process.c 32.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
31
#include <linux/export.h>
32 33 34
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
35
#include <linux/utsname.h>
36
#include <linux/ftrace.h>
37
#include <linux/kernel_stat.h>
38 39
#include <linux/personality.h>
#include <linux/random.h>
40
#include <linux/hw_breakpoint.h>
41 42 43 44 45 46 47

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
48
#include <asm/machdep.h>
49
#include <asm/time.h>
50
#include <asm/runlatch.h>
51
#include <asm/syscalls.h>
52 53
#include <asm/switch_to.h>
#include <asm/debug.h>
54 55 56
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
57 58
#include <linux/kprobes.h>
#include <linux/kdebug.h>
59 60 61 62 63 64

extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
65
struct task_struct *last_task_used_vsx = NULL;
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
struct task_struct *last_task_used_spe = NULL;
#endif

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
96
			giveup_fpu(tsk);
97 98 99 100
		}
		preempt_enable();
	}
}
101
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
		giveup_fpu(current);
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
	giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
		giveup_altivec(current);
	else
127
		giveup_altivec_notask();
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#else
	giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
146
			giveup_altivec(tsk);
147 148 149 150
		}
		preempt_enable();
	}
}
151
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
152 153
#endif /* CONFIG_ALTIVEC */

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#ifdef CONFIG_VSX
#if 0
/* not currently used, but some crazy RAID module might want to later */
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
#else
	giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);
#endif

173 174 175 176 177 178 179
void giveup_vsx(struct task_struct *tsk)
{
	giveup_fpu(tsk);
	giveup_altivec(tsk);
	__giveup_vsx(tsk);
}

180 181 182 183 184 185 186 187 188 189 190 191 192
void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
193
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
194 195
#endif /* CONFIG_VSX */

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
221
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
222
			giveup_spe(tsk);
223 224 225 226 227 228
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

229
#ifndef CONFIG_SMP
230 231 232 233
/*
 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 * and the current task has some state, discard it.
 */
234
void discard_lazy_cpu_state(void)
235 236 237 238 239 240 241 242
{
	preempt_disable();
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
243 244 245 246
#ifdef CONFIG_VSX
	if (last_task_used_vsx == current)
		last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
247 248 249 250 251 252
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
	preempt_enable();
}
253
#endif /* CONFIG_SMP */
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
void do_dabr(struct pt_regs *regs, unsigned long address,
		    unsigned long error_code)
{
	siginfo_t info;

	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	if (debugger_dabr_match(regs))
		return;

	/* Clear the DABR */
	set_dabr(0);

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
295
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
296

297 298
static DEFINE_PER_CPU(unsigned long, current_dabr);

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
	thread->iac1 = thread->iac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	thread->iac3 = thread->iac4 = 0;
#endif
	thread->dac1 = thread->dac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	thread->dvc1 = thread->dvc2 = 0;
#endif
	thread->dbcr0 = 0;
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#else
	thread->dbcr1 = 0;
#endif
}

static void prime_debug_regs(struct thread_struct *thread)
{
	mtspr(SPRN_IAC1, thread->iac1);
	mtspr(SPRN_IAC2, thread->iac2);
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	mtspr(SPRN_IAC3, thread->iac3);
	mtspr(SPRN_IAC4, thread->iac4);
#endif
	mtspr(SPRN_DAC1, thread->dac1);
	mtspr(SPRN_DAC2, thread->dac2);
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	mtspr(SPRN_DVC1, thread->dvc1);
	mtspr(SPRN_DVC2, thread->dvc2);
#endif
	mtspr(SPRN_DBCR0, thread->dbcr0);
	mtspr(SPRN_DBCR1, thread->dbcr1);
#ifdef CONFIG_BOOKE
	mtspr(SPRN_DBCR2, thread->dbcr2);
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
static void switch_booke_debug_regs(struct thread_struct *new_thread)
{
	if ((current->thread.dbcr0 & DBCR0_IDM)
		|| (new_thread->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_thread);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
362
#ifndef CONFIG_HAVE_HW_BREAKPOINT
363 364 365 366 367 368 369
static void set_debug_reg_defaults(struct thread_struct *thread)
{
	if (thread->dabr) {
		thread->dabr = 0;
		set_dabr(0);
	}
}
370
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
371 372
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

373 374
int set_dabr(unsigned long dabr)
{
375 376
	__get_cpu_var(current_dabr) = dabr;

377 378
	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr);
379

380
	/* XXX should we have a CPU_FTR_HAS_DABR ? */
381
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
382
	mtspr(SPRN_DAC1, dabr);
383 384 385
#ifdef CONFIG_PPC_47x
	isync();
#endif
386 387
#elif defined(CONFIG_PPC_BOOK3S)
	mtspr(SPRN_DABR, dabr);
388 389
#endif

