process.c 49.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21 22 23 24 25 26 27 28 29 30 31
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
32
#include <linux/export.h>
33 34 35
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
36
#include <linux/utsname.h>
37
#include <linux/ftrace.h>
38
#include <linux/kernel_stat.h>
39 40
#include <linux/personality.h>
#include <linux/random.h>
41
#include <linux/hw_breakpoint.h>
42
#include <linux/uaccess.h>
43
#include <linux/elf-randomize.h>
44 45 46 47 48 49

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
50
#include <asm/machdep.h>
51
#include <asm/time.h>
52
#include <asm/runlatch.h>
53
#include <asm/syscalls.h>
54
#include <asm/switch_to.h>
55
#include <asm/tm.h>
56
#include <asm/debug.h>
57 58 59
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
60
#include <asm/code-patching.h>
61
#include <asm/exec.h>
62
#include <asm/livepatch.h>
63
#include <asm/cpu_has_feature.h>
64
#include <asm/asm-prototypes.h>
65

66 67
#include <linux/kprobes.h>
#include <linux/kdebug.h>
68

69 70 71 72 73 74 75
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

76 77
extern unsigned long _get_SP(void);

78
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
79
static void check_if_tm_restore_required(struct task_struct *tsk)
80 81 82 83 84 85 86 87 88 89
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
90
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
91 92 93
		set_thread_flag(TIF_RESTORE_TM);
	}
}
94 95 96 97 98

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
99
#else
100
static inline bool msr_tm_active(unsigned long msr) { return false; }
101
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
102 103
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

104 105 106 107 108 109 110 111 112 113 114 115
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

116
unsigned long msr_check_and_set(unsigned long bits)
117
{
118 119
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
120

121
	newmsr = oldmsr | bits;
122 123

#ifdef CONFIG_VSX
124
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
125 126
		newmsr |= MSR_VSX;
#endif
127

128 129
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
130 131

	return newmsr;
132
}
133

134
void __msr_check_and_clear(unsigned long bits)
135 136 137 138 139 140 141 142 143 144 145 146 147 148
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
149
EXPORT_SYMBOL(__msr_check_and_clear);
150 151

#ifdef CONFIG_PPC_FPU
152 153
void __giveup_fpu(struct task_struct *tsk)
{
154 155
	unsigned long msr;

156
	save_fpu(tsk);
157 158
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
159 160
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
161
		msr &= ~MSR_VSX;
162
#endif
163
	tsk->thread.regs->msr = msr;
164 165
}

166 167 168 169 170
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
171
	__giveup_fpu(tsk);
172
	msr_check_and_clear(MSR_FP);
173 174 175
}
EXPORT_SYMBOL(giveup_fpu);

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
196
			 * the FP register state on context switch,
197 198 199 200
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
201
			giveup_fpu(tsk);
202 203 204 205
		}
		preempt_enable();
	}
}
206
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
207 208 209

void enable_kernel_fp(void)
{
210 211
	unsigned long cpumsr;

212 213
	WARN_ON(preemptible());

214
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
215

216 217
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
218 219 220 221 222 223 224 225 226
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
227
		__giveup_fpu(current);
228
	}
229 230
}
EXPORT_SYMBOL(enable_kernel_fp);
231 232

static int restore_fp(struct task_struct *tsk) {
233
	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
234 235 236 237 238 239 240 241
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
242
#endif /* CONFIG_PPC_FPU */
243 244

#ifdef CONFIG_ALTIVEC
245 246
#define loadvec(thr) ((thr).load_vec)

247 248
static void __giveup_altivec(struct task_struct *tsk)
{
249 250
	unsigned long msr;

251
	save_altivec(tsk);
252 253
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
254 255
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
256
		msr &= ~MSR_VSX;
257
#endif
258
	tsk->thread.regs->msr = msr;
259 260
}

261 262 263 264
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

265
	msr_check_and_set(MSR_VEC);
266
	__giveup_altivec(tsk);
267
	msr_check_and_clear(MSR_VEC);
268 269 270
}
EXPORT_SYMBOL(giveup_altivec);

271 272
void enable_kernel_altivec(void)
{
273 274
	unsigned long cpumsr;

275 276
	WARN_ON(preemptible());

