process.c 55.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45
#include <linux/pkeys.h>
46 47 48 49 50 51

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
52
#include <asm/machdep.h>
53
#include <asm/time.h>
54
#include <asm/runlatch.h>
55
#include <asm/syscalls.h>
56
#include <asm/switch_to.h>
57
#include <asm/tm.h>
58
#include <asm/debug.h>
59 60
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
61
#include <asm/hw_irq.h>
62
#endif
63
#include <asm/code-patching.h>
64
#include <asm/exec.h>
65
#include <asm/livepatch.h>
66
#include <asm/cpu_has_feature.h>
67
#include <asm/asm-prototypes.h>
68

69 70
#include <linux/kprobes.h>
#include <linux/kdebug.h>
71

72 73 74 75 76 77 78
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

79 80
extern unsigned long _get_SP(void);

81
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 83 84 85 86 87 88
/*
 * Are we running in "Suspend disabled" mode? If so we have to block any
 * sigreturn that would get us into suspended state, and we also warn in some
 * other paths that we should never reach with suspend disabled.
 */
bool tm_suspend_disabled __ro_after_init = false;

89
static void check_if_tm_restore_required(struct task_struct *tsk)
90 91 92 93 94 95 96 97 98 99
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
100
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101 102 103
		set_thread_flag(TIF_RESTORE_TM);
	}
}
104 105 106 107 108

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
109 110 111 112 113 114 115 116 117 118 119 120

static bool tm_active_with_fp(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_FP);
}

static bool tm_active_with_altivec(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_VEC);
}
121
#else
122
static inline bool msr_tm_active(unsigned long msr) { return false; }
123
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
124 125
static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
126 127
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

128 129 130 131 132 133 134 135 136 137 138 139
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

140
unsigned long msr_check_and_set(unsigned long bits)
141
{
142 143
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
144

145
	newmsr = oldmsr | bits;
146 147

#ifdef CONFIG_VSX
148
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149 150
		newmsr |= MSR_VSX;
#endif
151

152 153
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
154 155

	return newmsr;
156
}
157
EXPORT_SYMBOL_GPL(msr_check_and_set);
158

159
void __msr_check_and_clear(unsigned long bits)
160 161 162 163 164 165 166 167 168 169 170 171 172 173
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
174
EXPORT_SYMBOL(__msr_check_and_clear);
175 176

#ifdef CONFIG_PPC_FPU
177
static void __giveup_fpu(struct task_struct *tsk)
178
{
179 180
	unsigned long msr;

181
	save_fpu(tsk);
182 183
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
184 185
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
186
		msr &= ~MSR_VSX;
187
#endif
188
	tsk->thread.regs->msr = msr;
189 190
}

191 192 193 194 195
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
196
	__giveup_fpu(tsk);
197
	msr_check_and_clear(MSR_FP);
198 199 200
}
EXPORT_SYMBOL(giveup_fpu);

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
221
			 * the FP register state on context switch,
222 223 224 225
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
226
			giveup_fpu(tsk);
227 228 229 230
		}
		preempt_enable();
	}
}
231
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
232 233 234

void enable_kernel_fp(void)
{
235 236
	unsigned long cpumsr;

237 238
	WARN_ON(preemptible());

239
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
240

241 242
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
243 244 245 246 247 248 249 250 251
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
252
		__giveup_fpu(current);
253
	}
254 255
}
EXPORT_SYMBOL(enable_kernel_fp);
256

257 258
static int restore_fp(struct task_struct *tsk)
{
259
	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
260 261 262 263 264 265 266 267
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
268
#endif /* CONFIG_PPC_FPU */
269 270

#ifdef CONFIG_ALTIVEC
271 272
#define loadvec(thr) ((thr).load_vec)

273 274
static void __giveup_altivec(struct task_struct *tsk)
{
275 276
	unsigned long msr;

277
	save_altivec(tsk);
278 279
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
280 281
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
282
		msr &= ~MSR_VSX;
283
#endif
284
	tsk->thread.regs->msr = msr;
285 286
}

287 288 289 290
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

291
	msr_check_and_set(MSR_VEC);
292
	__giveup_altivec(tsk);
293
	msr_check_and_clear(MSR_VEC);
294 295 296
}
EXPORT_SYMBOL(giveup_altivec);

