1443 1444 1445 1446 1447

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1448
		if (unlikely(PageTransHuge(page)))
1449
			destroy_compound_page(page);
1450
		else
1451
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1452 1453
		continue;

1454 1455 1456 1457 1458 1459 1460 1461 1462
activate_locked_split:
		/*
		 * The tail pages that are failed to add into swap cache
		 * reach here.  Fixup nr_scanned and nr_pages.
		 */
		if (nr_pages > 1) {
			sc->nr_scanned -= (nr_pages - 1);
			nr_pages = 1;
		}
L
Linus Torvalds 已提交
1463
activate_locked:
1464
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1465 1466
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1467
			try_to_free_swap(page);
1468
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1469
		if (!PageMlocked(page)) {
H
Huang Ying 已提交
1470
			int type = page_is_file_lru(page);
M
Minchan Kim 已提交
1471
			SetPageActive(page);
1472
			stat->nr_activate[type] += nr_pages;
1473
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1474
		}
L
Linus Torvalds 已提交
1475 1476 1477 1478
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1479
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1480
	}
1481

1482 1483
	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];

1484
	mem_cgroup_uncharge_list(&free_pages);
1485
	try_to_unmap_flush();
1486
	free_unref_page_list(&free_pages);
1487

L
Linus Torvalds 已提交
1488
	list_splice(&ret_pages, page_list);
1489
	count_vm_events(PGACTIVATE, pgactivate);
1490

1491
	return nr_reclaimed;
L
Linus Torvalds 已提交
1492 1493
}

1494
unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1495 1496 1497 1498 1499 1500 1501
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1502
	struct reclaim_stat stat;
1503
	unsigned int nr_reclaimed;
1504 1505 1506 1507
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
H
Huang Ying 已提交
1508
		if (page_is_file_lru(page) && !PageDirty(page) &&
1509
		    !__PageMovable(page) && !PageUnevictable(page)) {
1510 1511 1512 1513 1514
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

1515
	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1516
					&stat, true);
1517
	list_splice(&clean_pages, page_list);
1518 1519
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
			    -(long)nr_reclaimed);
1520 1521 1522 1523 1524 1525 1526 1527 1528
	/*
	 * Since lazyfree pages are isolated from file LRU from the beginning,
	 * they will rotate back to anonymous LRU in the end if it failed to
	 * discard so isolated count will be mismatched.
	 * Compensate the isolated count for both LRU lists.
	 */
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
			    stat.nr_lazyfree_fail);
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1529
			    -(long)stat.nr_lazyfree_fail);
1530
	return nr_reclaimed;
1531 1532
}

A
Andy Whitcroft 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1543
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1544 1545 1546 1547 1548 1549 1550
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1551 1552
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1553 1554
		return ret;

A
Andy Whitcroft 已提交
1555
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1556

1557 1558 1559 1560 1561 1562 1563 1564
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1565
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1566 1567 1568 1569 1570 1571
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1572
			bool migrate_dirty;
1573 1574 1575 1576

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1577 1578 1579 1580 1581
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1582
			 */
1583 1584 1585
			if (!trylock_page(page))
				return ret;

1586
			mapping = page_mapping(page);
1587
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1588 1589
			unlock_page(page);
			if (!migrate_dirty)
1590 1591 1592
				return ret;
		}
	}
1593

1594 1595 1596
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1610 1611 1612

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
E
Ethon Paul 已提交
1613
 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1614 1615
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1616
			enum lru_list lru, unsigned long *nr_zone_taken)
1617 1618 1619 1620 1621 1622 1623
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

1624
		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1625 1626
	}

1627 1628
}

1629 1630
/**
 * pgdat->lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635 1636 1637 1638
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1639
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1640
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1641
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1642
 * @nr_scanned:	The number of pages that were scanned.
1643
 * @sc:		The scan_control struct for this reclaim session
1644
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1645 1646 1647
 *
 * returns how many pages were moved onto *@dst.
 */
1648
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1649
		struct lruvec *lruvec, struct list_head *dst,
1650
		unsigned long *nr_scanned, struct scan_control *sc,
1651
		enum lru_list lru)
L
Linus Torvalds 已提交
1652
{
H
Hugh Dickins 已提交
1653
	struct list_head *src = &lruvec->lists[lru];
1654
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1655
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1656
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1657
	unsigned long skipped = 0;
1658
	unsigned long scan, total_scan, nr_pages;
1659
	LIST_HEAD(pages_skipped);
1660
	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
L
Linus Torvalds 已提交
1661

1662
	total_scan = 0;
1663
	scan = 0;
1664
	while (scan < nr_to_scan && !list_empty(src)) {
A
Andy Whitcroft 已提交
1665 1666
		struct page *page;

L
Linus Torvalds 已提交
1667 1668 1669
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1670
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1671

1672
		nr_pages = compound_nr(page);
1673 1674
		total_scan += nr_pages;

1675 1676
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1677
			nr_skipped[page_zonenum(page)] += nr_pages;
1678 1679 1680
			continue;
		}

1681 1682 1683 1684 1685
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
1686 1687 1688 1689
		 *
		 * Account all tail pages of THP.  This would not cause
		 * premature OOM since __isolate_lru_page() returns -EBUSY
		 * only when the page is being freed somewhere else.
1690
		 */
1691
		scan += nr_pages;
1692
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1693
		case 0:
M
Mel Gorman 已提交
1694 1695
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1696 1697 1698 1699 1700 1701 1702
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1703

A
Andy Whitcroft 已提交
1704 1705 1706
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1707 1708
	}

1709 1710 1711 1712 1713 1714 1715
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1716 1717 1718
	if (!list_empty(&pages_skipped)) {
		int zid;

1719
		list_splice(&pages_skipped, src);
1720 1721 1722 1723 1724
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1725
			skipped += nr_skipped[zid];
1726 1727
		}
	}
1728
	*nr_scanned = total_scan;
1729
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1730
				    total_scan, skipped, nr_taken, mode, lru);
1731
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1732 1733 1734
	return nr_taken;
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1746 1747 1748
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1749 1750 1751 1752 1753
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1754
 *
1755
 * (1) Must be called with an elevated refcount on the page. This is a
1756
 *     fundamental difference from isolate_lru_pages (which is called
1757 1758 1759 1760 1761 1762 1763 1764
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1765
	VM_BUG_ON_PAGE(!page_count(page), page);
1766
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1767

1768
	if (PageLRU(page)) {
1769
		pg_data_t *pgdat = page_pgdat(page);
1770
		struct lruvec *lruvec;
1771

1772 1773
		spin_lock_irq(&pgdat->lru_lock);
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1774
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1775
			int lru = page_lru(page);
1776
			get_page(page);
1777
			ClearPageLRU(page);
1778 1779
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1780
		}
1781
		spin_unlock_irq(&pgdat->lru_lock);
1782 1783 1784 1785
	}
	return ret;
}

