process.c 51.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45 46 47 48 49 50

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
51
#include <asm/machdep.h>
52
#include <asm/time.h>
53
#include <asm/runlatch.h>
54
#include <asm/syscalls.h>
55
#include <asm/switch_to.h>
56
#include <asm/tm.h>
57
#include <asm/debug.h>
58 59 60
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
61
#include <asm/code-patching.h>
62
#include <asm/exec.h>
63
#include <asm/livepatch.h>
64
#include <asm/cpu_has_feature.h>
65
#include <asm/asm-prototypes.h>
66

67 68
#include <linux/kprobes.h>
#include <linux/kdebug.h>
69

70 71 72 73 74 75 76
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

77 78
extern unsigned long _get_SP(void);

79
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80
static void check_if_tm_restore_required(struct task_struct *tsk)
81 82 83 84 85 86 87 88 89 90
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
91
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 93 94
		set_thread_flag(TIF_RESTORE_TM);
	}
}
95 96 97 98 99

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
100
#else
101
static inline bool msr_tm_active(unsigned long msr) { return false; }
102
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 104
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

105 106 107 108 109 110 111 112 113 114 115 116
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

117
unsigned long msr_check_and_set(unsigned long bits)
118
{
119 120
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
121

122
	newmsr = oldmsr | bits;
123 124

#ifdef CONFIG_VSX
125
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 127
		newmsr |= MSR_VSX;
#endif
128

129 130
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
131 132

	return newmsr;
133
}
134

135
void __msr_check_and_clear(unsigned long bits)
136 137 138 139 140 141 142 143 144 145 146 147 148 149
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
150
EXPORT_SYMBOL(__msr_check_and_clear);
151 152

#ifdef CONFIG_PPC_FPU
153 154
void __giveup_fpu(struct task_struct *tsk)
{
155 156
	unsigned long msr;

157
	save_fpu(tsk);
158 159
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
160 161
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
162
		msr &= ~MSR_VSX;
163
#endif
164
	tsk->thread.regs->msr = msr;
165 166
}

167 168 169 170 171
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
172
	__giveup_fpu(tsk);
173
	msr_check_and_clear(MSR_FP);
174 175 176
}
EXPORT_SYMBOL(giveup_fpu);

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
197
			 * the FP register state on context switch,
198 199 200 201
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
202
			giveup_fpu(tsk);
203 204 205 206
		}
		preempt_enable();
	}
}
207
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 209 210

void enable_kernel_fp(void)
{
211 212
	unsigned long cpumsr;

213 214
	WARN_ON(preemptible());

215
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
216

217 218
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
219 220 221 222 223 224 225 226 227
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
228
		__giveup_fpu(current);
229
	}
230 231
}
EXPORT_SYMBOL(enable_kernel_fp);
232

233 234
static int restore_fp(struct task_struct *tsk)
{
235
	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
236 237 238 239 240 241 242 243
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
244
#endif /* CONFIG_PPC_FPU */
245 246

#ifdef CONFIG_ALTIVEC
247 248
#define loadvec(thr) ((thr).load_vec)

249 250
static void __giveup_altivec(struct task_struct *tsk)
{
251 252
	unsigned long msr;

253
	save_altivec(tsk);
254 255
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
256 257
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
258
		msr &= ~MSR_VSX;
259
#endif
260
	tsk->thread.regs->msr = msr;
261 262
}

263 264 265 266
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

267
	msr_check_and_set(MSR_VEC);
268
	__giveup_altivec(tsk);
269
	msr_check_and_clear(MSR_VEC);
270 271 272
}
EXPORT_SYMBOL(giveup_altivec);

273 274
void enable_kernel_altivec(void)
{
275 276
	unsigned long cpumsr;

277 278
	WARN_ON(preemptible());

279
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
280

281 282
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
283 284 285 286 287 288 289 290 291
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
292
		__giveup_altivec(current);
293
	}
294 295 296 297 298 299 300 301 302 303 304 305 306
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
307
			giveup_altivec(tsk);
308 309 310 311
		}
		preempt_enable();
	}
}
312
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
313 314 315

static int restore_altivec(struct task_struct *tsk)
{
316 317
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
318 319 320 321 322 323 324 325 326 327 328
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
329 330
#endif /* CONFIG_ALTIVEC */

331
#ifdef CONFIG_VSX
332
static void __giveup_vsx(struct task_struct *tsk)
333 334 335 336 337
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
338 339 340 341 342 343 344 345
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
346
	__giveup_vsx(tsk);
347
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
348
}
349 350 351 352 353 354 355 356

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
357

358 359
void enable_kernel_vsx(void)
{
360 361
	unsigned long cpumsr;