297 298
void enable_kernel_altivec(void)
{
299 300
	unsigned long cpumsr;

301 302
	WARN_ON(preemptible());

303
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
304

305 306
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
307 308 309 310 311 312 313 314 315
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
316
		__giveup_altivec(current);
317
	}
318 319 320 321 322 323 324 325 326 327 328 329 330
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
331
			giveup_altivec(tsk);
332 333 334 335
		}
		preempt_enable();
	}
}
336
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
337 338 339

static int restore_altivec(struct task_struct *tsk)
{
340
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
341
		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
342 343 344 345 346 347 348 349 350 351 352
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
353 354
#endif /* CONFIG_ALTIVEC */

355
#ifdef CONFIG_VSX
356
static void __giveup_vsx(struct task_struct *tsk)
357
{
358 359 360 361 362 363 364 365 366 367
	unsigned long msr = tsk->thread.regs->msr;

	/*
	 * We should never be ssetting MSR_VSX without also setting
	 * MSR_FP and MSR_VEC
	 */
	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));

	/* __giveup_fpu will clear MSR_VSX */
	if (msr & MSR_FP)
368
		__giveup_fpu(tsk);
369
	if (msr & MSR_VEC)
370
		__giveup_altivec(tsk);
371 372 373 374 375 376 377
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
378
	__giveup_vsx(tsk);
379
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
380
}
381

382 383
void enable_kernel_vsx(void)
{
384 385
	unsigned long cpumsr;

386 387
	WARN_ON(preemptible());

388
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
389

390 391
	if (current->thread.regs &&
	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
392
		check_if_tm_restore_required(current);
393 394 395 396 397 398 399 400 401
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
402
		__giveup_vsx(current);
A
Anton Blanchard 已提交
403
	}
404 405 406 407 408 409 410
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
411
		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
412 413 414 415 416 417
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
418
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
419 420 421 422 423 424 425 426 427 428 429 430

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
431 432
#endif /* CONFIG_VSX */

433
#ifdef CONFIG_SPE
434 435 436 437
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

438
	msr_check_and_set(MSR_SPE);
439
	__giveup_spe(tsk);
440
	msr_check_and_clear(MSR_SPE);
441 442
}
EXPORT_SYMBOL(giveup_spe);
443 444 445 446 447

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

448
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
449

450 451
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
452
		__giveup_spe(current);
453
	}
454 455 456 457 458 459 460 461 462
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
463
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
464
			giveup_spe(tsk);
465 466 467 468 469 470
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
508
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
509

510 511
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

A
Anton Blanchard 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

529 530 531 532
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

533 534
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

560
static void save_all(struct task_struct *tsk)
561 562 563 564 565 566 567 568 569 570 571 572 573
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

574 575 576 577 578 579 580
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

	if (usermsr & MSR_FP)
		save_fpu(tsk);

	if (usermsr & MSR_VEC)
		save_altivec(tsk);
581 582 583 584 585

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
586
	thread_pkey_regs_save(&tsk->thread);
587 588
}

589 590 591 592 593
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
594
		save_all(tsk);
595 596 597 598 599 600 601 602 603 604 605

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

606 607
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
608
		  unsigned long error_code, int breakpt)
609
{
610
	current->thread.trap_nr = TRAP_HWBKPT;
611 612 613 614 615
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
616 617
	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
				    (void __user *)address);
618 619
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
620
void do_break (struct pt_regs *regs, unsigned long address,
621 622 623 624
		    unsigned long error_code)
{
	siginfo_t info;

625
	current->thread.trap_nr = TRAP_HWBKPT;
626 627 628 629
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

630
	if (debugger_break_match(regs))
631 632
		return;

633 634
	/* Clear the breakpoint */
	hw_breakpoint_disable();
635 636

	/* Deliver the signal to userspace */
637
	clear_siginfo(&info);
638 639 640 641 642 643
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
644
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
645