1786
/*
F
Fengguang Wu 已提交
1787
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
X
Xianting Tian 已提交
1788
 * then get rescheduled. When there are massive number of tasks doing page
F
Fengguang Wu 已提交
1789 1790 1791
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1792
 */
M
Mel Gorman 已提交
1793
static int too_many_isolated(struct pglist_data *pgdat, int file,
1794 1795 1796 1797 1798 1799 1800
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1801
	if (!writeback_throttling_sane(sc))
1802 1803 1804
		return 0;

	if (file) {
M
Mel Gorman 已提交
1805 1806
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1807
	} else {
M
Mel Gorman 已提交
1808 1809
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1810 1811
	}

1812 1813 1814 1815 1816
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1817
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1818 1819
		inactive >>= 3;

1820 1821 1822
	return isolated > inactive;
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/*
 * This moves pages from @list to corresponding LRU list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone_lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone_lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_refcount against each page.
 * But we had to alter page->flags anyway.
 *
 * Returns the number of pages moved to the given lruvec.
 */

static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
						     struct list_head *list)
1845
{
M
Mel Gorman 已提交
1846
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1847
	int nr_pages, nr_moved = 0;
1848
	LIST_HEAD(pages_to_free);
1849 1850
	struct page *page;
	enum lru_list lru;
1851

1852 1853
	while (!list_empty(list)) {
		page = lru_to_page(list);
1854
		VM_BUG_ON_PAGE(PageLRU(page), page);
1855
		if (unlikely(!page_evictable(page))) {
1856
			list_del(&page->lru);
M
Mel Gorman 已提交
1857
			spin_unlock_irq(&pgdat->lru_lock);
1858
			putback_lru_page(page);
M
Mel Gorman 已提交
1859
			spin_lock_irq(&pgdat->lru_lock);
1860 1861
			continue;
		}
M
Mel Gorman 已提交
1862
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1863

1864
		SetPageLRU(page);
1865
		lru = page_lru(page);
1866

1867
		nr_pages = thp_nr_pages(page);
1868 1869
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
		list_move(&page->lru, &lruvec->lists[lru]);
1870

1871 1872 1873
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1874
			del_page_from_lru_list(page, lruvec, lru);
1875 1876

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1877
				spin_unlock_irq(&pgdat->lru_lock);
1878
				destroy_compound_page(page);
M
Mel Gorman 已提交
1879
				spin_lock_irq(&pgdat->lru_lock);
1880 1881
			} else
				list_add(&page->lru, &pages_to_free);
1882 1883
		} else {
			nr_moved += nr_pages;
1884 1885
			if (PageActive(page))
				workingset_age_nonresident(lruvec, nr_pages);
1886 1887 1888
		}
	}

1889 1890 1891
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
1892 1893 1894
	list_splice(&pages_to_free, list);

	return nr_moved;
1895 1896
}

1897 1898
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
1899
 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1900 1901 1902 1903 1904
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
1905
	return !(current->flags & PF_LOCAL_THROTTLE) ||
1906 1907 1908 1909
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1910
/*
1911
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1912
 * of reclaimed pages
L
Linus Torvalds 已提交
1913
 */
1914
static noinline_for_stack unsigned long
1915
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1916
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1917 1918
{
	LIST_HEAD(page_list);
1919
	unsigned long nr_scanned;
1920
	unsigned int nr_reclaimed = 0;
1921
	unsigned long nr_taken;
1922
	struct reclaim_stat stat;
1923
	bool file = is_file_lru(lru);
1924
	enum vm_event_item item;
M
Mel Gorman 已提交
1925
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1926
	bool stalled = false;
1927

M
Mel Gorman 已提交
1928
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1929 1930 1931 1932 1933 1934
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1935 1936 1937 1938 1939 1940

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1941
	lru_add_drain();
1942

M
Mel Gorman 已提交
1943
	spin_lock_irq(&pgdat->lru_lock);
1944

1945
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1946
				     &nr_scanned, sc, lru);
1947

M
Mel Gorman 已提交
1948
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1949
	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1950
	if (!cgroup_reclaim(sc))
1951 1952
		__count_vm_events(item, nr_scanned);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1953 1954
	__count_vm_events(PGSCAN_ANON + file, nr_scanned);

M
Mel Gorman 已提交
1955
	spin_unlock_irq(&pgdat->lru_lock);
1956

1957
	if (nr_taken == 0)
1958
		return 0;
A
Andy Whitcroft 已提交
1959

1960
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
1961

M
Mel Gorman 已提交
1962
	spin_lock_irq(&pgdat->lru_lock);
1963

1964 1965 1966
	move_pages_to_lru(lruvec, &page_list);

	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1967
	lru_note_cost(lruvec, file, stat.nr_pageout);
1968
	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1969
	if (!cgroup_reclaim(sc))
1970 1971
		__count_vm_events(item, nr_reclaimed);
	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1972
	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1973

M
Mel Gorman 已提交
1974
	spin_unlock_irq(&pgdat->lru_lock);
1975

1976
	mem_cgroup_uncharge_list(&page_list);
1977
	free_unref_page_list(&page_list);
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1993 1994 1995 1996 1997 1998 1999 2000
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2001

M
Mel Gorman 已提交
2002
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2003
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2004
	return nr_reclaimed;
L
Linus Torvalds 已提交
2005 2006
}

H
Hugh Dickins 已提交
2007
static void shrink_active_list(unsigned long nr_to_scan,
2008
			       struct lruvec *lruvec,
2009
			       struct scan_control *sc,
2010
			       enum lru_list lru)
L
Linus Torvalds 已提交
2011
{
2012
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2013
	unsigned long nr_scanned;
2014
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2015
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2016
	LIST_HEAD(l_active);
2017
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2018
	struct page *page;
2019 2020
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2021
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2022
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2023 2024

	lru_add_drain();
2025

M
Mel Gorman 已提交
2026
	spin_lock_irq(&pgdat->lru_lock);
2027

2028
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2029
				     &nr_scanned, sc, lru);
2030

M
Mel Gorman 已提交
2031
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2032

2033 2034
	if (!cgroup_reclaim(sc))
		__count_vm_events(PGREFILL, nr_scanned);
2035
	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2036

M
Mel Gorman 已提交
2037
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2038 2039 2040 2041 2042

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2043

2044
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2045 2046 2047 2048
			putback_lru_page(page);
			continue;
		}

2049 2050 2051 2052 2053 2054 2055 2056
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2057 2058
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2059 2060 2061 2062 2063 2064 2065 2066 2067
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
H
Huang Ying 已提交
2068
			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2069
				nr_rotated += thp_nr_pages(page);
2070 2071 2072 2073
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2074

2075
		ClearPageActive(page);	/* we are de-activating */
2076
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2077 2078 2079
		list_add(&page->lru, &l_inactive);
	}

2080
	/*
2081
	 * Move pages back to the lru list.
2082
	 */
M
Mel Gorman 已提交
2083
	spin_lock_irq(&pgdat->lru_lock);
2084

2085 2086
	nr_activate = move_pages_to_lru(lruvec, &l_active);
	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2087 2088
	/* Keep all free pages in l_active list */
	list_splice(&l_inactive, &l_active);
2089 2090 2091 2092

	__count_vm_events(PGDEACTIVATE, nr_deactivate);
	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);

M
Mel Gorman 已提交
2093 2094
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2095