362 363
	WARN_ON(preemptible());

364
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
365

366
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
367
		check_if_tm_restore_required(current);
368 369 370 371 372 373 374 375 376
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
377
		__giveup_vsx(current);
A
Anton Blanchard 已提交
378
	}
379 380 381 382 383 384 385 386 387 388 389 390 391 392
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
393
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
394 395 396 397 398 399 400 401 402 403 404 405

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
406
static inline void save_vsx(struct task_struct *tsk) { }
407 408
#endif /* CONFIG_VSX */

409
#ifdef CONFIG_SPE
410 411 412 413
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

414
	msr_check_and_set(MSR_SPE);
415
	__giveup_spe(tsk);
416
	msr_check_and_clear(MSR_SPE);
417 418
}
EXPORT_SYMBOL(giveup_spe);
419 420 421 422 423

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

424
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
425

426 427
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
428
		__giveup_spe(current);
429
	}
430 431 432 433 434 435 436 437 438
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
439
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
440
			giveup_spe(tsk);
441 442 443 444 445 446
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
484
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

507 508 509 510
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

511 512 513 514
	/*
	 * Syscall exit makes a similar initial check before branching
	 * to restore_math. Keep them in synch.
	 */
515 516
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

556 557 558 559 560 561 562 563 564 565 566 567 568
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
569 570 571 572 573 574 575

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

576 577 578 579 580
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
581
		save_all(tsk);
582 583 584 585 586 587 588 589 590 591 592

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

593 594 595 596 597 598
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

599
	current->thread.trap_nr = signal_code;
600 601 602 603 604 605 606 607 608 609 610 611
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
612
void do_break (struct pt_regs *regs, unsigned long address,
613 614 615 616
		    unsigned long error_code)
{
	siginfo_t info;

617
	current->thread.trap_nr = TRAP_HWBKPT;
618 619 620 621
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

622
	if (debugger_break_match(regs))
623 624
		return;

625 626
	/* Clear the breakpoint */
	hw_breakpoint_disable();
627 628 629 630 631 632 633 634

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
635
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
636

637
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
638

639 640 641 642 643 644
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
645
	thread->debug.iac1 = thread->debug.iac2 = 0;
646
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
647
	thread->debug.iac3 = thread->debug.iac4 = 0;
648
#endif
649
	thread->debug.dac1 = thread->debug.dac2 = 0;
650
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
651
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
652
#endif
653
	thread->debug.dbcr0 = 0;
654 655 656 657
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
658
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
659 660 661 662 663
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
664
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
665
#else
666
	thread->debug.dbcr1 = 0;
667 668 669
#endif
}

670
static void prime_debug_regs(struct debug_reg *debug)
671
{
672 673 674 675 676 677 678
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

679 680
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
681
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
682 683
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
684
#endif
685 686
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
687
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
688 689
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
690
#endif
691 692
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
693
#ifdef CONFIG_BOOKE
694
	mtspr(SPRN_DBCR2, debug->dbcr2);
695 696 697 698 699 700 701
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
702
void switch_booke_debug_regs(struct debug_reg *new_debug)
703
{
704
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
705 706
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
707
}
708
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
709
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
710
#ifndef CONFIG_HAVE_HW_BREAKPOINT
711 712
static void set_debug_reg_defaults(struct thread_struct *thread)
{
713 714
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
715
	set_breakpoint(&thread->hw_brk);
716
}
717
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
718 719
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

720
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
721 722
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
723
	mtspr(SPRN_DAC1, dabr);
724 725 726
#ifdef CONFIG_PPC_47x
	isync();
#endif
727 728
	return 0;
}
729
#elif defined(CONFIG_PPC_BOOK3S)
730 731
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
732
	mtspr(SPRN_DABR, dabr);
733 734
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
735
	return 0;
736
}
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

779 780
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
781
	unsigned long dawr, dawrx, mrd;
782 783 784 785 786 787 788 789 790

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
791 792 793 794 795 796 797 798
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
799 800 801 802 803 804 805 806

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

807
void __set_breakpoint(struct arch_hw_breakpoint *brk)
808
{
809
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
810

811
	if (cpu_has_feature(CPU_FTR_DAWR))
812 813 814
		set_dawr(brk);
	else
		set_dabr(brk);
815
}
816

817 818 819 820 821 822 823
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

824 825 826
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
827

828 829 830 831 832 833 834 835 836 837 838
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
839

840
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
841 842 843 844 845 846

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

847 848 849
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
850 851 852 853 854 855 856 857 858 859 860 861 862
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
863
	 * benefit of checking for a potential TM bad thing exception.
864 865 866 867
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));