646
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647

648 649 650 651 652 653
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
654
	thread->debug.iac1 = thread->debug.iac2 = 0;
655
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
656
	thread->debug.iac3 = thread->debug.iac4 = 0;
657
#endif
658
	thread->debug.dac1 = thread->debug.dac2 = 0;
659
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
661
#endif
662
	thread->debug.dbcr0 = 0;
663 664 665 666
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
667
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668 669 670 671 672
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
673
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674
#else
675
	thread->debug.dbcr1 = 0;
676 677 678
#endif
}

679
static void prime_debug_regs(struct debug_reg *debug)
680
{
681 682 683 684 685 686 687
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

688 689
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
690
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
691 692
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
693
#endif
694 695
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
696
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697 698
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
699
#endif
700 701
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
702
#ifdef CONFIG_BOOKE
703
	mtspr(SPRN_DBCR2, debug->dbcr2);
704 705 706 707 708 709 710
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
711
void switch_booke_debug_regs(struct debug_reg *new_debug)
712
{
713
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714 715
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
716
}
717
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
719
#ifndef CONFIG_HAVE_HW_BREAKPOINT
720 721
static void set_debug_reg_defaults(struct thread_struct *thread)
{
722 723
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
724 725
	if (ppc_breakpoint_available())
		set_breakpoint(&thread->hw_brk);
726
}
727
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
728 729
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

730
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
731 732
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
733
	mtspr(SPRN_DAC1, dabr);
734 735 736
#ifdef CONFIG_PPC_47x
	isync();
#endif
737 738
	return 0;
}
739
#elif defined(CONFIG_PPC_BOOK3S)
740 741
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
742
	mtspr(SPRN_DABR, dabr);
743 744
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
745
	return 0;
746
}
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

789 790
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
791
	unsigned long dawr, dawrx, mrd;
792 793 794 795 796 797 798 799 800

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
801 802 803 804 805 806 807 808
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
809 810 811 812 813 814 815 816

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

817
void __set_breakpoint(struct arch_hw_breakpoint *brk)
818
{
819
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
820

821
	if (cpu_has_feature(CPU_FTR_DAWR))
822
		// Power8 or later
823
		set_dawr(brk);
824 825
	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		// Power7 or earlier
826
		set_dabr(brk);
827 828 829
	else
		// Shouldn't happen due to higher level checks
		WARN_ON_ONCE(1);
830
}
831

832 833 834 835 836 837 838
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

839 840 841 842 843 844 845 846 847 848 849 850
/* Check if we have DAWR or DABR hardware */
bool ppc_breakpoint_available(void)
{
	if (cpu_has_feature(CPU_FTR_DAWR))
		return true; /* POWER8 DAWR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		return false; /* POWER9 with DAWR disabled */
	/* DABR: Everything but POWER8 and POWER9 */
	return true;
}
EXPORT_SYMBOL_GPL(ppc_breakpoint_available);

851 852 853 854 855 856 857 858 859 860 861
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
862

863
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
864 865 866 867 868 869

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

870 871 872
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
873 874 875 876 877 878 879 880 881 882 883 884 885
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
886
	 * benefit of checking for a potential TM bad thing exception.
887 888 889 890
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

891 892
	giveup_all(container_of(thr, struct task_struct, thread));

893 894
	tm_reclaim(thr, cause);

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));
913 914 915 916 917 918 919 920
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

921 922 923 924 925 926 927
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
928 929
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
930 931 932 933 934 935 936 937 938 939 940
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

941 942
	WARN_ON(tm_suspend_disabled);

943 944 945 946 947 948
	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

949
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
950 951 952 953 954 955 956 957 958 959 960 961 962

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

963
extern void __tm_recheckpoint(struct thread_struct *thread);
964

965
void tm_recheckpoint(struct thread_struct *thread)
966 967 968
{
	unsigned long flags;

969 970 971
	if (!(thread->regs->msr & MSR_TM))
		return;

972 973 974 975 976 977 978 979 980 981 982 983
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

984
	__tm_recheckpoint(thread);
985 986 987 988

	local_irq_restore(flags);
}

989
static inline void tm_recheckpoint_new_task(struct task_struct *new)
990 991 992 993 994 995 996 997 998
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
999
	 * unavailable later, we are unable to determine which set of FP regs
1000 1001
	 * need to be restored.
	 */
1002
	if (!tm_enabled(new))
1003 1004
		return;