2096 2097
	mem_cgroup_uncharge_list(&l_active);
	free_unref_page_list(&l_active);
2098 2099
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2100 2101
}

M
Minchan Kim 已提交
2102 2103
unsigned long reclaim_pages(struct list_head *page_list)
{
2104
	int nid = NUMA_NO_NODE;
2105
	unsigned int nr_reclaimed = 0;
M
Minchan Kim 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	LIST_HEAD(node_page_list);
	struct reclaim_stat dummy_stat;
	struct page *page;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_writepage = 1,
		.may_unmap = 1,
		.may_swap = 1,
	};

	while (!list_empty(page_list)) {
		page = lru_to_page(page_list);
2119
		if (nid == NUMA_NO_NODE) {
M
Minchan Kim 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
			nid = page_to_nid(page);
			INIT_LIST_HEAD(&node_page_list);
		}

		if (nid == page_to_nid(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &node_page_list);
			continue;
		}

		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
2132
						&sc, &dummy_stat, false);
M
Minchan Kim 已提交
2133 2134 2135 2136 2137 2138
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}

2139
		nid = NUMA_NO_NODE;
M
Minchan Kim 已提交
2140 2141 2142 2143 2144
	}

	if (!list_empty(&node_page_list)) {
		nr_reclaimed += shrink_page_list(&node_page_list,
						NODE_DATA(nid),
2145
						&sc, &dummy_stat, false);
M
Minchan Kim 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		while (!list_empty(&node_page_list)) {
			page = lru_to_page(&node_page_list);
			list_del(&page->lru);
			putback_lru_page(page);
		}
	}

	return nr_reclaimed;
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
				 struct lruvec *lruvec, struct scan_control *sc)
{
	if (is_active_lru(lru)) {
		if (sc->may_deactivate & (1 << is_file_lru(lru)))
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
		else
			sc->skipped_deactivate = 1;
		return 0;
	}

	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
}

2170 2171 2172
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2173
 *
2174 2175 2176
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2177
 *
2178 2179
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2180
 *
2181 2182
 * If that fails and refaulting is observed, the inactive list grows.
 *
2183
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2184
 * on this LRU, maintained by the pageout code. An inactive_ratio
2185
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2186
 *
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2197
 */
2198
static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2199
{
2200
	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2201 2202
	unsigned long inactive, active;
	unsigned long inactive_ratio;
2203
	unsigned long gb;
2204

2205 2206
	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2207

2208
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2209
	if (gb)
2210 2211 2212
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;
2213

2214
	return inactive * inactive_ratio < active;
2215 2216
}

2217 2218 2219 2220 2221 2222 2223
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2224 2225 2226 2227 2228 2229
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2230 2231
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2232
 */
2233 2234
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
			   unsigned long *nr)
2235
{
2236
	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2237
	unsigned long anon_cost, file_cost, total_cost;
2238
	int swappiness = mem_cgroup_swappiness(memcg);
2239
	u64 fraction[ANON_AND_FILE];
2240 2241
	u64 denominator = 0;	/* gcc */
	enum scan_balance scan_balance;
2242
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2243
	enum lru_list lru;
2244 2245

	/* If we have no swap space, do not bother scanning anon pages. */
2246
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2247
		scan_balance = SCAN_FILE;
2248 2249
		goto out;
	}
2250

2251 2252 2253 2254 2255 2256 2257
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2258
	if (cgroup_reclaim(sc) && !swappiness) {
2259
		scan_balance = SCAN_FILE;
2260 2261 2262 2263 2264 2265 2266 2267
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2268
	if (!sc->priority && swappiness) {
2269
		scan_balance = SCAN_EQUAL;
2270 2271 2272
		goto out;
	}

2273
	/*
2274
	 * If the system is almost out of file pages, force-scan anon.
2275
	 */
2276
	if (sc->file_is_tiny) {
2277 2278
		scan_balance = SCAN_ANON;
		goto out;
2279 2280
	}

2281
	/*
2282 2283
	 * If there is enough inactive page cache, we do not reclaim
	 * anything from the anonymous working right now.
2284
	 */
2285
	if (sc->cache_trim_mode) {
2286
		scan_balance = SCAN_FILE;
2287 2288 2289
		goto out;
	}

2290
	scan_balance = SCAN_FRACT;
2291
	/*
2292 2293 2294 2295 2296 2297 2298 2299
	 * Calculate the pressure balance between anon and file pages.
	 *
	 * The amount of pressure we put on each LRU is inversely
	 * proportional to the cost of reclaiming each list, as
	 * determined by the share of pages that are refaulting, times
	 * the relative IO cost of bringing back a swapped out
	 * anonymous page vs reloading a filesystem page (swappiness).
	 *
2300 2301 2302 2303
	 * Although we limit that influence to ensure no list gets
	 * left behind completely: at least a third of the pressure is
	 * applied, before swappiness.
	 *
2304
	 * With swappiness at 100, anon and file have equal IO cost.
2305
	 */
2306 2307 2308 2309
	total_cost = sc->anon_cost + sc->file_cost;
	anon_cost = total_cost + sc->anon_cost;
	file_cost = total_cost + sc->file_cost;
	total_cost = anon_cost + file_cost;
2310

2311 2312
	ap = swappiness * (total_cost + 1);
	ap /= anon_cost + 1;
2313

2314 2315
	fp = (200 - swappiness) * (total_cost + 1);
	fp /= file_cost + 1;
2316

2317 2318
	fraction[0] = ap;
	fraction[1] = fp;
2319
	denominator = ap + fp;
2320
out:
2321 2322
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
2323
		unsigned long lruvec_size;
2324
		unsigned long scan;
2325
		unsigned long protection;
2326 2327

		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2328 2329
		protection = mem_cgroup_protection(sc->target_mem_cgroup,
						   memcg,
2330
						   sc->memcg_low_reclaim);
2331

2332
		if (protection) {
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
			/*
			 * Scale a cgroup's reclaim pressure by proportioning
			 * its current usage to its memory.low or memory.min
			 * setting.
			 *
			 * This is important, as otherwise scanning aggression
			 * becomes extremely binary -- from nothing as we
			 * approach the memory protection threshold, to totally
			 * nominal as we exceed it.  This results in requiring
			 * setting extremely liberal protection thresholds. It
			 * also means we simply get no protection at all if we
			 * set it too low, which is not ideal.
2345 2346 2347 2348
			 *
			 * If there is any protection in place, we reduce scan
			 * pressure by how much of the total memory used is
			 * within protection thresholds.
2349
			 *
2350 2351 2352 2353 2354 2355 2356 2357
			 * There is one special case: in the first reclaim pass,
			 * we skip over all groups that are within their low
			 * protection. If that fails to reclaim enough pages to
			 * satisfy the reclaim goal, we come back and override
			 * the best-effort low protection. However, we still
			 * ideally want to honor how well-behaved groups are in
			 * that case instead of simply punishing them all
			 * equally. As such, we reclaim them based on how much
2358 2359 2360
			 * memory they are using, reducing the scan pressure
			 * again by how much of the total memory used is under
			 * hard protection.
2361
			 */
2362 2363 2364 2365 2366 2367 2368
			unsigned long cgroup_size = mem_cgroup_size(memcg);