390

391
	return 0;
392 393
}

394 395 396
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
397 398 399 400 401 402 403

struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	unsigned long flags;
	struct task_struct *last;
P
Peter Zijlstra 已提交
404 405 406
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
435 436
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
437 438
		/* VMX and FPU registers are already save here */
		__giveup_vsx(prev);
439
#endif /* CONFIG_VSX */
440 441 442 443 444 445 446 447 448 449
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
450 451 452 453 454 455 456 457 458 459
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
460 461 462 463
#ifdef CONFIG_VSX
	if (new->thread.regs && last_task_used_vsx == new)
		new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
464
#ifdef CONFIG_SPE
465 466 467 468 469 470
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
471

472 473
#endif /* CONFIG_SMP */

474
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
475
	switch_booke_debug_regs(&new->thread);
476
#else
477 478 479 480 481
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
482 483
	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
		set_dabr(new->thread.dabr);
484
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
485 486
#endif

487

488 489
	new_thread = &new->thread;
	old_thread = &current->thread;
490 491 492 493 494 495 496 497 498 499 500 501 502

#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
503 504 505 506 507 508 509 510 511 512 513
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
	batch = &__get_cpu_var(ppc64_tlb_batch);
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
514

515
	local_irq_save(flags);
516 517

	account_system_vtime(current);
518
	account_process_vtime(current);
519

520 521 522 523 524 525
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
526 527
	last = _switch(old_thread, new_thread);

P
Peter Zijlstra 已提交
528 529 530 531 532 533 534 535
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
		batch = &__get_cpu_var(ppc64_tlb_batch);
		batch->active = 1;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */

536 537 538 539 540
	local_irq_restore(flags);

	return last;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

557 558 559 560 561 562 563 564
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

565 566 567 568
		/* We use __get_user here *only* to avoid an OOPS on a
		 * bad address because the pc *should* only be a
		 * kernel address.
		 */
569 570
		if (!__kernel_text_address(pc) ||
		     __get_user(instr, (unsigned int __user *)pc)) {
571
			printk(KERN_CONT "XXXXXXXX ");
572 573
		} else {
			if (regs->nip == pc)
574
				printk(KERN_CONT "<%08x> ", instr);
575
			else
576
				printk(KERN_CONT "%08x ", instr);
577 578 579 580 581 582 583 584 585 586 587 588
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
589 590 591 592 593 594 595 596 597
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
598 599 600 601
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
602
#ifdef CONFIG_BOOKE
603
	{MSR_DE,	"DE"},
604 605 606 607
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
608 609
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
610 611 612 613 614
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
632
#define REG		"%016lx"
633 634 635
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
636
#define REG		"%08lx"
637 638 639 640
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

641 642 643 644
void show_regs(struct pt_regs * regs)
{
	int i, trap;

645 646 647
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
648
	       regs, regs->trap, print_tainted(), init_utsname()->release);
649 650
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
651
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
652 653 654
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld\n", regs->softe);
#endif
655
	trap = TRAP(regs);
656 657
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
		printk("CFAR: "REG"\n", regs->orig_gpr3);
658
	if (trap == 0x300 || trap == 0x600)
659
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
660 661
		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
#else
662
		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
663
#endif
664
	printk("TASK = %p[%d] '%s' THREAD: %p",
665
	       current, task_pid_nr(current), current->comm, task_thread_info(current));
666 667

#ifdef CONFIG_SMP
668
	printk(" CPU: %d", raw_smp_processor_id());
669 670 671
#endif /* CONFIG_SMP */

	for (i = 0;  i < 32;  i++) {
672
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
673
			printk("\nGPR%02d: ", i);
674 675
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
676 677 678 679 680 681 682 683
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
684 685
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
686 687
#endif
	show_stack(current, (unsigned long *) regs->gpr[1]);
688 689
	if (!user_mode(regs))
		show_instructions(regs);
690 691 692 693
}

void exit_thread(void)
{
694
	discard_lazy_cpu_state();
695 696 697 698
}

void flush_thread(void)
{
699
	discard_lazy_cpu_state();
700

701
#ifdef CONFIG_HAVE_HW_BREAKPOINT
702
	flush_ptrace_hw_breakpoint(current);
703
#else /* CONFIG_HAVE_HW_BREAKPOINT */
704
	set_debug_reg_defaults(&current->thread);
705
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
706 707 708 709 710 711 712 713
}

void
release_thread(struct task_struct *t)
{
}

/*
714 715
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
716
 */
717
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
718
{
719 720 721 722
	flush_fp_to_thread(src);
	flush_altivec_to_thread(src);
	flush_vsx_to_thread(src);
	flush_spe_to_thread(src);
723
#ifdef CONFIG_HAVE_HW_BREAKPOINT
724
	flush_ptrace_hw_breakpoint(src);
725
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
726 727 728

