process.c 52.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45 46 47 48 49 50

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
51
#include <asm/machdep.h>
52
#include <asm/time.h>
53
#include <asm/runlatch.h>
54
#include <asm/syscalls.h>
55
#include <asm/switch_to.h>
56
#include <asm/tm.h>
57
#include <asm/debug.h>
58 59 60
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
61
#include <asm/code-patching.h>
62
#include <asm/exec.h>
63
#include <asm/livepatch.h>
64
#include <asm/cpu_has_feature.h>
65
#include <asm/asm-prototypes.h>
66

67 68
#include <linux/kprobes.h>
#include <linux/kdebug.h>
69

70 71 72 73 74 75 76
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

77 78
extern unsigned long _get_SP(void);

79
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 81 82 83 84 85 86
/*
 * Are we running in "Suspend disabled" mode? If so we have to block any
 * sigreturn that would get us into suspended state, and we also warn in some
 * other paths that we should never reach with suspend disabled.
 */
bool tm_suspend_disabled __ro_after_init = false;

87
static void check_if_tm_restore_required(struct task_struct *tsk)
88 89 90 91 92 93 94 95 96 97
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
98
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99 100 101
		set_thread_flag(TIF_RESTORE_TM);
	}
}
102 103 104 105 106

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
107 108 109 110 111 112 113 114 115 116 117 118

static bool tm_active_with_fp(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_FP);
}

static bool tm_active_with_altivec(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_VEC);
}
119
#else
120
static inline bool msr_tm_active(unsigned long msr) { return false; }
121
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
122 123
static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
124 125
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

126 127 128 129 130 131 132 133 134 135 136 137
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

138
unsigned long msr_check_and_set(unsigned long bits)
139
{
140 141
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
142

143
	newmsr = oldmsr | bits;
144 145

#ifdef CONFIG_VSX
146
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147 148
		newmsr |= MSR_VSX;
#endif
149

150 151
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
152 153

	return newmsr;
154
}
155

156
void __msr_check_and_clear(unsigned long bits)
157 158 159 160 161 162 163 164 165 166 167 168 169 170
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
171
EXPORT_SYMBOL(__msr_check_and_clear);
172 173

#ifdef CONFIG_PPC_FPU
174 175
void __giveup_fpu(struct task_struct *tsk)
{
176 177
	unsigned long msr;

178
	save_fpu(tsk);
179 180
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
181 182
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
183
		msr &= ~MSR_VSX;
184
#endif
185
	tsk->thread.regs->msr = msr;
186 187
}

188 189 190 191 192
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
193
	__giveup_fpu(tsk);
194
	msr_check_and_clear(MSR_FP);
195 196 197
}
EXPORT_SYMBOL(giveup_fpu);

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
218
			 * the FP register state on context switch,
219 220 221 222
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
223
			giveup_fpu(tsk);
224 225 226 227
		}
		preempt_enable();
	}
}
228
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
229 230 231

void enable_kernel_fp(void)
{
232 233
	unsigned long cpumsr;

234 235
	WARN_ON(preemptible());

236
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
237

238 239
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
240 241 242 243 244 245 246 247 248
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
249
		__giveup_fpu(current);
250
	}
251 252
}
EXPORT_SYMBOL(enable_kernel_fp);
253

254 255
static int restore_fp(struct task_struct *tsk)
{
256
	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
257 258 259 260 261 262 263 264
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
265
#endif /* CONFIG_PPC_FPU */
266 267

#ifdef CONFIG_ALTIVEC
268 269
#define loadvec(thr) ((thr).load_vec)

270 271
static void __giveup_altivec(struct task_struct *tsk)
{
272 273
	unsigned long msr;

274
	save_altivec(tsk);
275 276
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
277 278
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
279
		msr &= ~MSR_VSX;
280
#endif
281
	tsk->thread.regs->msr = msr;
282 283
}

284 285 286 287
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

288
	msr_check_and_set(MSR_VEC);
289
	__giveup_altivec(tsk);
290
	msr_check_and_clear(MSR_VEC);
291 292 293
}
EXPORT_SYMBOL(giveup_altivec);