			/* Avoid TOCTOU with earlier protection check */
			cgroup_size = max(cgroup_size, protection);

			scan = lruvec_size - lruvec_size * protection /
				cgroup_size;
2369 2370

			/*
2371
			 * Minimally target SWAP_CLUSTER_MAX pages to keep
E
Ethon Paul 已提交
2372
			 * reclaim moving forwards, avoiding decrementing
2373
			 * sc->priority further than desirable.
2374
			 */
2375
			scan = max(scan, SWAP_CLUSTER_MAX);
2376 2377 2378 2379 2380
		} else {
			scan = lruvec_size;
		}

		scan >>= sc->priority;
2381

2382 2383 2384 2385 2386
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
2387
			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2388

2389 2390 2391 2392 2393
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2394
			/*
2395 2396
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2397 2398 2399
			 * Make sure we don't miss the last page on
			 * the offlined memory cgroups because of a
			 * round-off error.
2400
			 */
2401 2402 2403
			scan = mem_cgroup_online(memcg) ?
			       div64_u64(scan * fraction[file], denominator) :
			       DIV64_U64_ROUND_UP(scan * fraction[file],
2404
						  denominator);
2405 2406 2407 2408
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
2409
			if ((scan_balance == SCAN_FILE) != file)
2410 2411 2412 2413 2414
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
2415
		}
2416 2417

		nr[lru] = scan;
2418
	}
2419
}
2420

2421
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2422 2423
{
	unsigned long nr[NR_LRU_LISTS];
2424
	unsigned long targets[NR_LRU_LISTS];
2425 2426 2427 2428 2429
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2430
	bool scan_adjusted;
2431

2432
	get_scan_count(lruvec, sc, nr);
2433

2434 2435 2436
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
2448
	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2449 2450
			 sc->priority == DEF_PRIORITY);

2451 2452 2453
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2454 2455 2456
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2457 2458 2459 2460 2461 2462
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2463
							    lruvec, sc);
2464 2465
			}
		}
2466

2467 2468
		cond_resched();

2469 2470 2471 2472 2473
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2474
		 * requested. Ensure that the anon and file LRUs are scanned
2475 2476 2477 2478 2479 2480 2481
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2482 2483 2484 2485 2486 2487 2488 2489 2490
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2522 2523 2524 2525 2526 2527 2528 2529
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2530
	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2531 2532 2533 2534
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2535
/* Use reclaim/compaction for costly allocs or under memory pressure */
2536
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2537
{
2538
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2539
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2540
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2541 2542 2543 2544 2545
		return true;

	return false;
}

2546
/*
M
Mel Gorman 已提交
2547 2548 2549
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
2550
 * calls try_to_compact_pages() that it will have enough free pages to succeed.
M
Mel Gorman 已提交
2551
 * It will give up earlier than that if there is difficulty reclaiming pages.
2552
 */
2553
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2554 2555 2556 2557 2558
					unsigned long nr_reclaimed,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2559
	int z;
2560 2561

	/* If not in reclaim/compaction mode, stop */
2562
	if (!in_reclaim_compaction(sc))
2563 2564
		return false;

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
	/*
	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
	 * number of pages that were scanned. This will return to the caller
	 * with the risk reclaim/compaction and the resulting allocation attempt
	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
	 * allocations through requiring that the full LRU list has been scanned
	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
	 * scan, but that approximation was wrong, and there were corner cases
	 * where always a non-zero amount of pages were scanned.
	 */
	if (!nr_reclaimed)
		return false;
2577 2578

	/* If compaction would go ahead or the allocation would succeed, stop */
2579 2580
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2581
		if (!managed_zone(zone))
2582 2583 2584
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2585
		case COMPACT_SUCCESS:
2586 2587 2588 2589 2590 2591
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2592
	}
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = compact_gap(sc->order);
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);

2603
	return inactive_lru_pages > pages_for_compaction;
2604 2605
}

2606
static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2607
{
2608
	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2609
	struct mem_cgroup *memcg;
L
Linus Torvalds 已提交
2610

2611
	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2612
	do {
2613
		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2614 2615
		unsigned long reclaimed;
		unsigned long scanned;
2616

2617 2618 2619 2620 2621 2622 2623 2624
		/*
		 * This loop can become CPU-bound when target memcgs
		 * aren't eligible for reclaim - either because they
		 * don't have any reclaimable pages, or because their
		 * memory is explicitly protected. Avoid soft lockups.
		 */
		cond_resched();

2625 2626 2627
		mem_cgroup_calculate_protection(target_memcg, memcg);

		if (mem_cgroup_below_min(memcg)) {
2628 2629 2630 2631 2632
			/*
			 * Hard protection.
			 * If there is no reclaimable memory, OOM.
			 */
			continue;
2633
		} else if (mem_cgroup_below_low(memcg)) {
2634 2635 2636 2637 2638 2639 2640 2641
			/*
			 * Soft protection.
			 * Respect the protection only as long as
			 * there is an unprotected supply
			 * of reclaimable memory from other cgroups.
			 */
			if (!sc->memcg_low_reclaim) {
				sc->memcg_low_skipped = 1;
R
Roman Gushchin 已提交
2642
				continue;
2643
			}
2644 2645
			memcg_memory_event(memcg, MEMCG_LOW);
		}
2646

2647 2648
		reclaimed = sc->nr_reclaimed;
		scanned = sc->nr_scanned;
2649 2650

		shrink_lruvec(lruvec, sc);
2651

2652 2653
		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
			    sc->priority);
2654

2655 2656 2657 2658
		/* Record the group's reclaim efficiency */
		vmpressure(sc->gfp_mask, memcg, false,
			   sc->nr_scanned - scanned,
			   sc->nr_reclaimed - reclaimed);
2659

2660 2661 2662
	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
}

2663
static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2664 2665 2666
{
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long nr_reclaimed, nr_scanned;
2667
	struct lruvec *target_lruvec;
2668
	bool reclaimable = false;
2669
	unsigned long file;
2670

2671 2672
	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);

2673 2674 2675 2676 2677 2678
again:
	memset(&sc->nr, 0, sizeof(sc->nr));

	nr_reclaimed = sc->nr_reclaimed;
	nr_scanned = sc->nr_scanned;

2679 2680 2681 2682 2683 2684 2685 2686
	/*
	 * Determine the scan balance between anon and file LRUs.
	 */
	spin_lock_irq(&pgdat->lru_lock);
	sc->anon_cost = target_lruvec->anon_cost;
	sc->file_cost = target_lruvec->file_cost;
	spin_unlock_irq(&pgdat->lru_lock);

2687 2688 2689 2690 2691 2692 2693
	/*
	 * Target desirable inactive:active list ratios for the anon
	 * and file LRU lists.
	 */
	if (!sc->force_deactivate) {
		unsigned long refaults;

