process.c 32.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
31
#include <linux/export.h>
32 33 34
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
35
#include <linux/utsname.h>
36
#include <linux/ftrace.h>
37
#include <linux/kernel_stat.h>
38 39
#include <linux/personality.h>
#include <linux/random.h>
40
#include <linux/hw_breakpoint.h>
41 42 43 44 45 46 47

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
48
#include <asm/machdep.h>
49
#include <asm/time.h>
50
#include <asm/runlatch.h>
51
#include <asm/syscalls.h>
52 53
#include <asm/switch_to.h>
#include <asm/debug.h>
54 55 56
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
57 58
#include <linux/kprobes.h>
#include <linux/kdebug.h>
59 60 61 62 63 64

extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
65
struct task_struct *last_task_used_vsx = NULL;
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
struct task_struct *last_task_used_spe = NULL;
#endif

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
96
			giveup_fpu(tsk);
97 98 99 100
		}
		preempt_enable();
	}
}
101
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
		giveup_fpu(current);
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
	giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
		giveup_altivec(current);
	else
127
		giveup_altivec_notask();
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#else
	giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
146
			giveup_altivec(tsk);
147 148 149 150
		}
		preempt_enable();
	}
}
151
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
152 153
#endif /* CONFIG_ALTIVEC */

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#ifdef CONFIG_VSX
#if 0
/* not currently used, but some crazy RAID module might want to later */
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
#else
	giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);
#endif

173 174 175 176 177 178 179
void giveup_vsx(struct task_struct *tsk)
{
	giveup_fpu(tsk);
	giveup_altivec(tsk);
	__giveup_vsx(tsk);
}

180 181 182 183 184 185 186 187 188 189 190 191 192
void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
193
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
194 195
#endif /* CONFIG_VSX */

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
221
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
222
			giveup_spe(tsk);
223 224 225 226 227 228
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

229
#ifndef CONFIG_SMP
230 231 232 233
/*
 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 * and the current task has some state, discard it.
 */
234
void discard_lazy_cpu_state(void)
235 236 237 238 239 240 241 242
{
	preempt_disable();
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
243 244 245 246
#ifdef CONFIG_VSX
	if (last_task_used_vsx == current)
		last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
247 248 249 250 251 252
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
	preempt_enable();
}
253
#endif /* CONFIG_SMP */
254

255 256 257 258 259 260
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

261
	current->thread.trap_nr = signal_code;
262 263 264 265 266 267 268 269 270 271 272 273
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
274
void do_break (struct pt_regs *regs, unsigned long address,
275 276 277 278
		    unsigned long error_code)
{
	siginfo_t info;

279
	current->thread.trap_nr = TRAP_HWBKPT;
280 281 282 283
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

284
	if (debugger_break_match(regs))
285 286
		return;

287 288
	/* Clear the breakpoint */
	hw_breakpoint_disable();
289 290 291 292 293 294 295 296

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
297
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
298

299
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
	thread->iac1 = thread->iac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	thread->iac3 = thread->iac4 = 0;
#endif
	thread->dac1 = thread->dac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	thread->dvc1 = thread->dvc2 = 0;
#endif
	thread->dbcr0 = 0;
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#else
	thread->dbcr1 = 0;
#endif
}

static void prime_debug_regs(struct thread_struct *thread)
{
	mtspr(SPRN_IAC1, thread->iac1);
	mtspr(SPRN_IAC2, thread->iac2);
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	mtspr(SPRN_IAC3, thread->iac3);
	mtspr(SPRN_IAC4, thread->iac4);
#endif
	mtspr(SPRN_DAC1, thread->dac1);
	mtspr(SPRN_DAC2, thread->dac2);
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	mtspr(SPRN_DVC1, thread->dvc1);
	mtspr(SPRN_DVC2, thread->dvc2);
#endif
	mtspr(SPRN_DBCR0, thread->dbcr0);
	mtspr(SPRN_DBCR1, thread->dbcr1);
#ifdef CONFIG_BOOKE
	mtspr(SPRN_DBCR2, thread->dbcr2);
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
static void switch_booke_debug_regs(struct thread_struct *new_thread)
{
	if ((current->thread.dbcr0 & DBCR0_IDM)
		|| (new_thread->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_thread);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
364
#ifndef CONFIG_HAVE_HW_BREAKPOINT
365 366
static void set_debug_reg_defaults(struct thread_struct *thread)
{
367 368
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
369
	set_breakpoint(&thread->hw_brk);
370
}
371
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
372 373
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