277
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
278

279 280
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
281 282 283 284 285 286 287 288 289
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
290
		__giveup_altivec(current);
291
	}
292 293 294 295 296 297 298 299 300 301 302 303 304
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
305
			giveup_altivec(tsk);
306 307 308 309
		}
		preempt_enable();
	}
}
310
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
311 312 313

static int restore_altivec(struct task_struct *tsk)
{
314 315
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
316 317 318 319 320 321 322 323 324 325 326
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
327 328
#endif /* CONFIG_ALTIVEC */

329
#ifdef CONFIG_VSX
330
static void __giveup_vsx(struct task_struct *tsk)
331 332 333 334 335
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
336 337 338 339 340 341 342 343
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
344
	__giveup_vsx(tsk);
345
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
346
}
347 348 349 350 351 352 353 354

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
355

356 357
void enable_kernel_vsx(void)
{
358 359
	unsigned long cpumsr;

360 361
	WARN_ON(preemptible());

362
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
363

364
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
365
		check_if_tm_restore_required(current);
366 367 368 369 370 371 372 373 374
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
375 376 377 378 379
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
380
	}
381 382 383 384 385 386 387 388 389 390 391 392 393 394
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
395
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
396 397 398 399 400 401 402 403 404 405 406 407

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
408
static inline void save_vsx(struct task_struct *tsk) { }
409 410
#endif /* CONFIG_VSX */

411
#ifdef CONFIG_SPE
412 413 414 415
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

416
	msr_check_and_set(MSR_SPE);
417
	__giveup_spe(tsk);
418
	msr_check_and_clear(MSR_SPE);
419 420
}
EXPORT_SYMBOL(giveup_spe);
421 422 423 424 425

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

426
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
427

428 429
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
430
		__giveup_spe(current);
431
	}
432 433 434 435 436 437 438 439 440
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
441
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
442
			giveup_spe(tsk);
443 444 445 446 447 448
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
486
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

509 510 511 512
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

513 514
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

554 555 556 557 558 559 560 561 562 563 564 565 566
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
567 568 569 570 571 572 573

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

574 575 576 577 578
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
579
		save_all(tsk);
580 581 582 583 584 585 586 587 588 589 590

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

591 592 593 594 595 596
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

597
	current->thread.trap_nr = signal_code;
598 599 600 601 602 603 604 605 606 607 608 609
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
610
void do_break (struct pt_regs *regs, unsigned long address,
611 612 613 614
		    unsigned long error_code)
{
	siginfo_t info;

615
	current->thread.trap_nr = TRAP_HWBKPT;
616 617 618 619
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

620
	if (debugger_break_match(regs))
621 622
		return;

623 624
	/* Clear the breakpoint */
	hw_breakpoint_disable();
625 626 627 628 629 630 631 632

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
633
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
634

635
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
636

637 638 639 640 641 642
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
643
	thread->debug.iac1 = thread->debug.iac2 = 0;
644
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
645
	thread->debug.iac3 = thread->debug.iac4 = 0;
646
#endif
647
	thread->debug.dac1 = thread->debug.dac2 = 0;
648
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
649
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
650
#endif
651
	thread->debug.dbcr0 = 0;
652 653 654 655
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
656
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
657 658 659 660 661
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
662
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
663
#else
664
	thread->debug.dbcr1 = 0;
665 666 667
#endif
}

668
static void prime_debug_regs(struct debug_reg *debug)
669
{
670 671 672 673 674 675 676
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

677 678
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
679
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
680 681
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
682
#endif
683 684
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
685
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
686 687
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
688
#endif
689 690
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
691
#ifdef CONFIG_BOOKE
692
	mtspr(SPRN_DBCR2, debug->dbcr2);
693 694 695 696 697 698 699
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
700
void switch_booke_debug_regs(struct debug_reg *new_debug)
701
{
702
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
703 704
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
705
}
706
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
707
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
708
#ifndef CONFIG_HAVE_HW_BREAKPOINT
709 710
static void set_debug_reg_defaults(struct thread_struct *thread)
{
711 712
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
713
	set_breakpoint(&thread->hw_brk);
714
}
715
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
716 717
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