2694 2695 2696 2697
		refaults = lruvec_page_state(target_lruvec,
				WORKINGSET_ACTIVATE_ANON);
		if (refaults != target_lruvec->refaults[0] ||
			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
			sc->may_deactivate |= DEACTIVATE_ANON;
		else
			sc->may_deactivate &= ~DEACTIVATE_ANON;

		/*
		 * When refaults are being observed, it means a new
		 * workingset is being established. Deactivate to get
		 * rid of any stale active pages quickly.
		 */
		refaults = lruvec_page_state(target_lruvec,
2708 2709
				WORKINGSET_ACTIVATE_FILE);
		if (refaults != target_lruvec->refaults[1] ||
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
			sc->may_deactivate |= DEACTIVATE_FILE;
		else
			sc->may_deactivate &= ~DEACTIVATE_FILE;
	} else
		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;

	/*
	 * If we have plenty of inactive file pages that aren't
	 * thrashing, try to reclaim those first before touching
	 * anonymous pages.
	 */
	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
		sc->cache_trim_mode = 1;
	else
		sc->cache_trim_mode = 0;

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (!cgroup_reclaim(sc)) {
		unsigned long total_high_wmark = 0;
2739 2740
		unsigned long free, anon;
		int z;
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
			if (!managed_zone(zone))
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
		/*
		 * Consider anon: if that's low too, this isn't a
		 * runaway file reclaim problem, but rather just
		 * extreme pressure. Reclaim as per usual then.
		 */
		anon = node_page_state(pgdat, NR_INACTIVE_ANON);

		sc->file_is_tiny =
			file + free <= total_high_wmark &&
			!(sc->may_deactivate & DEACTIVATE_ANON) &&
			anon >> sc->priority;
2765 2766
	}

2767
	shrink_node_memcgs(pgdat, sc);
2768

2769 2770 2771 2772
	if (reclaim_state) {
		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
		reclaim_state->reclaimed_slab = 0;
	}
2773

2774
	/* Record the subtree's reclaim efficiency */
2775
	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2776 2777
		   sc->nr_scanned - nr_scanned,
		   sc->nr_reclaimed - nr_reclaimed);
2778

2779 2780
	if (sc->nr_reclaimed - nr_reclaimed)
		reclaimable = true;
2781

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
	if (current_is_kswapd()) {
		/*
		 * If reclaim is isolating dirty pages under writeback,
		 * it implies that the long-lived page allocation rate
		 * is exceeding the page laundering rate. Either the
		 * global limits are not being effective at throttling
		 * processes due to the page distribution throughout
		 * zones or there is heavy usage of a slow backing
		 * device. The only option is to throttle from reclaim
		 * context which is not ideal as there is no guarantee
		 * the dirtying process is throttled in the same way
		 * balance_dirty_pages() manages.
		 *
		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
		 * count the number of pages under pages flagged for
		 * immediate reclaim and stall if any are encountered
		 * in the nr_immediate check below.
		 */
		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2802

2803 2804 2805
		/* Allow kswapd to start writing pages during reclaim.*/
		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
			set_bit(PGDAT_DIRTY, &pgdat->flags);
2806

2807
		/*
2808
		 * If kswapd scans pages marked for immediate
2809 2810 2811
		 * reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU
		 * faster than they are written so also forcibly stall.
2812
		 */
2813 2814 2815 2816 2817
		if (sc->nr.immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
	}

	/*
2818 2819 2820 2821
	 * Tag a node/memcg as congested if all the dirty pages
	 * scanned were backed by a congested BDI and
	 * wait_iff_congested will stall.
	 *
2822 2823 2824
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling in wait_iff_congested().
	 */
2825 2826
	if ((current_is_kswapd() ||
	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2827
	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2828
		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2829 2830 2831 2832 2833 2834 2835

	/*
	 * Stall direct reclaim for IO completions if underlying BDIs
	 * and node is congested. Allow kswapd to continue until it
	 * starts encountering unqueued dirty pages or cycling through
	 * the LRU too quickly.
	 */
2836 2837 2838
	if (!current_is_kswapd() && current_may_throttle() &&
	    !sc->hibernation_mode &&
	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2839
		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2840

2841 2842 2843
	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
				    sc))
		goto again;
2844

2845 2846 2847 2848 2849 2850 2851 2852
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;
2853 2854
}

2855
/*
2856 2857 2858
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2859
 */
2860
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2861
{
M
Mel Gorman 已提交
2862
	unsigned long watermark;
2863
	enum compact_result suitable;
2864

2865 2866 2867 2868 2869 2870 2871
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2872

2873
	/*
2874 2875 2876 2877 2878 2879 2880
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2881
	 */
2882
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2883

2884
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2885 2886
}

L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892 2893 2894
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2895
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2896
{
2897
	struct zoneref *z;
2898
	struct zone *zone;
2899 2900
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2901
	gfp_t orig_mask;
2902
	pg_data_t *last_pgdat = NULL;
2903

2904 2905 2906 2907 2908
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2909
	orig_mask = sc->gfp_mask;
2910
	if (buffer_heads_over_limit) {
2911
		sc->gfp_mask |= __GFP_HIGHMEM;
2912
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2913
	}
2914

2915
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2916
					sc->reclaim_idx, sc->nodemask) {
2917 2918 2919 2920
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2921
		if (!cgroup_reclaim(sc)) {
2922 2923
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2924
				continue;
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2937
			    compaction_ready(zone, sc)) {
2938 2939
				sc->compaction_ready = true;
				continue;
2940
			}
2941

2942 2943 2944 2945 2946 2947 2948 2949 2950
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2951 2952 2953 2954 2955 2956 2957
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2958
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2959 2960 2961 2962
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2963
			/* need some check for avoid more shrink_zone() */
2964
		}
2965

2966 2967 2968 2969
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2970
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2971
	}
2972

2973 2974 2975 2976 2977
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2978
}
2979

2980
static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2981
{
2982 2983
	struct lruvec *target_lruvec;
	unsigned long refaults;
2984

2985
	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2986 2987 2988 2989
	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
	target_lruvec->refaults[0] = refaults;
	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
	target_lruvec->refaults[1] = refaults;
2990 2991
}

L
Linus Torvalds 已提交
2992 2993 2994 2995 2996 2997 2998 2999
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
3000 3001 3002 3003
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
3004 3005 3006
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
3007
 */
3008
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3009
					  struct scan_control *sc)
L
Linus Torvalds 已提交
3010
{
3011
	int initial_priority = sc->priority;
3012 3013 3014
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
3015
retry:
3016 3017
	delayacct_freepages_start();

3018
	if (!cgroup_reclaim(sc))
3019
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
3020

3021
	do {
3022 3023
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
3024
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
3025
		shrink_zones(zonelist, sc);
3026

3027
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3028 3029 3030 3031
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
3032

3033 3034 3035 3036 3037 3038
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
3039
	} while (--sc->priority >= 0);
3040

3041 3042 3043 3044 3045 3046
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
3047

3048
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3049 3050 3051 3052 3053 3054 3055 3056

		if (cgroup_reclaim(sc)) {
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
						   zone->zone_pgdat);
			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
		}
3057 3058
	}