1005 1006
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
1007
		return;
1008
	}
1009
	/* Recheckpoint to restore original checkpointed register state. */
1010 1011
	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
		 new->pid, new->thread.regs->msr);
1012

1013
	tm_recheckpoint(&new->thread);
1014

1015 1016 1017 1018 1019 1020
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1021 1022 1023 1024 1025 1026

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

1027 1028
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
1029 1030
{
	if (cpu_has_feature(CPU_FTR_TM)) {
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1041
		tm_recheckpoint_new_task(new);
1042 1043
	}
}
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1063 1064 1065 1066 1067 1068
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1069 1070 1071 1072
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1073
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1074
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1075

1076 1077 1078
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1079
#ifdef CONFIG_ALTIVEC
1080 1081 1082
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1083 1084
	restore_math(regs);

1085 1086 1087
	regs->msr |= msr_diff;
}

1088 1089
#else
#define tm_recheckpoint_new_task(new)
1090
#define __switch_to_tm(prev, new)
1091
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1092

1093 1094 1095
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1096
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
1119 1120

	thread_pkey_regs_save(t);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1134
		if (new_thread->dscr_inherit)
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1149 1150 1151
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1152 1153 1154
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
1155

1156
	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1157 1158
	    old_thread->tidr != new_thread->tidr)
		mtspr(SPRN_TIDR, new_thread->tidr);
1159
#endif
1160 1161

	thread_pkey_regs_restore(new_thread, old_thread);
1162 1163
}

1164 1165 1166 1167 1168
#ifdef CONFIG_PPC_BOOK3S_64
#define CP_SIZE 128
static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
#endif

1169 1170 1171 1172 1173
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1174 1175 1176
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1177

1178 1179 1180
	new_thread = &new->thread;
	old_thread = &current->thread;

1181 1182
	WARN_ON(!irqs_disabled());

1183
#ifdef CONFIG_PPC_BOOK3S_64
1184
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1185 1186 1187 1188 1189 1190
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1191
#endif /* CONFIG_PPC_BOOK3S_64 */
1192

A
Anton Blanchard 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1215 1216
	__switch_to_tm(prev, new);

1217 1218 1219 1220 1221 1222 1223 1224
	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}
1225

1226 1227 1228 1229 1230 1231 1232
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1233 1234
	restore_sprs(old_thread, new_thread);

1235 1236
	last = _switch(old_thread, new_thread);

1237
#ifdef CONFIG_PPC_BOOK3S_64
P
Peter Zijlstra 已提交
1238 1239
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1240
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1241 1242
		batch->active = 1;
	}
1243

1244
	if (current_thread_info()->task->thread.regs) {
1245
		restore_math(current_thread_info()->task->thread.regs);
1246 1247 1248 1249 1250

		/*
		 * The copy-paste buffer can only store into foreign real
		 * addresses, so unprivileged processes can not see the
		 * data or use it in any way unless they have foreign real
1251 1252 1253
		 * mappings. If the new process has the foreign real address
		 * mappings, we must issue a cp_abort to clear any state and
		 * prevent snooping, corruption or a covert channel.
1254
		 */
1255
		if (current_thread_info()->task->thread.used_vas)
1256
			asm volatile(PPC_CP_ABORT);
1257
	}
1258
#endif /* CONFIG_PPC_BOOK3S_64 */
P
Peter Zijlstra 已提交
1259

1260 1261 1262
	return last;
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1277
			pr_cont("\n");
1278

1279 1280 1281 1282 1283 1284 1285 1286
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1287
		if (!__kernel_text_address(pc) ||
1288
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1289
			pr_cont("XXXXXXXX ");
1290 1291
		} else {
			if (regs->nip == pc)
1292
				pr_cont("<%08x> ", instr);
1293
			else
1294
				pr_cont("%08x ", instr);
1295 1296 1297 1298 1299
		}

		pc += sizeof(int);
	}

1300
	pr_cont("\n");
1301 1302
}

1303
struct regbit {
1304 1305
	unsigned long bit;
	const char *name;
1306 1307 1308
};

static struct regbit msr_bits[] = {
1309 1310 1311 1312 1313 1314 1315 1316 1317
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1318 1319 1320 1321
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1322
#ifdef CONFIG_BOOKE
1323
	{MSR_DE,	"DE"},
1324 1325 1326 1327
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1328 1329
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1330 1331 1332 1333 1334
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1335 1336 1337
	{0,		NULL}
};