887
	giveup_all(container_of(thr, struct task_struct, thread));
888

889
	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
890 891 892 893 894 895 896 897
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

898 899 900 901 902 903 904
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
905 906
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

924
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
925 926 927 928 929 930 931 932 933 934 935 936 937

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

938 939 940 941 942 943 944 945
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

946 947 948
	if (!(thread->regs->msr & MSR_TM))
		return;

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

966
static inline void tm_recheckpoint_new_task(struct task_struct *new)
967 968 969 970 971 972 973 974 975 976 977
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
978
	 * unavailable later, we are unable to determine which set of FP regs
979 980
	 * need to be restored.
	 */
981
	if (!tm_enabled(new))
982 983
		return;

984 985
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
986
		return;
987
	}
988
	msr = new->thread.ckpt_regs.msr;
989 990 991 992 993 994 995
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	tm_recheckpoint(&new->thread, msr);

996 997 998 999 1000 1001
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1002 1003 1004 1005 1006 1007

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

1008 1009
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
1010 1011
{
	if (cpu_has_feature(CPU_FTR_TM)) {
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1022
		tm_recheckpoint_new_task(new);
1023 1024
	}
}
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1044 1045 1046 1047 1048 1049
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1050 1051 1052 1053
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1054
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1055
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1056

1057 1058 1059
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1060
#ifdef CONFIG_ALTIVEC
1061 1062 1063
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1064 1065
	restore_math(regs);

1066 1067 1068
	regs->msr |= msr_diff;
}

1069 1070
#else
#define tm_recheckpoint_new_task(new)
1071
#define __switch_to_tm(prev, new)
1072
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1073

1074 1075 1076
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1077
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1113
		if (new_thread->dscr_inherit)
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1128 1129 1130
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1131 1132 1133 1134 1135 1136
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1137 1138 1139 1140 1141
#ifdef CONFIG_PPC_BOOK3S_64
#define CP_SIZE 128
static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
#endif

1142 1143 1144 1145 1146
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1147 1148 1149
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1150

1151 1152 1153
	new_thread = &new->thread;
	old_thread = &current->thread;

1154 1155
	WARN_ON(!irqs_disabled());

1156 1157 1158 1159 1160
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1161
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1162 1163 1164 1165 1166 1167
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1168 1169
#endif /* CONFIG_PPC64 */

1170
#ifdef CONFIG_PPC_STD_MMU_64
1171
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1172 1173 1174 1175 1176 1177
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1178
#endif /* CONFIG_PPC_STD_MMU_64 */
1179

A
Anton Blanchard 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1202 1203
	__switch_to_tm(prev, new);

1204 1205 1206 1207 1208 1209 1210 1211
	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}
1212

1213 1214 1215 1216 1217 1218 1219
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1220 1221
	restore_sprs(old_thread, new_thread);

1222 1223
	last = _switch(old_thread, new_thread);

1224
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1225 1226
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1227
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1228 1229
		batch->active = 1;
	}
1230

1231
	if (current_thread_info()->task->thread.regs) {
1232
		restore_math(current_thread_info()->task->thread.regs);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

		/*
		 * The copy-paste buffer can only store into foreign real
		 * addresses, so unprivileged processes can not see the
		 * data or use it in any way unless they have foreign real
		 * mappings. We don't have a VAS driver that allocates those
		 * yet, so no cpabort is required.
		 */
		if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
			/*
			 * DD1 allows paste into normal system memory, so we
			 * do an unpaired copy here to clear the buffer and
			 * prevent a covert channel being set up.
			 *
			 * cpabort is not used because it is quite expensive.
			 */
			asm volatile(PPC_COPY(%0, %1)
					: : "r"(dummy_copy_buffer), "r"(0));
		}
	}
1253
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1254

1255 1256 1257
	return last;
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1272
			pr_cont("\n");
1273

1274 1275 1276 1277 1278 1279 1280 1281
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1282
		if (!__kernel_text_address(pc) ||
1283
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1284
			pr_cont("XXXXXXXX ");
1285 1286
		} else {
			if (regs->nip == pc)
1287
				pr_cont("<%08x> ", instr);
1288
			else
1289
				pr_cont("%08x ", instr);
1290 1291 1292 1293 1294
		}

		pc += sizeof(int);
	}

1295
	pr_cont("\n");
1296 1297
}

1298
struct regbit {
1299 1300
	unsigned long bit;
	const char *name;
1301 1302 1303
};

static struct regbit msr_bits[] = {
1304 1305 1306 1307 1308 1309 1310 1311 1312
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1313 1314 1315 1316
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1317
#ifdef CONFIG_BOOKE
1318
	{MSR_DE,	"DE"},
1319 1320 1321 1322
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1323 1324
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1325 1326 1327 1328 1329
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1330 1331 1332
	{0,		NULL}
};