294 295
void enable_kernel_altivec(void)
{
296 297
	unsigned long cpumsr;

298 299
	WARN_ON(preemptible());

300
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
301

302 303
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
304 305 306 307 308 309 310 311 312
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
313
		__giveup_altivec(current);
314
	}
315 316 317 318 319 320 321 322 323 324 325 326 327
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
328
			giveup_altivec(tsk);
329 330 331 332
		}
		preempt_enable();
	}
}
333
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
334 335 336

static int restore_altivec(struct task_struct *tsk)
{
337
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
338
		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
339 340 341 342 343 344 345 346 347 348 349
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
350 351
#endif /* CONFIG_ALTIVEC */

352
#ifdef CONFIG_VSX
353
static void __giveup_vsx(struct task_struct *tsk)
354
{
355 356 357 358 359 360 361 362 363 364
	unsigned long msr = tsk->thread.regs->msr;

	/*
	 * We should never be ssetting MSR_VSX without also setting
	 * MSR_FP and MSR_VEC
	 */
	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));

	/* __giveup_fpu will clear MSR_VSX */
	if (msr & MSR_FP)
365
		__giveup_fpu(tsk);
366
	if (msr & MSR_VEC)
367
		__giveup_altivec(tsk);
368 369 370 371 372 373 374
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
375
	__giveup_vsx(tsk);
376
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
377
}
378

379 380
void enable_kernel_vsx(void)
{
381 382
	unsigned long cpumsr;

383 384
	WARN_ON(preemptible());

385
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
386

387 388
	if (current->thread.regs &&
	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
389
		check_if_tm_restore_required(current);
390 391 392 393 394 395 396 397 398
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
399
		__giveup_vsx(current);
A
Anton Blanchard 已提交
400
	}
401 402 403 404 405 406 407
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
408
		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
409 410 411 412 413 414
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
415
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
416 417 418 419 420 421 422 423 424 425 426 427

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
428 429
#endif /* CONFIG_VSX */

430
#ifdef CONFIG_SPE
431 432 433 434
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

435
	msr_check_and_set(MSR_SPE);
436
	__giveup_spe(tsk);
437
	msr_check_and_clear(MSR_SPE);
438 439
}
EXPORT_SYMBOL(giveup_spe);
440 441 442 443 444

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

445
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
446

447 448
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
449
		__giveup_spe(current);
450
	}
451 452 453 454 455 456 457 458 459
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
460
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
461
			giveup_spe(tsk);
462 463 464 465 466 467
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
505
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
506

507 508
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

A
Anton Blanchard 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

526 527 528 529
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

530 531
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

571 572 573 574 575 576 577
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

	if (usermsr & MSR_FP)
		save_fpu(tsk);

	if (usermsr & MSR_VEC)
		save_altivec(tsk);
578 579 580 581 582 583 584

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

585 586 587 588 589
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
590
		save_all(tsk);
591 592 593 594 595 596 597 598 599 600 601

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

602 603 604 605 606 607
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

608
	current->thread.trap_nr = signal_code;
609 610 611 612 613 614 615 616 617 618 619 620
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
621
void do_break (struct pt_regs *regs, unsigned long address,
622 623 624 625
		    unsigned long error_code)
{
	siginfo_t info;

626
	current->thread.trap_nr = TRAP_HWBKPT;
627 628 629 630
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

631
	if (debugger_break_match(regs))
632 633
		return;

634 635
	/* Clear the breakpoint */
	hw_breakpoint_disable();
636 637 638 639 640 641 642 643

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
644
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
645

646
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647

648 649 650 651 652 653
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
654
	thread->debug.iac1 = thread->debug.iac2 = 0;
655
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
656
	thread->debug.iac3 = thread->debug.iac4 = 0;
657
#endif
658
	thread->debug.dac1 = thread->debug.dac2 = 0;
659
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
661
#endif
662
	thread->debug.dbcr0 = 0;
663 664 665 666
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
667
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668 669 670 671 672
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
673
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674
#else
675
	thread->debug.dbcr1 = 0;
676 677 678
#endif
}

679
static void prime_debug_regs(struct debug_reg *debug)
680
{
681 682 683 684 685 686 687
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