1338
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1339
{
1340
	const char *s = "";
1341 1342 1343

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1344
			pr_cont("%s%s", s, bits->name);
1345
			s = sep;
1346
		}
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1367
		pr_cont(",TM[");
1368
		print_bits(val, msr_tm_bits, "");
1369
		pr_cont("]");
1370 1371 1372 1373 1374 1375 1376 1377
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1378
	pr_cont("<");
1379 1380
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1381
	pr_cont(">");
1382 1383 1384
}

#ifdef CONFIG_PPC64
1385
#define REG		"%016lx"
1386 1387 1388
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1389
#define REG		"%08lx"
1390 1391 1392 1393
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1394 1395 1396 1397
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1398 1399
	show_regs_print_info(KERN_DEFAULT);

1400
	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1401
	       regs->nip, regs->link, regs->ctr);
1402
	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1403
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1404
	printk("MSR:  "REG" ", regs->msr);
1405
	print_msr_bits(regs->msr);
1406
	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1407
	trap = TRAP(regs);
1408
	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1409
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1410
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1411
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1412
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1413
#else
1414
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1415 1416
#endif
#ifdef CONFIG_PPC64
1417
	pr_cont("IRQMASK: %lx ", regs->softe);
1418 1419
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1420
	if (MSR_TM_ACTIVE(regs->msr))
1421
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1422
#endif
1423 1424

	for (i = 0;  i < 32;  i++) {
1425
		if ((i % REGS_PER_LINE) == 0)
1426 1427
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1428
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1429 1430
			break;
	}
1431
	pr_cont("\n");
1432 1433 1434 1435 1436
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1437 1438
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1439
#endif
1440
	show_stack(current, (unsigned long *) regs->gpr[1]);
1441 1442
	if (!user_mode(regs))
		show_instructions(regs);
1443 1444 1445 1446
}

void flush_thread(void)
{
1447
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1448
	flush_ptrace_hw_breakpoint(current);
1449
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1450
	set_debug_reg_defaults(&current->thread);
1451
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1452 1453
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
int set_thread_uses_vas(void)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -EINVAL;

	current->thread.used_vas = 1;

	/*
	 * Even a process that has no foreign real address mapping can use
	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
	 * to clear any pending COPY and prevent a covert channel.
	 *
	 * __switch_to() will issue CP_ABORT on future context switches.
	 */
	asm volatile(PPC_CP_ABORT);

#endif /* CONFIG_PPC_BOOK3S_64 */
	return 0;
}

1475
#ifdef CONFIG_PPC64
1476 1477 1478
/**
 * Assign a TIDR (thread ID) for task @t and set it in the thread
 * structure. For now, we only support setting TIDR for 'current' task.
1479
 *
1480 1481 1482 1483
 * Since the TID value is a truncated form of it PID, it is possible
 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
 * that 2 threads share the same TID and are waiting, one of the following
 * cases will happen:
1484
 *
1485 1486 1487
 * 1. The correct thread is running, the wrong thread is not
 * In this situation, the correct thread is woken and proceeds to pass it's
 * condition check.
1488
 *
1489 1490 1491 1492 1493
 * 2. Neither threads are running
 * In this situation, neither thread will be woken. When scheduled, the waiting
 * threads will execute either a wait, which will return immediately, followed
 * by a condition check, which will pass for the correct thread and fail
 * for the wrong thread, or they will execute the condition check immediately.
1494
 *
1495 1496 1497 1498 1499 1500
 * 3. The wrong thread is running, the correct thread is not
 * The wrong thread will be woken, but will fail it's condition check and
 * re-execute wait. The correct thread, when scheduled, will execute either
 * it's condition check (which will pass), or wait, which returns immediately
 * when called the first time after the thread is scheduled, followed by it's
 * condition check (which will pass).
1501
 *
1502 1503 1504 1505 1506 1507
 * 4. Both threads are running
 * Both threads will be woken. The wrong thread will fail it's condition check
 * and execute another wait, while the correct thread will pass it's condition
 * check.
 *
 * @t: the task to set the thread ID for
1508 1509 1510
 */
int set_thread_tidr(struct task_struct *t)
{
1511
	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1512 1513 1514 1515 1516
		return -EINVAL;

	if (t != current)
		return -EINVAL;