3059 3060
	delayacct_freepages_end();

3061 3062 3063
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

3064
	/* Aborted reclaim to try compaction? don't OOM, then */
3065
	if (sc->compaction_ready)
3066 3067
		return 1;

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	/*
	 * We make inactive:active ratio decisions based on the node's
	 * composition of memory, but a restrictive reclaim_idx or a
	 * memory.low cgroup setting can exempt large amounts of
	 * memory from reclaim. Neither of which are very common, so
	 * instead of doing costly eligibility calculations of the
	 * entire cgroup subtree up front, we assume the estimates are
	 * good, and retry with forcible deactivation if that fails.
	 */
	if (sc->skipped_deactivate) {
		sc->priority = initial_priority;
		sc->force_deactivate = 1;
		sc->skipped_deactivate = 0;
		goto retry;
	}

3084
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3085
	if (sc->memcg_low_skipped) {
3086
		sc->priority = initial_priority;
3087
		sc->force_deactivate = 0;
3088 3089
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3090 3091 3092
		goto retry;
	}

3093
	return 0;
L
Linus Torvalds 已提交
3094 3095
}

3096
static bool allow_direct_reclaim(pg_data_t *pgdat)
3097 3098 3099 3100 3101 3102 3103
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3104 3105 3106
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3107 3108
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3109 3110 3111 3112
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3113 3114
			continue;

3115 3116 3117 3118
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3119 3120 3121 3122
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3123 3124 3125 3126
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3127 3128
		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3129

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3140 3141 3142 3143
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3144
 */
3145
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3146 3147
					nodemask_t *nodemask)
{
3148
	struct zoneref *z;
3149
	struct zone *zone;
3150
	pg_data_t *pgdat = NULL;
3151 3152 3153 3154 3155 3156 3157 3158 3159

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3160 3161 3162 3163 3164 3165 3166 3167
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3168

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3184
					gfp_zone(gfp_mask), nodemask) {
3185 3186 3187 3188 3189
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3190
		if (allow_direct_reclaim(pgdat))
3191 3192 3193 3194 3195 3196
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3197
		goto out;
3198

3199 3200 3201
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3212
			allow_direct_reclaim(pgdat), HZ);
3213 3214

		goto check_pending;
3215 3216 3217 3218
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3219
		allow_direct_reclaim(pgdat));
3220 3221 3222 3223 3224 3225 3226

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3227 3228
}

3229
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3230
				gfp_t gfp_mask, nodemask_t *nodemask)
3231
{
3232
	unsigned long nr_reclaimed;
3233
	struct scan_control sc = {
3234
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3235
		.gfp_mask = current_gfp_context(gfp_mask),
3236
		.reclaim_idx = gfp_zone(gfp_mask),
3237 3238 3239
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3240
		.may_writepage = !laptop_mode,
3241
		.may_unmap = 1,
3242
		.may_swap = 1,
3243 3244
	};

G
Greg Thelen 已提交
3245 3246 3247 3248 3249 3250 3251 3252
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3253
	/*
3254 3255 3256
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3257
	 */
3258
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3259 3260
		return 1;

3261
	set_task_reclaim_state(current, &sc.reclaim_state);
3262
	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3263

3264
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3265 3266

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3267
	set_task_reclaim_state(current, NULL);
3268 3269

	return nr_reclaimed;
3270 3271
}

A
Andrew Morton 已提交
3272
#ifdef CONFIG_MEMCG
3273

3274
/* Only used by soft limit reclaim. Do not reuse for anything else. */
3275
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3276
						gfp_t gfp_mask, bool noswap,
3277
						pg_data_t *pgdat,
3278
						unsigned long *nr_scanned)
3279
{
3280
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3281
	struct scan_control sc = {
3282
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3283
		.target_mem_cgroup = memcg,
3284 3285
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3286
		.reclaim_idx = MAX_NR_ZONES - 1,
3287 3288
		.may_swap = !noswap,
	};
3289

3290 3291
	WARN_ON_ONCE(!current->reclaim_state);

3292 3293
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3294

3295
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3296
						      sc.gfp_mask);
3297

3298 3299 3300
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3301
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3302 3303 3304
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3305
	shrink_lruvec(lruvec, &sc);
3306 3307 3308

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3309
	*nr_scanned = sc.nr_scanned;
3310

3311 3312 3313
	return sc.nr_reclaimed;
}

3314
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3315
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3316
					   gfp_t gfp_mask,
3317
					   bool may_swap)
3318
{
3319
	unsigned long nr_reclaimed;
3320
	unsigned int noreclaim_flag;
3321
	struct scan_control sc = {
3322
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3323
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3324
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3325
		.reclaim_idx = MAX_NR_ZONES - 1,
3326 3327 3328 3329
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3330
		.may_swap = may_swap,
3331
	};
3332
	/*
3333 3334 3335
	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
	 * equal pressure on all the nodes. This is based on the assumption that
	 * the reclaim does not bail out early.
3336
	 */
3337
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3338

3339
	set_task_reclaim_state(current, &sc.reclaim_state);
3340
	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3341
	noreclaim_flag = memalloc_noreclaim_save();
3342

3343
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3344

3345
	memalloc_noreclaim_restore(noreclaim_flag);
3346
	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3347
	set_task_reclaim_state(current, NULL);
3348 3349

	return nr_reclaimed;
3350 3351 3352
}
#endif

3353
static void age_active_anon(struct pglist_data *pgdat,
3354
				struct scan_control *sc)
3355
{
3356
	struct mem_cgroup *memcg;
3357
	struct lruvec *lruvec;
3358

3359 3360 3361
	if (!total_swap_pages)
		return;

3362 3363 3364 3365
	lruvec = mem_cgroup_lruvec(NULL, pgdat);
	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
		return;

3366 3367
	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3368 3369 3370
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
3371 3372
		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3373 3374
}

3375
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3376 3377 3378 3379 3380 3381 3382
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
3383
	 * should not be checked at the same time as reclaim would
3384 3385 3386
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
3387
	for (i = highest_zoneidx; i >= 0; i--) {
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3399 3400
/*
 * Returns true if there is an eligible zone balanced for the request order
3401
 * and highest_zoneidx
3402
 */
3403
static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3404
{
3405 3406 3407
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3408

3409 3410 3411 3412
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3413
	for (i = 0; i <= highest_zoneidx; i++) {
3414
		zone = pgdat->node_zones + i;
3415

3416 3417 3418 3419
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
3420
		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3421 3422 3423 3424
			return true;
	}

	/*
3425
	 * If a node has no populated zone within highest_zoneidx, it does not
3426 3427 3428 3429 3430 3431 3432
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3433 3434
}

3435 3436 3437
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
3438 3439 3440
	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);

	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3441 3442 3443 3444
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3445 3446 3447 3448 3449 3450
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3451 3452
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
				int highest_zoneidx)
3453
{
3454
	/*
3455
	 * The throttled processes are normally woken up in balance_pgdat() as
3456
	 * soon as allow_direct_reclaim() is true. But there is a potential
3457 3458 3459 3460 3461 3462 3463 3464 3465
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3466
	 */
3467 3468
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3469