	*dst = *src;
	return 0;
729 730 731 732 733
}

/*
 * Copy a thread..
 */
734 735
extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */

A
Alexey Dobriyan 已提交
736
int copy_thread(unsigned long clone_flags, unsigned long usp,
737 738
		unsigned long unused, struct task_struct *p,
		struct pt_regs *regs)
739 740 741
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
742
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
743 744 745 746 747 748 749 750 751

	CHECK_FULL_REGS(regs);
	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
	*childregs = *regs;
	if ((childregs->msr & MSR_PR) == 0) {
		/* for kernel thread, set `current' and stackptr in new task */
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
752
#ifdef CONFIG_PPC32
753
		childregs->gpr[2] = (unsigned long) p;
754
#else
A
Al Viro 已提交
755
		clear_tsk_thread_flag(p, TIF_32BIT);
756
#endif
757 758 759 760
		p->thread.regs = NULL;	/* no user register state */
	} else {
		childregs->gpr[1] = usp;
		p->thread.regs = childregs;
761 762
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
763
			if (!is_32bit_task())
764 765 766 767 768
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	}
	childregs->gpr[3] = 0;  /* Result from fork() */
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
785 786
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
787

788
#ifdef CONFIG_PPC_STD_MMU_64
789
	if (mmu_has_feature(MMU_FTR_SLB)) {
P
Paul Mackerras 已提交
790
		unsigned long sp_vsid;
791
		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
792

793
		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
P
Paul Mackerras 已提交
794 795 796 797 798
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
				<< SLB_VSID_SHIFT_1T;
		else
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
				<< SLB_VSID_SHIFT;
799
		sp_vsid |= SLB_VSID_KERNEL | llp;
800 801
		p->thread.ksp_vsid = sp_vsid;
	}
802
#endif /* CONFIG_PPC_STD_MMU_64 */
803 804 805 806 807 808 809 810 811 812 813 814 815 816
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		if (current->thread.dscr_inherit) {
			p->thread.dscr_inherit = 1;
			p->thread.dscr = current->thread.dscr;
		} else if (0 != dscr_default) {
			p->thread.dscr_inherit = 1;
			p->thread.dscr = dscr_default;
		} else {
			p->thread.dscr_inherit = 0;
			p->thread.dscr = 0;
		}
	}
#endif
817 818 819 820 821 822 823

	/*
	 * The PPC64 ABI makes use of a TOC to contain function 
	 * pointers.  The function (ret_from_except) is actually a pointer
	 * to the TOC entry.  The first entry is a pointer to the actual
	 * function.
 	 */
824
#ifdef CONFIG_PPC64
825 826 827 828
	kregs->nip = *((unsigned long *)ret_from_fork);
#else
	kregs->nip = (unsigned long)ret_from_fork;
#endif
829 830 831 832 833 834 835

	return 0;
}

/*
 * Set up a thread for executing a new program
 */
836
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
837
{
838 839 840 841
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

842 843 844 845 846
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
847 848
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
849 850
	}

851 852 853 854 855 856
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
857

858 859 860 861 862 863 864
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

865 866 867
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
868
	regs->msr = MSR_USER;
869
#else
870
	if (!is_32bit_task()) {
871
		unsigned long entry, toc;
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890

		/* start is a relocated pointer to the function descriptor for
		 * the elf _start routine.  The first entry in the function
		 * descriptor is the entry address of _start and the second
		 * entry is the TOC value we need to use.
		 */
		__get_user(entry, (unsigned long __user *)start);
		__get_user(toc, (unsigned long __user *)start+1);

		/* Check whether the e_entry function descriptor entries
		 * need to be relocated before we can use them.
		 */
		if (load_addr != 0) {
			entry += load_addr;
			toc   += load_addr;
		}
		regs->nip = entry;
		regs->gpr[2] = toc;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
891 892 893 894
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
895 896 897
	}
#endif

898
	discard_lazy_cpu_state();
899 900 901
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
902
	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
903
	current->thread.fpscr.val = 0;
904 905 906
#ifdef CONFIG_ALTIVEC
	memset(current->thread.vr, 0, sizeof(current->thread.vr));
	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
907
	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
}

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
932 933 934 935 936 937 938
		if (cpu_has_feature(CPU_FTR_SPE)) {
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
939 940 941 942
#else
		return -EINVAL;
#endif
	}
943 944 945 946 947 948 949 950 951 952 953 954