1517 1518 1519
	if (t->thread.tidr)
		return 0;

1520
	t->thread.tidr = (u16)task_pid_nr(t);
1521 1522 1523 1524
	mtspr(SPRN_TIDR, t->thread.tidr);

	return 0;
}
1525
EXPORT_SYMBOL_GPL(set_thread_tidr);
1526 1527 1528

#endif /* CONFIG_PPC64 */

1529 1530 1531 1532 1533 1534
void
release_thread(struct task_struct *t)
{
}

/*
1535 1536
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1537
 */
1538
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1539
{
1540
	flush_all_to_thread(src);
1541 1542 1543 1544 1545 1546
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1547 1548 1549
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1550
	 */
1551
	__switch_to_tm(src, src);
1552

1553
	*dst = *src;
1554 1555 1556

	clear_task_ebb(dst);

1557
	return 0;
1558 1559
}

1560 1561
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
1562
#ifdef CONFIG_PPC_BOOK3S_64
1563 1564 1565
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1566 1567 1568
	if (radix_enabled())
		return;

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1580 1581 1582
/*
 * Copy a thread..
 */
1583

1584 1585 1586
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1587
int copy_thread(unsigned long clone_flags, unsigned long usp,
1588
		unsigned long kthread_arg, struct task_struct *p)
1589 1590 1591
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1592 1593
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1594
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1595 1596 1597
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1598 1599 1600 1601

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1602
	if (unlikely(p->flags & PF_KTHREAD)) {
1603
		/* kernel thread */
A
Al Viro 已提交
1604
		memset(childregs, 0, sizeof(struct pt_regs));
1605
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1606 1607 1608
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1609
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1610
		clear_tsk_thread_flag(p, TIF_32BIT);
1611
		childregs->softe = IRQS_ENABLED;
1612
#endif
1613
		childregs->gpr[15] = kthread_arg;
1614
		p->thread.regs = NULL;	/* no user register state */
1615
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1616
		f = ret_from_kernel_thread;
1617
	} else {
1618
		/* user thread */
1619
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1620 1621
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1622 1623
		if (usp)
			childregs->gpr[1] = usp;
1624
		p->thread.regs = childregs;
A
Al Viro 已提交
1625
		childregs->gpr[3] = 0;  /* Result from fork() */
1626 1627
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1628
			if (!is_32bit_task())
1629 1630 1631 1632 1633
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1634 1635

		f = ret_from_fork;
1636
	}
1637
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1648
	((unsigned long *)sp)[0] = 0;
1649 1650 1651 1652
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1653
#ifdef CONFIG_PPC32
1654 1655
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1656
#endif
1657 1658 1659 1660
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1661 1662 1663 1664 1665
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1666 1667
	setup_ksp_vsid(p, sp);

1668 1669
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1670
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1671
		p->thread.dscr = mfspr(SPRN_DSCR);
1672
	}
1673 1674
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1675 1676

	p->thread.tidr = 0;
1677
#endif
1678
	kregs->nip = ppc_function_entry(f);
1679 1680 1681 1682 1683 1684
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1685
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1686
{
1687 1688 1689 1690
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1691 1692 1693 1694 1695
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1696 1697
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1698 1699
	}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1710 1711 1712 1713 1714 1715
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1716

1717 1718 1719 1720 1721 1722 1723
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1724 1725 1726
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1727
	regs->msr = MSR_USER;
1728
#else
1729
	if (!is_32bit_task()) {
1730
		unsigned long entry;
1731