3470 3471 3472 3473
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3474
	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3475 3476
		clear_pgdat_congested(pgdat);
		return true;
3477 3478
	}

3479
	return false;
3480 3481
}

3482
/*
3483 3484
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3485 3486
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3487 3488
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3489
 */
3490
static bool kswapd_shrink_node(pg_data_t *pgdat,
3491
			       struct scan_control *sc)
3492
{
3493 3494
	struct zone *zone;
	int z;
3495

3496 3497
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3498
	for (z = 0; z <= sc->reclaim_idx; z++) {
3499
		zone = pgdat->node_zones + z;
3500
		if (!managed_zone(zone))
3501
			continue;
3502

3503 3504
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3505 3506

	/*
3507 3508
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3509
	 */
3510
	shrink_node(pgdat, sc);
3511

3512
	/*
3513 3514 3515 3516 3517
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3518
	 */
3519
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3520
		sc->order = 0;
3521

3522
	return sc->nr_scanned >= sc->nr_to_reclaim;
3523 3524
}

L
Linus Torvalds 已提交
3525
/*
3526 3527 3528
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3529
 *
3530
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3531 3532
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3533
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
W
Wei Yang 已提交
3534
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3535 3536
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3537
 */
3538
static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
L
Linus Torvalds 已提交
3539 3540
{
	int i;
3541 3542
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3543
	unsigned long pflags;
3544 3545 3546
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3547
	struct zone *zone;
3548 3549
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3550
		.order = order,
3551
		.may_unmap = 1,
3552
	};
3553

3554
	set_task_reclaim_state(current, &sc.reclaim_state);
3555
	psi_memstall_enter(&pflags);
3556 3557
	__fs_reclaim_acquire();

3558
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3559

3560 3561 3562 3563 3564 3565
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
3566
	for (i = 0; i <= highest_zoneidx; i++) {
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3578
	do {
3579
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3580
		bool raise_priority = true;
3581
		bool balanced;
3582
		bool ret;
3583

3584
		sc.reclaim_idx = highest_zoneidx;
L
Linus Torvalds 已提交
3585

3586
		/*
3587 3588 3589 3590 3591 3592 3593 3594
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3595 3596 3597 3598
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3599
				if (!managed_zone(zone))
3600
					continue;
3601

3602
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3603
				break;
L
Linus Torvalds 已提交
3604 3605
			}
		}
3606

3607
		/*
3608 3609 3610 3611 3612 3613
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
3614
		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3615 3616 3617 3618 3619 3620 3621 3622 3623
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3624
		 */
3625
		if (!nr_boost_reclaim && balanced)
3626
			goto out;
A
Andrew Morton 已提交
3627

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;

3641 3642 3643 3644 3645 3646
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3647
		age_active_anon(pgdat, &sc);
3648

3649 3650 3651 3652
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3653
		if (sc.priority < DEF_PRIORITY - 2)
3654 3655
			sc.may_writepage = 1;

3656 3657 3658
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3659
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3660 3661 3662
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3663
		/*
3664 3665 3666
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3667
		 */
3668
		if (kswapd_shrink_node(pgdat, &sc))
3669
			raise_priority = false;
3670 3671 3672 3673 3674 3675 3676

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3677
				allow_direct_reclaim(pgdat))
3678
			wake_up_all(&pgdat->pfmemalloc_wait);
3679

3680
		/* Check if kswapd should be suspending */
3681 3682 3683 3684
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3685
			break;
3686

3687
		/*
3688 3689
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3690
		 */
3691
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3702
		if (raise_priority || !nr_reclaimed)
3703
			sc.priority--;
3704
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3705

3706 3707 3708
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3709
out:
3710 3711 3712 3713
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

3714
		for (i = 0; i <= highest_zoneidx; i++) {
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
3729
		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3730 3731
	}

3732
	snapshot_refaults(NULL, pgdat);
3733
	__fs_reclaim_release();
3734
	psi_memstall_leave(&pflags);
3735
	set_task_reclaim_state(current, NULL);
3736

3737
	/*
3738 3739 3740 3741
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3742
	 */
3743
	return sc.order;
L
Linus Torvalds 已提交
3744 3745
}

3746
/*
3747 3748 3749 3750 3751
 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
 * not a valid index then either kswapd runs for first time or kswapd couldn't
 * sleep after previous reclaim attempt (node is still unbalanced). In that
 * case return the zone index of the previous kswapd reclaim cycle.
3752
 */
3753 3754
static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
					   enum zone_type prev_highest_zoneidx)
3755
{
3756
	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3757

3758
	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3759 3760
}

3761
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3762
				unsigned int highest_zoneidx)
3763 3764 3765 3766 3767 3768 3769 3770 3771
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3772 3773 3774 3775 3776 3777 3778
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3779
	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3792
		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3793

3794
		remaining = schedule_timeout(HZ/10);
3795 3796

		/*
3797
		 * If woken prematurely then reset kswapd_highest_zoneidx and
3798 3799 3800 3801
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3802 3803 3804
			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
					kswapd_highest_zoneidx(pgdat,
							highest_zoneidx));
3805 3806 3807

			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3808 3809
		}

3810 3811 3812 3813 3814 3815 3816 3817
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3818
	if (!remaining &&
3819
	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3831 3832 3833 3834

		if (!kthread_should_stop())
			schedule();

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3845 3846
/*
 * The background pageout daemon, started as a kernel thread
3847
 * from the init process.
L
Linus Torvalds 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3860
	unsigned int alloc_order, reclaim_order;
3861
	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3862 3863
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3864
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3865

R
Rusty Russell 已提交
3866
	if (!cpumask_empty(cpumask))
3867
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3881
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3882
	set_freezable();
L
Linus Torvalds 已提交
3883

3884
	WRITE_ONCE(pgdat->kswapd_order, 0);
3885
	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
L
Linus Torvalds 已提交
3886
	for ( ; ; ) {
3887
		bool ret;
3888

3889
		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3890 3891
		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
							highest_zoneidx);
3892

3893 3894
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3895
					highest_zoneidx);
3896

3897
		/* Read the new order and highest_zoneidx */
3898
		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3899 3900
		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
							highest_zoneidx);
3901
		WRITE_ONCE(pgdat->kswapd_order, 0);
3902
		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
L
Linus Torvalds 已提交
3903

3904 3905 3906 3907 3908 3909 3910 3911
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3923
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3924
						alloc_order);
3925 3926
		reclaim_order = balance_pgdat(pgdat, alloc_order,
						highest_zoneidx);
3927 3928
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3929
	}
3930

3931 3932
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);

L
Linus Torvalds 已提交
3933 3934 3935 3936
	return 0;
}

/*
3937 3938 3939 3940 3941
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3942
 */
3943
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3944
		   enum zone_type highest_zoneidx)
L
Linus Torvalds 已提交
3945 3946
{
	pg_data_t *pgdat;
3947
	enum zone_type curr_idx;
L
Linus Torvalds 已提交
3948

3949
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3950 3951
		return;

3952
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3953
		return;
3954

3955
	pgdat = zone->zone_pgdat;
3956
	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3957