688 689
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
690
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
691 692
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
693
#endif
694 695
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
696
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697 698
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
699
#endif
700 701
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
702
#ifdef CONFIG_BOOKE
703
	mtspr(SPRN_DBCR2, debug->dbcr2);
704 705 706 707 708 709 710
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
711
void switch_booke_debug_regs(struct debug_reg *new_debug)
712
{
713
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714 715
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
716
}
717
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
719
#ifndef CONFIG_HAVE_HW_BREAKPOINT
720 721
static void set_debug_reg_defaults(struct thread_struct *thread)
{
722 723
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
724
	set_breakpoint(&thread->hw_brk);
725
}
726
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
727 728
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

729
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
730 731
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
732
	mtspr(SPRN_DAC1, dabr);
733 734 735
#ifdef CONFIG_PPC_47x
	isync();
#endif
736 737
	return 0;
}
738
#elif defined(CONFIG_PPC_BOOK3S)
739 740
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
741
	mtspr(SPRN_DABR, dabr);
742 743
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
744
	return 0;
745
}
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

788 789
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
790
	unsigned long dawr, dawrx, mrd;
791 792 793 794 795 796 797 798 799

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
800 801 802 803 804 805 806 807
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
808 809 810 811 812 813 814 815

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

816
void __set_breakpoint(struct arch_hw_breakpoint *brk)
817
{
818
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
819

820
	if (cpu_has_feature(CPU_FTR_DAWR))
821 822 823
		set_dawr(brk);
	else
		set_dabr(brk);
824
}
825

826 827 828 829 830 831 832
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

833 834 835
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
836

837 838 839 840 841 842 843 844 845 846 847
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
848

849
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
850 851 852 853 854 855

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

856 857 858
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
859 860 861 862 863 864 865 866 867 868 869 870 871
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
872
	 * benefit of checking for a potential TM bad thing exception.
873 874 875 876
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));

896
	giveup_all(container_of(thr, struct task_struct, thread));
897

898
	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
899 900 901 902 903 904 905 906
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

907 908 909 910 911 912 913
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
914 915
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
916 917 918 919 920 921 922 923 924 925 926
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

927 928
	WARN_ON(tm_suspend_disabled);

929 930 931 932 933 934
	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

935
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
936 937 938 939 940 941 942 943 944 945 946 947 948

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

949 950 951 952 953 954 955 956
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

957 958 959
	if (!(thread->regs->msr & MSR_TM))
		return;

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

977
static inline void tm_recheckpoint_new_task(struct task_struct *new)
978 979 980 981 982 983 984 985 986 987 988
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
989
	 * unavailable later, we are unable to determine which set of FP regs
990 991
	 * need to be restored.
	 */
992
	if (!tm_enabled(new))
993 994
		return;

995 996
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
997
		return;
998
	}
999
	msr = new->thread.ckpt_regs.msr;
1000 1001 1002 1003 1004 1005 1006
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	tm_recheckpoint(&new->thread, msr);

1007 1008 1009 1010 1011 1012
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1013 1014 1015 1016 1017 1018

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

1019 1020
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
1021 1022
{
	if (cpu_has_feature(CPU_FTR_TM)) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1033
		tm_recheckpoint_new_task(new);
1034 1035
	}
}
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1055 1056 1057 1058 1059 1060
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1061 1062 1063 1064
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1065
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1066
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1067

1068 1069 1070
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1071
#ifdef CONFIG_ALTIVEC
1072 1073 1074
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1075 1076
	restore_math(regs);

1077 1078 1079
	regs->msr |= msr_diff;
}

1080 1081
#else
#define tm_recheckpoint_new_task(new)
1082
#define __switch_to_tm(prev, new)
1083
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1084

1085 1086 1087
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1088
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1124
		if (new_thread->dscr_inherit)
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1139 1140 1141
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1142 1143 1144 1145 1146 1147
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1148 1149 1150 1151 1152
#ifdef CONFIG_PPC_BOOK3S_64
#define CP_SIZE 128
static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
#endif

1153 1154 1155 1156 1157
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1158 1159 1160
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1161