718
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
719 720
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
721
	mtspr(SPRN_DAC1, dabr);
722 723 724
#ifdef CONFIG_PPC_47x
	isync();
#endif
725 726
	return 0;
}
727
#elif defined(CONFIG_PPC_BOOK3S)
728 729
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
730
	mtspr(SPRN_DABR, dabr);
731 732
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
733
	return 0;
734
}
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

777 778
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
779
	unsigned long dawr, dawrx, mrd;
780 781 782 783 784 785 786 787 788

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
789 790 791 792 793 794 795 796
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
797 798 799 800 801 802 803 804

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

805
void __set_breakpoint(struct arch_hw_breakpoint *brk)
806
{
807
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
808

809
	if (cpu_has_feature(CPU_FTR_DAWR))
810 811 812
		set_dawr(brk);
	else
		set_dabr(brk);
813
}
814

815 816 817 818 819 820 821
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

822 823 824
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
825

826 827 828 829 830 831 832 833 834 835 836
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
837

838
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
839 840 841 842 843 844

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

845 846 847
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
848 849 850 851 852 853 854 855 856 857 858 859 860
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
861
	 * benefit of checking for a potential TM bad thing exception.
862 863 864 865
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

866
	giveup_all(container_of(thr, struct task_struct, thread));
867

868
	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
869 870 871 872 873 874 875 876
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

877 878 879 880 881 882 883
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
884 885
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

903
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
904 905 906 907 908 909 910 911 912 913 914 915 916

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

917 918 919 920 921 922 923 924
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

925 926 927
	if (!(thread->regs->msr & MSR_TM))
		return;

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

945
static inline void tm_recheckpoint_new_task(struct task_struct *new)
946 947 948 949 950 951 952 953 954 955 956
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
957
	 * unavailable later, we are unable to determine which set of FP regs
958 959
	 * need to be restored.
	 */
960
	if (!tm_enabled(new))
961 962
		return;

963 964
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
965
		return;
966
	}
967
	msr = new->thread.ckpt_regs.msr;
968 969 970 971 972 973 974
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	tm_recheckpoint(&new->thread, msr);

975 976 977 978 979 980
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
981 982 983 984 985 986

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

987 988
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
989 990
{
	if (cpu_has_feature(CPU_FTR_TM)) {
991 992 993 994 995 996 997 998 999 1000
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1001
		tm_recheckpoint_new_task(new);
1002 1003
	}
}
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1023 1024 1025 1026 1027 1028
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1029 1030 1031 1032
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1033
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1034
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1035

1036 1037 1038
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1039
#ifdef CONFIG_ALTIVEC
1040 1041 1042
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1043 1044
	restore_math(regs);

1045 1046 1047
	regs->msr |= msr_diff;
}

1048 1049
#else
#define tm_recheckpoint_new_task(new)
1050
#define __switch_to_tm(prev, new)
1051
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1052

1053 1054 1055
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1056
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1092
		if (new_thread->dscr_inherit)
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1107 1108 1109
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1110 1111 1112 1113 1114 1115
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1116 1117 1118 1119 1120
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1121 1122 1123
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1124

1125 1126 1127
	new_thread = &new->thread;
	old_thread = &current->thread;

1128 1129
	WARN_ON(!irqs_disabled());

1130 1131 1132 1133 1134
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1135
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1136 1137 1138 1139 1140 1141
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1142 1143
#endif /* CONFIG_PPC64 */

1144
#ifdef CONFIG_PPC_STD_MMU_64
1145
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1146 1147 1148 1149 1150 1151
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1152
#endif /* CONFIG_PPC_STD_MMU_64 */
1153

A
Anton Blanchard 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1176 1177
	__switch_to_tm(prev, new);

1178 1179 1180 1181 1182 1183
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1184

1185 1186 1187 1188 1189 1190 1191
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1192 1193
	restore_sprs(old_thread, new_thread);

1194 1195
	last = _switch(old_thread, new_thread);

1196
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1197 1198
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1199
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1200 1201
		batch->active = 1;
	}
1202 1203 1204

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);
1205
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1206

1207 1208 1209
	return last;
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1224
			pr_cont("\n");
1225