1333
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1334
{
1335
	const char *s = "";
1336 1337 1338

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1339
			pr_cont("%s%s", s, bits->name);
1340
			s = sep;
1341
		}
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1362
		pr_cont(",TM[");
1363
		print_bits(val, msr_tm_bits, "");
1364
		pr_cont("]");
1365 1366 1367 1368 1369 1370 1371 1372
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1373
	pr_cont("<");
1374 1375
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1376
	pr_cont(">");
1377 1378 1379
}

#ifdef CONFIG_PPC64
1380
#define REG		"%016lx"
1381 1382 1383
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1384
#define REG		"%08lx"
1385 1386 1387 1388
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1389 1390 1391 1392
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1393 1394
	show_regs_print_info(KERN_DEFAULT);

1395 1396 1397
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1398
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1399
	printk("MSR: "REG" ", regs->msr);
1400
	print_msr_bits(regs->msr);
1401
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1402
	trap = TRAP(regs);
1403
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1404
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1405
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1406
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1407
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1408
#else
1409
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1410 1411
#endif
#ifdef CONFIG_PPC64
1412
	pr_cont("SOFTE: %ld ", regs->softe);
1413 1414
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1415
	if (MSR_TM_ACTIVE(regs->msr))
1416
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1417
#endif
1418 1419

	for (i = 0;  i < 32;  i++) {
1420
		if ((i % REGS_PER_LINE) == 0)
1421 1422
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1423
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1424 1425
			break;
	}
1426
	pr_cont("\n");
1427 1428 1429 1430 1431
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1432 1433
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1434
#endif
1435
	show_stack(current, (unsigned long *) regs->gpr[1]);
1436 1437
	if (!user_mode(regs))
		show_instructions(regs);
1438 1439 1440 1441
}

void flush_thread(void)
{
1442
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1443
	flush_ptrace_hw_breakpoint(current);
1444
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1445
	set_debug_reg_defaults(&current->thread);
1446
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1447 1448 1449 1450 1451 1452 1453 1454
}

void
release_thread(struct task_struct *t)
{
}

/*
1455 1456
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1457
 */
1458
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1459
{
1460
	flush_all_to_thread(src);
1461 1462 1463 1464 1465 1466
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1467 1468 1469
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1470
	 */
1471
	__switch_to_tm(src, src);
1472

1473
	*dst = *src;
1474 1475 1476

	clear_task_ebb(dst);

1477
	return 0;
1478 1479
}

1480 1481 1482 1483 1484 1485
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1486 1487 1488
	if (radix_enabled())
		return;

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1500 1501 1502
/*
 * Copy a thread..
 */
1503

1504 1505 1506
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1507
int copy_thread(unsigned long clone_flags, unsigned long usp,
1508
		unsigned long kthread_arg, struct task_struct *p)
1509 1510 1511
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1512 1513
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1514
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1515 1516 1517
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1518 1519 1520 1521

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1522
	if (unlikely(p->flags & PF_KTHREAD)) {
1523
		/* kernel thread */
A
Al Viro 已提交
1524
		memset(childregs, 0, sizeof(struct pt_regs));
1525
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1526 1527 1528
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1529
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1530
		clear_tsk_thread_flag(p, TIF_32BIT);
1531
		childregs->softe = 1;
1532
#endif
1533
		childregs->gpr[15] = kthread_arg;
1534
		p->thread.regs = NULL;	/* no user register state */
1535
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1536
		f = ret_from_kernel_thread;
1537
	} else {
1538
		/* user thread */
1539
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1540 1541
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1542 1543
		if (usp)
			childregs->gpr[1] = usp;
1544
		p->thread.regs = childregs;
A
Al Viro 已提交
1545
		childregs->gpr[3] = 0;  /* Result from fork() */
1546 1547
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1548
			if (!is_32bit_task())
1549 1550 1551 1552 1553
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1554 1555

		f = ret_from_fork;
1556
	}
1557
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1568
	((unsigned long *)sp)[0] = 0;
1569 1570 1571 1572
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1573
#ifdef CONFIG_PPC32
1574 1575
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1576
#endif
1577 1578 1579 1580
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1581 1582 1583 1584 1585
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1586 1587
	setup_ksp_vsid(p, sp);