374
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
375 376
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
377
	mtspr(SPRN_DAC1, dabr);
378 379 380
#ifdef CONFIG_PPC_47x
	isync();
#endif
381 382
	return 0;
}
383
#elif defined(CONFIG_PPC_BOOK3S)
384 385
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
386
	mtspr(SPRN_DABR, dabr);
387
	mtspr(SPRN_DABRX, dabrx);
388
	return 0;
389
}
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
	unsigned long dawr, dawrx;

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

430
int set_breakpoint(struct arch_hw_breakpoint *brk)
431 432 433
{
	__get_cpu_var(current_brk) = *brk;

434 435 436
	if (cpu_has_feature(CPU_FTR_DAWR))
		return set_dawr(brk);

437 438
	return set_dabr(brk);
}
439

440 441 442
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
443

444 445 446 447 448 449 450 451 452 453 454 455
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}

456 457 458 459 460 461
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	unsigned long flags;
	struct task_struct *last;
P
Peter Zijlstra 已提交
462 463 464
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
493 494
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
495 496
		/* VMX and FPU registers are already save here */
		__giveup_vsx(prev);
497
#endif /* CONFIG_VSX */
498 499 500 501 502 503 504 505 506 507
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
508 509 510 511 512 513 514 515 516 517
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
518 519 520 521
#ifdef CONFIG_VSX
	if (new->thread.regs && last_task_used_vsx == new)
		new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
522
#ifdef CONFIG_SPE
523 524 525 526 527 528
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
529

530 531
#endif /* CONFIG_SMP */

532
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
533
	switch_booke_debug_regs(&new->thread);
534
#else
535 536 537 538 539
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
540
	if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
541
		set_breakpoint(&new->thread.hw_brk);
542
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
543 544
#endif

545

546 547
	new_thread = &new->thread;
	old_thread = &current->thread;
548 549 550 551 552 553 554 555 556 557 558 559 560

#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
561 562 563 564 565 566 567 568 569 570 571
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
	batch = &__get_cpu_var(ppc64_tlb_batch);
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
572

573
	local_irq_save(flags);
574

575 576 577 578 579 580
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
581 582
	last = _switch(old_thread, new_thread);

P
Peter Zijlstra 已提交
583 584 585 586 587 588 589 590
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
		batch = &__get_cpu_var(ppc64_tlb_batch);
		batch->active = 1;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */

591 592 593 594 595
	local_irq_restore(flags);

	return last;
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

612 613 614 615 616 617 618 619
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

620 621 622 623
		/* We use __get_user here *only* to avoid an OOPS on a
		 * bad address because the pc *should* only be a
		 * kernel address.
		 */
624 625
		if (!__kernel_text_address(pc) ||
		     __get_user(instr, (unsigned int __user *)pc)) {
626
			printk(KERN_CONT "XXXXXXXX ");
627 628
		} else {
			if (regs->nip == pc)
629
				printk(KERN_CONT "<%08x> ", instr);
630
			else
631
				printk(KERN_CONT "%08x ", instr);
632 633 634 635 636 637 638 639 640 641 642 643
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
644 645 646 647 648 649 650 651 652
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
653 654 655 656
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
657
#ifdef CONFIG_BOOKE
658
	{MSR_DE,	"DE"},
659 660 661 662
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
663 664
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
665 666 667 668 669
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
687
#define REG		"%016lx"
688 689 690
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
691
#define REG		"%08lx"
692 693 694 695
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

696 697 698 699
void show_regs(struct pt_regs * regs)
{
	int i, trap;

700 701 702
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
703
	       regs, regs->trap, print_tainted(), init_utsname()->release);
704 705
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
706
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
707 708 709
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld\n", regs->softe);
#endif
710
	trap = TRAP(regs);
711 712
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
		printk("CFAR: "REG"\n", regs->orig_gpr3);
713
	if (trap == 0x300 || trap == 0x600)
714
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
715 716
		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
#else
717
		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
718
#endif
719
	printk("TASK = %p[%d] '%s' THREAD: %p",
720
	       current, task_pid_nr(current), current->comm, task_thread_info(current));
721 722