3958 3959
	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3960 3961 3962

	if (READ_ONCE(pgdat->kswapd_order) < order)
		WRITE_ONCE(pgdat->kswapd_order, order);
3963

3964
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3965
		return;
3966

3967 3968
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3969 3970
	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3971 3972 3973 3974 3975 3976 3977 3978
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3979
			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3980
		return;
3981
	}
3982

3983
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3984
				      gfp_flags);
3985
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3986 3987
}

3988
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3989
/*
3990
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3991 3992 3993 3994 3995
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3996
 */
3997
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3998
{
3999
	struct scan_control sc = {
4000
		.nr_to_reclaim = nr_to_reclaim,
4001
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4002
		.reclaim_idx = MAX_NR_ZONES - 1,
4003
		.priority = DEF_PRIORITY,
4004
		.may_writepage = 1,
4005 4006
		.may_unmap = 1,
		.may_swap = 1,
4007
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
4008
	};
4009
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4010
	unsigned long nr_reclaimed;
4011
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
4012

4013
	fs_reclaim_acquire(sc.gfp_mask);
4014
	noreclaim_flag = memalloc_noreclaim_save();
4015
	set_task_reclaim_state(current, &sc.reclaim_state);
4016

4017
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4018

4019
	set_task_reclaim_state(current, NULL);
4020
	memalloc_noreclaim_restore(noreclaim_flag);
4021
	fs_reclaim_release(sc.gfp_mask);
4022

4023
	return nr_reclaimed;
L
Linus Torvalds 已提交
4024
}
4025
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
4026

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
4042
		BUG_ON(system_state < SYSTEM_RUNNING);
4043 4044
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
4045
		pgdat->kswapd = NULL;
4046 4047 4048 4049
	}
	return ret;
}

4050
/*
4051
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4052
 * hold mem_hotplug_begin/end().
4053 4054 4055 4056 4057
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

4058
	if (kswapd) {
4059
		kthread_stop(kswapd);
4060 4061
		NODE_DATA(nid)->kswapd = NULL;
	}
4062 4063
}

L
Linus Torvalds 已提交
4064 4065
static int __init kswapd_init(void)
{
4066
	int nid;
4067

L
Linus Torvalds 已提交
4068
	swap_setup();
4069
	for_each_node_state(nid, N_MEMORY)
4070
 		kswapd_run(nid);
L
Linus Torvalds 已提交
4071 4072 4073 4074
	return 0;
}

module_init(kswapd_init)
4075 4076 4077

#ifdef CONFIG_NUMA
/*
4078
 * Node reclaim mode
4079
 *
4080
 * If non-zero call node_reclaim when the number of free pages falls below
4081 4082
 * the watermarks.
 */
4083
int node_reclaim_mode __read_mostly;
4084

4085 4086
#define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
#define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4087

4088
/*
4089
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4090 4091 4092
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4093
#define NODE_RECLAIM_PRIORITY 4
4094

4095
/*
4096
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4097 4098 4099 4100
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4101 4102 4103 4104 4105 4106
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4107
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4108
{
4109 4110 4111
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4122
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4123
{
4124 4125
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4126 4127

	/*
4128
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4129
	 * potentially reclaimable. Otherwise, we have to worry about
4130
	 * pages like swapcache and node_unmapped_file_pages() provides
4131 4132
	 * a better estimate
	 */
4133 4134
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4135
	else
4136
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4137 4138

	/* If we can't clean pages, remove dirty pages from consideration */
4139 4140
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4141 4142 4143 4144 4145 4146 4147 4148

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4149
/*
4150
 * Try to free up some pages from this node through reclaim.
4151
 */
4152
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4153
{
4154
	/* Minimum pages needed in order to stay on node */
4155
	const unsigned long nr_pages = 1 << order;
4156
	struct task_struct *p = current;
4157
	unsigned int noreclaim_flag;
4158
	struct scan_control sc = {
4159
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4160
		.gfp_mask = current_gfp_context(gfp_mask),
4161
		.order = order,
4162 4163 4164
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4165
		.may_swap = 1,
4166
		.reclaim_idx = gfp_zone(gfp_mask),
4167
	};
4168

4169 4170 4171
	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
					   sc.gfp_mask);

4172
	cond_resched();
4173
	fs_reclaim_acquire(sc.gfp_mask);
4174
	/*
4175
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4176
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4177
	 * and RECLAIM_UNMAP.
4178
	 */
4179 4180
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4181
	set_task_reclaim_state(p, &sc.reclaim_state);
4182

4183
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4184
		/*
4185
		 * Free memory by calling shrink node with increasing
4186 4187 4188
		 * priorities until we have enough memory freed.
		 */
		do {
4189
			shrink_node(pgdat, &sc);
4190
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4191
	}
4192

4193
	set_task_reclaim_state(p, NULL);
4194 4195
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4196
	fs_reclaim_release(sc.gfp_mask);
4197 4198 4199

	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);

4200
	return sc.nr_reclaimed >= nr_pages;
4201
}
4202

4203
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4204
{
4205
	int ret;
4206 4207

	/*
4208
	 * Node reclaim reclaims unmapped file backed pages and
4209
	 * slab pages if we are over the defined limits.
4210
	 *
4211 4212
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4213 4214
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4215
	 * unmapped file backed pages.
4216
	 */
4217
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4218 4219
	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
	    pgdat->min_slab_pages)
4220
		return NODE_RECLAIM_FULL;
4221 4222

	/*
4223
	 * Do not scan if the allocation should not be delayed.
4224
	 */
4225
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4226
		return NODE_RECLAIM_NOSCAN;
4227 4228

	/*
4229
	 * Only run node reclaim on the local node or on nodes that do not
4230 4231 4232 4233
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4234 4235
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4236

4237 4238
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4239

4240 4241
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4242

4243 4244 4245
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4246
	return ret;
4247
}
4248
#endif
L
Lee Schermerhorn 已提交
4249

4250
/**
4251 4252 4253
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4254
 *
4255 4256 4257
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4258
 */
4259
void check_move_unevictable_pages(struct pagevec *pvec)
4260
{
4261
	struct lruvec *lruvec;
4262
	struct pglist_data *pgdat = NULL;
4263 4264 4265
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4266

4267 4268
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4269
		struct pglist_data *pagepgdat = page_pgdat(page);
4270 4271 4272 4273 4274 4275 4276
		int nr_pages;

		if (PageTransTail(page))
			continue;

		nr_pages = thp_nr_pages(page);
		pgscanned += nr_pages;
4277

4278 4279 4280 4281 4282
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4283
		}
4284
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4285

4286 4287
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4288

4289
		if (page_evictable(page)) {
4290 4291
			enum lru_list lru = page_lru_base_type(page);

4292
			VM_BUG_ON_PAGE(PageActive(page), page);
4293
			ClearPageUnevictable(page);
4294 4295
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4296
			pgrescued += nr_pages;
4297
		}
4298
	}
4299

4300
	if (pgdat) {
4301 4302
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4303
		spin_unlock_irq(&pgdat->lru_lock);
4304 4305
	}
}
4306
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);