1226 1227 1228 1229 1230 1231 1232 1233
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1234
		if (!__kernel_text_address(pc) ||
1235
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1236
			pr_cont("XXXXXXXX ");
1237 1238
		} else {
			if (regs->nip == pc)
1239
				pr_cont("<%08x> ", instr);
1240
			else
1241
				pr_cont("%08x ", instr);
1242 1243 1244 1245 1246
		}

		pc += sizeof(int);
	}

1247
	pr_cont("\n");
1248 1249
}

1250
struct regbit {
1251 1252
	unsigned long bit;
	const char *name;
1253 1254 1255
};

static struct regbit msr_bits[] = {
1256 1257 1258 1259 1260 1261 1262 1263 1264
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1265 1266 1267 1268
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1269
#ifdef CONFIG_BOOKE
1270
	{MSR_DE,	"DE"},
1271 1272 1273 1274
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1275 1276
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1277 1278 1279 1280 1281
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1282 1283 1284
	{0,		NULL}
};

1285
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1286
{
1287
	const char *s = "";
1288 1289 1290

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1291
			pr_cont("%s%s", s, bits->name);
1292
			s = sep;
1293
		}
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1314
		pr_cont(",TM[");
1315
		print_bits(val, msr_tm_bits, "");
1316
		pr_cont("]");
1317 1318 1319 1320 1321 1322 1323 1324
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1325
	pr_cont("<");
1326 1327
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1328
	pr_cont(">");
1329 1330 1331
}

#ifdef CONFIG_PPC64
1332
#define REG		"%016lx"
1333 1334 1335
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1336
#define REG		"%08lx"
1337 1338 1339 1340
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1341 1342 1343 1344
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1345 1346
	show_regs_print_info(KERN_DEFAULT);

1347 1348 1349
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1350
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1351
	printk("MSR: "REG" ", regs->msr);
1352
	print_msr_bits(regs->msr);
1353
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1354
	trap = TRAP(regs);
1355
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1356
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1357
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1358
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1359
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1360
#else
1361
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1362 1363
#endif
#ifdef CONFIG_PPC64
1364
	pr_cont("SOFTE: %ld ", regs->softe);
1365 1366
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1367
	if (MSR_TM_ACTIVE(regs->msr))
1368
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1369
#endif
1370 1371

	for (i = 0;  i < 32;  i++) {
1372
		if ((i % REGS_PER_LINE) == 0)
1373 1374
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1375
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1376 1377
			break;
	}
1378
	pr_cont("\n");
1379 1380 1381 1382 1383
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1384 1385
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1386
#endif
1387
	show_stack(current, (unsigned long *) regs->gpr[1]);
1388 1389
	if (!user_mode(regs))
		show_instructions(regs);
1390 1391 1392 1393
}

void flush_thread(void)
{
1394
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1395
	flush_ptrace_hw_breakpoint(current);
1396
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1397
	set_debug_reg_defaults(&current->thread);
1398
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1399 1400 1401 1402 1403 1404 1405 1406
}

void
release_thread(struct task_struct *t)
{
}

/*
1407 1408
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1409
 */
1410
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1411
{
1412
	flush_all_to_thread(src);
1413 1414 1415 1416 1417 1418
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1419 1420 1421
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1422
	 */
1423
	__switch_to_tm(src, src);
1424

1425
	*dst = *src;
1426 1427 1428

	clear_task_ebb(dst);

1429
	return 0;
1430 1431
}

1432 1433 1434 1435 1436 1437
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1438 1439 1440
	if (radix_enabled())
		return;

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1452 1453 1454
/*
 * Copy a thread..
 */
1455

1456 1457 1458
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1459
int copy_thread(unsigned long clone_flags, unsigned long usp,
1460
		unsigned long kthread_arg, struct task_struct *p)
1461 1462 1463
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1464 1465
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1466
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1467 1468 1469
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1470 1471 1472 1473

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1474
	if (unlikely(p->flags & PF_KTHREAD)) {
1475
		/* kernel thread */
A
Al Viro 已提交
1476
		memset(childregs, 0, sizeof(struct pt_regs));
1477
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1478 1479 1480
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1481
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1482
		clear_tsk_thread_flag(p, TIF_32BIT);
1483
		childregs->softe = 1;
1484
#endif
1485
		childregs->gpr[15] = kthread_arg;
1486
		p->thread.regs = NULL;	/* no user register state */
1487
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1488
		f = ret_from_kernel_thread;
1489
	} else {
1490
		/* user thread */
1491
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1492 1493
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1494 1495
		if (usp)
			childregs->gpr[1] = usp;
1496
		p->thread.regs = childregs;
A
Al Viro 已提交
1497
		childregs->gpr[3] = 0;  /* Result from fork() */
1498 1499
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1500
			if (!is_32bit_task())
1501 1502 1503 1504 1505
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1506 1507