#ifdef CONFIG_SMP
723
	printk(" CPU: %d", raw_smp_processor_id());
724 725 726
#endif /* CONFIG_SMP */

	for (i = 0;  i < 32;  i++) {
727
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
728
			printk("\nGPR%02d: ", i);
729 730
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
731 732 733 734 735 736 737 738
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
739 740
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
741 742
#endif
	show_stack(current, (unsigned long *) regs->gpr[1]);
743 744
	if (!user_mode(regs))
		show_instructions(regs);
745 746 747 748
}

void exit_thread(void)
{
749
	discard_lazy_cpu_state();
750 751 752 753
}

void flush_thread(void)
{
754
	discard_lazy_cpu_state();
755

756
#ifdef CONFIG_HAVE_HW_BREAKPOINT
757
	flush_ptrace_hw_breakpoint(current);
758
#else /* CONFIG_HAVE_HW_BREAKPOINT */
759
	set_debug_reg_defaults(&current->thread);
760
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
761 762 763 764 765 766 767 768
}

void
release_thread(struct task_struct *t)
{
}

/*
769 770
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
771
 */
772
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
773
{
774 775 776 777
	flush_fp_to_thread(src);
	flush_altivec_to_thread(src);
	flush_vsx_to_thread(src);
	flush_spe_to_thread(src);
778
#ifdef CONFIG_HAVE_HW_BREAKPOINT
779
	flush_ptrace_hw_breakpoint(src);
780
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
781 782 783

	*dst = *src;
	return 0;
784 785 786 787 788
}

/*
 * Copy a thread..
 */
789 790
extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */

A
Alexey Dobriyan 已提交
791
int copy_thread(unsigned long clone_flags, unsigned long usp,
792
		unsigned long arg, struct task_struct *p)
793 794 795
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
796 797
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
798
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
799 800 801 802

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
803
	if (unlikely(p->flags & PF_KTHREAD)) {
804
		struct thread_info *ti = (void *)task_stack_page(p);
A
Al Viro 已提交
805
		memset(childregs, 0, sizeof(struct pt_regs));
806
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
807
		childregs->gpr[14] = usp;	/* function */
A
Al Viro 已提交
808
#ifdef CONFIG_PPC64
A
Al Viro 已提交
809
		clear_tsk_thread_flag(p, TIF_32BIT);
810
		childregs->softe = 1;
811
#endif
A
Al Viro 已提交
812
		childregs->gpr[15] = arg;
813
		p->thread.regs = NULL;	/* no user register state */
814
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
815
		f = ret_from_kernel_thread;
816
	} else {
817
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
818 819
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
820 821
		if (usp)
			childregs->gpr[1] = usp;
822
		p->thread.regs = childregs;
A
Al Viro 已提交
823
		childregs->gpr[3] = 0;  /* Result from fork() */
824 825
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
826
			if (!is_32bit_task())
827 828 829 830 831
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
832 833

		f = ret_from_fork;
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	}
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
849 850
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
851

852
#ifdef CONFIG_PPC_STD_MMU_64
853
	if (mmu_has_feature(MMU_FTR_SLB)) {
P
Paul Mackerras 已提交
854
		unsigned long sp_vsid;
855
		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
856

857
		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
P
Paul Mackerras 已提交
858 859 860 861 862
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
				<< SLB_VSID_SHIFT_1T;
		else
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
				<< SLB_VSID_SHIFT;
863
		sp_vsid |= SLB_VSID_KERNEL | llp;
864 865
		p->thread.ksp_vsid = sp_vsid;
	}
866
#endif /* CONFIG_PPC_STD_MMU_64 */
867 868
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
869 870
		p->thread.dscr_inherit = current->thread.dscr_inherit;
		p->thread.dscr = current->thread.dscr;
871
	}
872 873
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
874
#endif
875 876 877 878 879
	/*
	 * The PPC64 ABI makes use of a TOC to contain function 
	 * pointers.  The function (ret_from_except) is actually a pointer
	 * to the TOC entry.  The first entry is a pointer to the actual
	 * function.
A
Al Viro 已提交
880
	 */
881
#ifdef CONFIG_PPC64
A
Al Viro 已提交
882
	kregs->nip = *((unsigned long *)f);
883
#else
A
Al Viro 已提交
884
	kregs->nip = (unsigned long)f;
885
#endif
886 887 888 889 890 891
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
892
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
893
{
894 895 896 897
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

898 899 900 901 902
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
903 904
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
905 906
	}

907 908 909 910 911 912
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
913

914 915 916 917 918 919 920
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