1162 1163 1164
	new_thread = &new->thread;
	old_thread = &current->thread;

1165 1166
	WARN_ON(!irqs_disabled());

1167 1168 1169 1170 1171
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1172
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1173 1174 1175 1176 1177 1178
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1179 1180
#endif /* CONFIG_PPC64 */

1181
#ifdef CONFIG_PPC_BOOK3S_64
1182
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1183 1184 1185 1186 1187 1188
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1189
#endif /* CONFIG_PPC_BOOK3S_64 */
1190

A
Anton Blanchard 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1213 1214
	__switch_to_tm(prev, new);

1215 1216 1217 1218 1219 1220 1221 1222
	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}
1223

1224 1225 1226 1227 1228 1229 1230
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1231 1232
	restore_sprs(old_thread, new_thread);

1233 1234
	last = _switch(old_thread, new_thread);

1235
#ifdef CONFIG_PPC_BOOK3S_64
P
Peter Zijlstra 已提交
1236 1237
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1238
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1239 1240
		batch->active = 1;
	}
1241

1242
	if (current_thread_info()->task->thread.regs) {
1243
		restore_math(current_thread_info()->task->thread.regs);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

		/*
		 * The copy-paste buffer can only store into foreign real
		 * addresses, so unprivileged processes can not see the
		 * data or use it in any way unless they have foreign real
		 * mappings. We don't have a VAS driver that allocates those
		 * yet, so no cpabort is required.
		 */
		if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
			/*
			 * DD1 allows paste into normal system memory, so we
			 * do an unpaired copy here to clear the buffer and
			 * prevent a covert channel being set up.
			 *
			 * cpabort is not used because it is quite expensive.
			 */
			asm volatile(PPC_COPY(%0, %1)
					: : "r"(dummy_copy_buffer), "r"(0));
		}
	}
1264
#endif /* CONFIG_PPC_BOOK3S_64 */
P
Peter Zijlstra 已提交
1265

1266 1267 1268
	return last;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1283
			pr_cont("\n");
1284

1285 1286 1287 1288 1289 1290 1291 1292
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1293
		if (!__kernel_text_address(pc) ||
1294
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1295
			pr_cont("XXXXXXXX ");
1296 1297
		} else {
			if (regs->nip == pc)
1298
				pr_cont("<%08x> ", instr);
1299
			else
1300
				pr_cont("%08x ", instr);
1301 1302 1303 1304 1305
		}

		pc += sizeof(int);
	}

1306
	pr_cont("\n");
1307 1308
}

1309
struct regbit {
1310 1311
	unsigned long bit;
	const char *name;
1312 1313 1314
};

static struct regbit msr_bits[] = {
1315 1316 1317 1318 1319 1320 1321 1322 1323
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1324 1325 1326 1327
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1328
#ifdef CONFIG_BOOKE
1329
	{MSR_DE,	"DE"},
1330 1331 1332 1333
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1334 1335
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1336 1337 1338 1339 1340
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1341 1342 1343
	{0,		NULL}
};

1344
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1345
{
1346
	const char *s = "";
1347 1348 1349

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1350
			pr_cont("%s%s", s, bits->name);
1351
			s = sep;
1352
		}
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1373
		pr_cont(",TM[");
1374
		print_bits(val, msr_tm_bits, "");
1375
		pr_cont("]");
1376 1377 1378 1379 1380 1381 1382 1383
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1384
	pr_cont("<");
1385 1386
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1387
	pr_cont(">");
1388 1389 1390
}

#ifdef CONFIG_PPC64
1391
#define REG		"%016lx"
1392 1393 1394
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1395
#define REG		"%08lx"
1396 1397 1398 1399
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1400 1401 1402 1403
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1404 1405
	show_regs_print_info(KERN_DEFAULT);