1732 1733 1734
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1767 1768 1769
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1770 1771 1772 1773
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1774 1775
	}
#endif
1776 1777 1778
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1779
	current->thread.load_fp = 0;
1780
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1781
	current->thread.fp_save_area = NULL;
1782
#ifdef CONFIG_ALTIVEC
1783 1784
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1785
	current->thread.vr_save_area = NULL;
1786 1787
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
1788
	current->thread.load_vec = 0;
1789 1790 1791 1792 1793 1794 1795
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1796 1797 1798 1799
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
1800
	current->thread.load_tm = 0;
1801
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1802 1803

	thread_pkey_regs_init(&current->thread);
1804
}
1805
EXPORT_SYMBOL(start_thread);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1820
		if (cpu_has_feature(CPU_FTR_SPE)) {
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1834 1835 1836 1837 1838 1839
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1840 1841 1842 1843
#else
		return -EINVAL;
#endif
	}
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1856 1857 1858 1859 1860 1861 1862 1863 1864
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1879
			val = tsk->thread.fpexc_mode;
1880
		} else
1881
			return -EINVAL;
1882 1883 1884 1885 1886 1887 1888 1889
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1969
int validate_sp(unsigned long sp, struct task_struct *p,
1970 1971
		       unsigned long nbytes)
{
A
Al Viro 已提交
1972
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1973 1974 1975 1976 1977

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1978
	return valid_irq_stack(sp, p, nbytes);
1979 1980
}

1981 1982
EXPORT_SYMBOL(validate_sp);

1983 1984 1985 1986 1987 1988 1989 1990 1991
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1992
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1993 1994 1995 1996
		return 0;

	do {
		sp = *(unsigned long *)sp;
1997 1998
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
		    p->state == TASK_RUNNING)
1999 2000
			return 0;
		if (count > 0) {
2001
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2002 2003 2004 2005 2006 2007
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
2008

2009
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2010 2011 2012 2013 2014 2015

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
2016 2017 2018
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
2019
	unsigned long rth = (unsigned long)return_to_handler;
2020
#endif
2021 2022 2023 2024 2025 2026

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
2027
			sp = current_stack_pointer();
2028 2029 2030 2031 2032 2033 2034
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
2035
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2036 2037 2038 2039
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
2040
		ip = stack[STACK_FRAME_LR_SAVE];
2041
		if (!firstframe || ip != lr) {
2042
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2043
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2044
			if ((ip == rth) && curr_frame >= 0) {
2045
				pr_cont(" (%pS)",
2046 2047 2048 2049
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
2050
			if (firstframe)
2051 2052
				pr_cont(" (unreliable)");
			pr_cont("\n");
2053 2054 2055 2056 2057 2058 2059
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
2060 2061
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2062 2063 2064
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
2065
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2066
			       regs->trap, (void *)regs->nip, (void *)lr);
2067 2068 2069 2070 2071 2072 2073
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

2074
#ifdef CONFIG_PPC64
2075
/* Called with hard IRQs off */
2076
void notrace __ppc64_runlatch_on(void)
2077
{
2078
	struct thread_info *ti = current_thread_info();
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		/*
		 * Least significant bit (RUN) is the only writable bit of
		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
		 * earliest ISA where this is the case, but it's convenient.
		 */
		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
	} else {
		unsigned long ctrl;

		/*
		 * Some architectures (e.g., Cell) have writable fields other
		 * than RUN, so do the read-modify-write.
		 */
		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2098

2099
	ti->local_flags |= _TLF_RUNLATCH;
2100 2101
}

2102
/* Called with hard IRQs off */
2103
void notrace __ppc64_runlatch_off(void)
2104
{
2105
	struct thread_info *ti = current_thread_info();
2106

2107
	ti->local_flags &= ~_TLF_RUNLATCH;
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		mtspr(SPRN_CTRLT, 0);
	} else {
		unsigned long ctrl;

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2118
}
2119
#endif /* CONFIG_PPC64 */
2120

2121 2122 2123 2124 2125 2126
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
2127 2128 2129 2130 2131 2132 2133

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
2134
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2135
	else
D
Daniel Cashman 已提交
2136
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2137 2138 2139 2140 2141 2142

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
2143 2144 2145
	unsigned long base = mm->brk;
	unsigned long ret;

2146
#ifdef CONFIG_PPC_BOOK3S_64
2147 2148 2149 2150 2151
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
2152 2153
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2154 2155 2156 2157 2158 2159
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2160 2161 2162 2163 2164 2165

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2166