921 922 923
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
924
	regs->msr = MSR_USER;
925
#else
926
	if (!is_32bit_task()) {
927
		unsigned long entry, toc;
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946

		/* start is a relocated pointer to the function descriptor for
		 * the elf _start routine.  The first entry in the function
		 * descriptor is the entry address of _start and the second
		 * entry is the TOC value we need to use.
		 */
		__get_user(entry, (unsigned long __user *)start);
		__get_user(toc, (unsigned long __user *)start+1);

		/* Check whether the e_entry function descriptor entries
		 * need to be relocated before we can use them.
		 */
		if (load_addr != 0) {
			entry += load_addr;
			toc   += load_addr;
		}
		regs->nip = entry;
		regs->gpr[2] = toc;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
947 948 949 950
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
951 952 953
	}
#endif

954
	discard_lazy_cpu_state();
955 956 957
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
958
	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
959
	current->thread.fpscr.val = 0;
960 961 962
#ifdef CONFIG_ALTIVEC
	memset(current->thread.vr, 0, sizeof(current->thread.vr));
	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
963
	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
}

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
988 989 990 991 992 993 994
		if (cpu_has_feature(CPU_FTR_SPE)) {
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
995 996 997 998
#else
		return -EINVAL;
#endif
	}
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1011 1012 1013 1014 1015 1016 1017 1018 1019
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1020 1021 1022 1023
		if (cpu_has_feature(CPU_FTR_SPE))
			val = tsk->thread.fpexc_mode;
		else
			return -EINVAL;
1024 1025 1026 1027 1028 1029 1030 1031
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1111
int validate_sp(unsigned long sp, struct task_struct *p,
1112 1113
		       unsigned long nbytes)
{
A
Al Viro 已提交
1114
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1115 1116 1117 1118 1119

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1120
	return valid_irq_stack(sp, p, nbytes);
1121 1122
}

1123 1124
EXPORT_SYMBOL(validate_sp);

1125 1126 1127 1128 1129 1130 1131 1132 1133
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1134
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1135 1136 1137 1138
		return 0;

	do {
		sp = *(unsigned long *)sp;
1139
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1140 1141
			return 0;
		if (count > 0) {
1142
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1143 1144 1145 1146 1147 1148
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1149

1150
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1151 1152 1153 1154 1155 1156

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1157 1158 1159
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1160 1161
	unsigned long rth = (unsigned long)return_to_handler;
	unsigned long mrth = -1;
1162
#ifdef CONFIG_PPC64
1163 1164 1165 1166
	extern void mod_return_to_handler(void);
	rth = *(unsigned long *)rth;
	mrth = (unsigned long)mod_return_to_handler;
	mrth = *(unsigned long *)mrth;
1167 1168
#endif
#endif
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
			asm("mr %0,1" : "=r" (sp));
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1183
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1184 1185 1186 1187
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1188
		ip = stack[STACK_FRAME_LR_SAVE];
1189
		if (!firstframe || ip != lr) {
1190
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1191
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1192
			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1193 1194 1195 1196 1197
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1208 1209
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1210 1211 1212
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1213 1214
			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
			       regs->trap, (void *)regs->nip, (void *)lr);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

void dump_stack(void)
{
	show_stack(current, NULL);
}
EXPORT_SYMBOL(dump_stack);
1227 1228

#ifdef CONFIG_PPC64
1229 1230
/* Called with hard IRQs off */
void __ppc64_runlatch_on(void)
1231
{
1232
	struct thread_info *ti = current_thread_info();
1233 1234
	unsigned long ctrl;

1235 1236 1237
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1238

1239
	ti->local_flags |= _TLF_RUNLATCH;
1240 1241
}

1242
/* Called with hard IRQs off */
1243
void __ppc64_runlatch_off(void)
1244
{
1245
	struct thread_info *ti = current_thread_info();
1246 1247
	unsigned long ctrl;

1248
	ti->local_flags &= ~_TLF_RUNLATCH;
1249

1250 1251 1252
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1253
}
1254
#endif /* CONFIG_PPC64 */
1255

1256 1257 1258 1259 1260 1261
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1278 1279 1280
	unsigned long base = mm->brk;
	unsigned long ret;

1281
#ifdef CONFIG_PPC_STD_MMU_64
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1294 1295 1296 1297 1298 1299

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

unsigned long randomize_et_dyn(unsigned long base)
{
	unsigned long ret = PAGE_ALIGN(base + brk_rnd());

	if (ret < base)
		return base;

	return ret;
}