1406
	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1407 1408
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1409
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1410
	printk("MSR:  "REG" ", regs->msr);
1411
	print_msr_bits(regs->msr);
1412
	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1413
	trap = TRAP(regs);
1414
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1415
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1416
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1417
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1418
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1419
#else
1420
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1421 1422
#endif
#ifdef CONFIG_PPC64
1423
	pr_cont("SOFTE: %ld ", regs->softe);
1424 1425
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1426
	if (MSR_TM_ACTIVE(regs->msr))
1427
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1428
#endif
1429 1430

	for (i = 0;  i < 32;  i++) {
1431
		if ((i % REGS_PER_LINE) == 0)
1432 1433
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1434
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1435 1436
			break;
	}
1437
	pr_cont("\n");
1438 1439 1440 1441 1442
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1443 1444
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1445
#endif
1446
	show_stack(current, (unsigned long *) regs->gpr[1]);
1447 1448
	if (!user_mode(regs))
		show_instructions(regs);
1449 1450 1451 1452
}

void flush_thread(void)
{
1453
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1454
	flush_ptrace_hw_breakpoint(current);
1455
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1456
	set_debug_reg_defaults(&current->thread);
1457
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1458 1459 1460 1461 1462 1463 1464 1465
}

void
release_thread(struct task_struct *t)
{
}

/*
1466 1467
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1468
 */
1469
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1470
{
1471
	flush_all_to_thread(src);
1472 1473 1474 1475 1476 1477
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1478 1479 1480
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1481
	 */
1482
	__switch_to_tm(src, src);
1483

1484
	*dst = *src;
1485 1486 1487

	clear_task_ebb(dst);

1488
	return 0;
1489 1490
}

1491 1492
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
1493
#ifdef CONFIG_PPC_BOOK3S_64
1494 1495 1496
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1497 1498 1499
	if (radix_enabled())
		return;

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1511 1512 1513
/*
 * Copy a thread..
 */
1514

1515 1516 1517
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1518
int copy_thread(unsigned long clone_flags, unsigned long usp,
1519
		unsigned long kthread_arg, struct task_struct *p)
1520 1521 1522
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1523 1524
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1525
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1526 1527 1528
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1529 1530 1531 1532

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1533
	if (unlikely(p->flags & PF_KTHREAD)) {
1534
		/* kernel thread */
A
Al Viro 已提交
1535
		memset(childregs, 0, sizeof(struct pt_regs));
1536
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1537 1538 1539
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1540
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1541
		clear_tsk_thread_flag(p, TIF_32BIT);
1542
		childregs->softe = 1;
1543
#endif
1544
		childregs->gpr[15] = kthread_arg;
1545
		p->thread.regs = NULL;	/* no user register state */
1546
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1547
		f = ret_from_kernel_thread;
1548
	} else {
1549
		/* user thread */
1550
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1551 1552
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1553 1554
		if (usp)
			childregs->gpr[1] = usp;
1555
		p->thread.regs = childregs;
A
Al Viro 已提交
1556
		childregs->gpr[3] = 0;  /* Result from fork() */
1557 1558
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1559
			if (!is_32bit_task())
1560 1561 1562 1563 1564
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1565 1566

		f = ret_from_fork;
1567
	}
1568
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1579
	((unsigned long *)sp)[0] = 0;
1580 1581 1582 1583
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1584
#ifdef CONFIG_PPC32
1585 1586
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1587
#endif
1588 1589 1590 1591
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1592 1593 1594 1595 1596
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1597 1598
	setup_ksp_vsid(p, sp);

1599 1600
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1601
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1602
		p->thread.dscr = mfspr(SPRN_DSCR);
1603
	}
1604 1605
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1606
#endif
1607
	kregs->nip = ppc_function_entry(f);
1608 1609 1610 1611 1612 1613
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1614
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1615
{
1616 1617 1618 1619
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1620 1621 1622 1623 1624
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1625 1626
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1627 1628
	}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1639 1640 1641 1642 1643 1644
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1645

1646 1647 1648 1649 1650 1651 1652
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1653 1654 1655
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1656
	regs->msr = MSR_USER;
1657
#else
1658
	if (!is_32bit_task()) {
1659
		unsigned long entry;
1660