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
955 956 957 958 959 960 961 962 963
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
964 965 966 967
		if (cpu_has_feature(CPU_FTR_SPE))
			val = tsk->thread.fpexc_mode;
		else
			return -EINVAL;
968 969 970 971 972 973 974 975
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1031 1032
#define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))

1033 1034 1035 1036 1037 1038 1039 1040
int sys_clone(unsigned long clone_flags, unsigned long usp,
	      int __user *parent_tidp, void __user *child_threadptr,
	      int __user *child_tidp, int p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	if (usp == 0)
		usp = regs->gpr[1];	/* stack pointer for child */
1041
#ifdef CONFIG_PPC64
1042
	if (is_32bit_task()) {
1043 1044 1045 1046
		parent_tidp = TRUNC_PTR(parent_tidp);
		child_tidp = TRUNC_PTR(child_tidp);
	}
#endif
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
 	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
}

int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
	     unsigned long p4, unsigned long p5, unsigned long p6,
	     struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
}

int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
	      unsigned long p4, unsigned long p5, unsigned long p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
			regs, 0, NULL, NULL);
}

int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
	       unsigned long a3, unsigned long a4, unsigned long a5,
	       struct pt_regs *regs)
{
	int error;
1072
	char *filename;
1073

1074
	filename = getname((const char __user *) a0);
1075 1076 1077 1078 1079 1080
	error = PTR_ERR(filename);
	if (IS_ERR(filename))
		goto out;
	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_spe_to_thread(current);
1081 1082 1083
	error = do_execve(filename,
			  (const char __user *const __user *) a1,
			  (const char __user *const __user *) a2, regs);
1084 1085 1086 1087 1088
	putname(filename);
out:
	return error;
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1113
int validate_sp(unsigned long sp, struct task_struct *p,
1114 1115
		       unsigned long nbytes)
{
A
Al Viro 已提交
1116
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1117 1118 1119 1120 1121

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1122
	return valid_irq_stack(sp, p, nbytes);
1123 1124
}

1125 1126
EXPORT_SYMBOL(validate_sp);

1127 1128 1129 1130 1131 1132 1133 1134 1135
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1136
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1137 1138 1139 1140
		return 0;

	do {
		sp = *(unsigned long *)sp;
1141
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1142 1143
			return 0;
		if (count > 0) {
1144
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1145 1146 1147 1148 1149 1150
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1151

1152
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1153 1154 1155 1156 1157 1158

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1159 1160 1161
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1162 1163
	unsigned long rth = (unsigned long)return_to_handler;
	unsigned long mrth = -1;
1164
#ifdef CONFIG_PPC64
1165 1166 1167 1168
	extern void mod_return_to_handler(void);
	rth = *(unsigned long *)rth;
	mrth = (unsigned long)mod_return_to_handler;
	mrth = *(unsigned long *)mrth;
1169 1170
#endif
#endif
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
			asm("mr %0,1" : "=r" (sp));
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1185
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1186 1187 1188 1189
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1190
		ip = stack[STACK_FRAME_LR_SAVE];
1191
		if (!firstframe || ip != lr) {
1192
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1193
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1194
			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1195 1196 1197 1198 1199
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1210 1211
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1212 1213 1214
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1215 1216
			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
			       regs->trap, (void *)regs->nip, (void *)lr);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

void dump_stack(void)
{
	show_stack(current, NULL);
}
EXPORT_SYMBOL(dump_stack);
1229 1230

#ifdef CONFIG_PPC64
1231 1232
/* Called with hard IRQs off */
void __ppc64_runlatch_on(void)
1233
{
1234
	struct thread_info *ti = current_thread_info();
1235 1236
	unsigned long ctrl;

1237 1238 1239
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1240

1241
	ti->local_flags |= _TLF_RUNLATCH;
1242 1243
}

1244
/* Called with hard IRQs off */
1245
void __ppc64_runlatch_off(void)
1246
{
1247
	struct thread_info *ti = current_thread_info();
1248 1249
	unsigned long ctrl;

1250
	ti->local_flags &= ~_TLF_RUNLATCH;
1251

1252 1253 1254
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1255
}
1256
#endif /* CONFIG_PPC64 */
1257

1258 1259 1260 1261 1262 1263
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1280 1281 1282
	unsigned long base = mm->brk;
	unsigned long ret;

1283
#ifdef CONFIG_PPC_STD_MMU_64
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1296 1297 1298 1299 1300 1301

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

unsigned long randomize_et_dyn(unsigned long base)
{
	unsigned long ret = PAGE_ALIGN(base + brk_rnd());

	if (ret < base)
		return base;

	return ret;
}