1588 1589
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1590
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1591
		p->thread.dscr = mfspr(SPRN_DSCR);
1592
	}
1593 1594
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1595
#endif
1596
	kregs->nip = ppc_function_entry(f);
1597 1598 1599 1600 1601 1602
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1603
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1604
{
1605 1606 1607 1608
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1609 1610 1611 1612 1613
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1614 1615
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1616 1617
	}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1628 1629 1630 1631 1632 1633
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1634

1635 1636 1637 1638 1639 1640 1641
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1642 1643 1644
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1645
	regs->msr = MSR_USER;
1646
#else
1647
	if (!is_32bit_task()) {
1648
		unsigned long entry;
1649

1650 1651 1652
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1685 1686 1687
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1688 1689 1690 1691
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1692 1693
	}
#endif
1694 1695 1696
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1697
	current->thread.load_fp = 0;
1698
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1699
	current->thread.fp_save_area = NULL;
1700
#ifdef CONFIG_ALTIVEC
1701 1702
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1703
	current->thread.vr_save_area = NULL;
1704 1705
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
1706
	current->thread.load_vec = 0;
1707 1708 1709 1710 1711 1712 1713
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1714 1715 1716 1717
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
1718
	current->thread.load_tm = 0;
1719
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1720
}
1721
EXPORT_SYMBOL(start_thread);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1736
		if (cpu_has_feature(CPU_FTR_SPE)) {
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1750 1751 1752 1753 1754 1755
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1756 1757 1758 1759
#else
		return -EINVAL;
#endif
	}
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1772 1773 1774 1775 1776 1777 1778 1779 1780
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1795
			val = tsk->thread.fpexc_mode;
1796
		} else
1797
			return -EINVAL;
1798 1799 1800 1801 1802 1803 1804 1805
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1885
int validate_sp(unsigned long sp, struct task_struct *p,
1886 1887
		       unsigned long nbytes)
{
A
Al Viro 已提交
1888
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1889 1890 1891 1892 1893

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1894
	return valid_irq_stack(sp, p, nbytes);
1895 1896
}

1897 1898
EXPORT_SYMBOL(validate_sp);

1899 1900 1901 1902 1903 1904 1905 1906 1907
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1908
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1909 1910 1911 1912
		return 0;

	do {
		sp = *(unsigned long *)sp;
1913
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1914 1915
			return 0;
		if (count > 0) {
1916
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1917 1918 1919 1920 1921 1922
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1923

1924
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1925 1926 1927 1928 1929 1930

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1931 1932 1933
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1934
	unsigned long rth = (unsigned long)return_to_handler;
1935
#endif
1936 1937 1938 1939 1940 1941

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1942
			sp = current_stack_pointer();
1943 1944 1945 1946 1947 1948 1949
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1950
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1951 1952 1953 1954
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1955
		ip = stack[STACK_FRAME_LR_SAVE];
1956
		if (!firstframe || ip != lr) {
1957
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1958
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1959
			if ((ip == rth) && curr_frame >= 0) {
1960
				pr_cont(" (%pS)",
1961 1962 1963 1964
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1965
			if (firstframe)
1966 1967
				pr_cont(" (unreliable)");
			pr_cont("\n");
1968 1969 1970 1971 1972 1973 1974
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1975 1976
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1977 1978 1979
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1980
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1981
			       regs->trap, (void *)regs->nip, (void *)lr);
1982 1983 1984 1985 1986 1987 1988
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1989
#ifdef CONFIG_PPC64
1990
/* Called with hard IRQs off */
1991
void notrace __ppc64_runlatch_on(void)
1992
{
1993
	struct thread_info *ti = current_thread_info();
1994 1995
	unsigned long ctrl;

1996 1997 1998
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1999

2000
	ti->local_flags |= _TLF_RUNLATCH;
2001 2002
}

2003
/* Called with hard IRQs off */
2004
void notrace __ppc64_runlatch_off(void)
2005
{
2006
	struct thread_info *ti = current_thread_info();
2007 2008
	unsigned long ctrl;

2009
	ti->local_flags &= ~_TLF_RUNLATCH;
2010

2011 2012 2013
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
2014
}
2015
#endif /* CONFIG_PPC64 */
2016

2017 2018 2019 2020 2021 2022
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
2023 2024 2025 2026 2027 2028 2029

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
2030
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2031
	else
D
Daniel Cashman 已提交
2032
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2033 2034 2035 2036 2037 2038

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
2039 2040 2041
	unsigned long base = mm->brk;
	unsigned long ret;

2042
#ifdef CONFIG_PPC_STD_MMU_64
2043 2044 2045 2046 2047
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
2048 2049
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2050 2051 2052 2053 2054 2055
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2056 2057 2058 2059 2060 2061

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2062