1661 1662 1663
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1664

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1696 1697 1698
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1699 1700 1701 1702
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1703 1704
	}
#endif
1705 1706 1707
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1708
	current->thread.load_fp = 0;
1709
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1710
	current->thread.fp_save_area = NULL;
1711
#ifdef CONFIG_ALTIVEC
1712 1713
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1714
	current->thread.vr_save_area = NULL;
1715 1716
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
1717
	current->thread.load_vec = 0;
1718 1719 1720 1721 1722 1723 1724
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1725 1726 1727 1728
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
1729
	current->thread.load_tm = 0;
1730
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1731
}
1732
EXPORT_SYMBOL(start_thread);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1747
		if (cpu_has_feature(CPU_FTR_SPE)) {
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1761 1762 1763 1764 1765 1766
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1767 1768 1769 1770
#else
		return -EINVAL;
#endif
	}
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1783 1784 1785 1786 1787 1788 1789 1790 1791
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1806
			val = tsk->thread.fpexc_mode;
1807
		} else
1808
			return -EINVAL;
1809 1810 1811 1812 1813 1814 1815 1816
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1896
int validate_sp(unsigned long sp, struct task_struct *p,
1897 1898
		       unsigned long nbytes)
{
A
Al Viro 已提交
1899
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1900 1901 1902 1903 1904

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1905
	return valid_irq_stack(sp, p, nbytes);
1906 1907
}

1908 1909
EXPORT_SYMBOL(validate_sp);

1910 1911 1912 1913 1914 1915 1916 1917 1918
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1919
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1920 1921 1922 1923
		return 0;

	do {
		sp = *(unsigned long *)sp;
1924 1925
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
		    p->state == TASK_RUNNING)
1926 1927
			return 0;
		if (count > 0) {
1928
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1929 1930 1931 1932 1933 1934
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1935

1936
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1937 1938 1939 1940 1941 1942

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1943 1944 1945
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1946
	unsigned long rth = (unsigned long)return_to_handler;
1947
#endif
1948 1949 1950 1951 1952 1953

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1954
			sp = current_stack_pointer();
1955 1956 1957 1958 1959 1960 1961
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1962
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1963 1964 1965 1966
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1967
		ip = stack[STACK_FRAME_LR_SAVE];
1968
		if (!firstframe || ip != lr) {
1969
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1970
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1971
			if ((ip == rth) && curr_frame >= 0) {
1972
				pr_cont(" (%pS)",
1973 1974 1975 1976
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1977
			if (firstframe)
1978 1979
				pr_cont(" (unreliable)");
			pr_cont("\n");
1980 1981 1982 1983 1984 1985 1986
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1987 1988
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1989 1990 1991
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1992
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1993
			       regs->trap, (void *)regs->nip, (void *)lr);
1994 1995 1996 1997 1998 1999 2000
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

2001
#ifdef CONFIG_PPC64
2002
/* Called with hard IRQs off */
2003
void notrace __ppc64_runlatch_on(void)
2004
{
2005
	struct thread_info *ti = current_thread_info();
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		/*
		 * Least significant bit (RUN) is the only writable bit of
		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
		 * earliest ISA where this is the case, but it's convenient.
		 */
		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
	} else {
		unsigned long ctrl;

		/*
		 * Some architectures (e.g., Cell) have writable fields other
		 * than RUN, so do the read-modify-write.
		 */
		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2025

2026
	ti->local_flags |= _TLF_RUNLATCH;
2027 2028
}

2029
/* Called with hard IRQs off */
2030
void notrace __ppc64_runlatch_off(void)
2031
{
2032
	struct thread_info *ti = current_thread_info();
2033

2034
	ti->local_flags &= ~_TLF_RUNLATCH;
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		mtspr(SPRN_CTRLT, 0);
	} else {
		unsigned long ctrl;

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2045
}
2046
#endif /* CONFIG_PPC64 */
2047

2048 2049 2050 2051 2052 2053
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
2054 2055 2056 2057 2058 2059 2060

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
2061
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2062
	else
D
Daniel Cashman 已提交
2063
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2064 2065 2066 2067 2068 2069

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
2070 2071 2072
	unsigned long base = mm->brk;
	unsigned long ret;

2073
#ifdef CONFIG_PPC_BOOK3S_64
2074 2075 2076 2077 2078
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
2079 2080
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2081 2082 2083 2084 2085 2086
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2087 2088 2089 2090 2091 2092

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2093