		f = ret_from_fork;
1508
	}
1509
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1520
	((unsigned long *)sp)[0] = 0;
1521 1522 1523 1524
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1525
#ifdef CONFIG_PPC32
1526 1527
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1528
#endif
1529 1530 1531 1532
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1533 1534 1535 1536 1537
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1538 1539
	setup_ksp_vsid(p, sp);

1540 1541
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1542
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1543
		p->thread.dscr = mfspr(SPRN_DSCR);
1544
	}
1545 1546
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1547
#endif
1548
	kregs->nip = ppc_function_entry(f);
1549 1550 1551 1552 1553 1554
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1555
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1556
{
1557 1558 1559 1560
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1561 1562 1563 1564 1565
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1566 1567
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1568 1569
	}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1580 1581 1582 1583 1584 1585
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1586

1587 1588 1589 1590 1591 1592 1593
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1594 1595 1596
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1597
	regs->msr = MSR_USER;
1598
#else
1599
	if (!is_32bit_task()) {
1600
		unsigned long entry;
1601

1602 1603 1604
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1605

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1637 1638 1639
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1640 1641 1642 1643
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1644 1645
	}
#endif
1646 1647 1648
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1649
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1650
	current->thread.fp_save_area = NULL;
1651
#ifdef CONFIG_ALTIVEC
1652 1653
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1654
	current->thread.vr_save_area = NULL;
1655 1656 1657 1658 1659 1660 1661 1662 1663
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1664 1665 1666 1667 1668
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1669
}
1670
EXPORT_SYMBOL(start_thread);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1685
		if (cpu_has_feature(CPU_FTR_SPE)) {
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1699 1700 1701 1702 1703 1704
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1705 1706 1707 1708
#else
		return -EINVAL;
#endif
	}
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1721 1722 1723 1724 1725 1726 1727 1728 1729
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1744
			val = tsk->thread.fpexc_mode;
1745
		} else
1746
			return -EINVAL;
1747 1748 1749 1750 1751 1752 1753 1754
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1834
int validate_sp(unsigned long sp, struct task_struct *p,
1835 1836
		       unsigned long nbytes)
{
A
Al Viro 已提交
1837
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1838 1839 1840 1841 1842

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1843
	return valid_irq_stack(sp, p, nbytes);
1844 1845
}

1846 1847
EXPORT_SYMBOL(validate_sp);

1848 1849 1850 1851 1852 1853 1854 1855 1856
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1857
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1858 1859 1860 1861
		return 0;

	do {
		sp = *(unsigned long *)sp;
1862
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1863 1864
			return 0;
		if (count > 0) {
1865
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1866 1867 1868 1869 1870 1871
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1872

1873
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1874 1875 1876 1877 1878 1879

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1880 1881 1882
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1883
	unsigned long rth = (unsigned long)return_to_handler;
1884
#endif
1885 1886 1887 1888 1889 1890

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1891
			sp = current_stack_pointer();
1892 1893 1894 1895 1896 1897 1898
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1899
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1900 1901 1902 1903
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1904
		ip = stack[STACK_FRAME_LR_SAVE];
1905
		if (!firstframe || ip != lr) {
1906
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1907
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1908
			if ((ip == rth) && curr_frame >= 0) {
1909
				pr_cont(" (%pS)",
1910 1911 1912 1913
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1914
			if (firstframe)
1915 1916
				pr_cont(" (unreliable)");
			pr_cont("\n");
1917 1918 1919 1920 1921 1922 1923
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1924 1925
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1926 1927 1928
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1929
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1930
			       regs->trap, (void *)regs->nip, (void *)lr);
1931 1932 1933 1934 1935 1936 1937
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1938
#ifdef CONFIG_PPC64
1939
/* Called with hard IRQs off */
1940
void notrace __ppc64_runlatch_on(void)
1941
{
1942
	struct thread_info *ti = current_thread_info();
1943 1944
	unsigned long ctrl;

1945 1946 1947
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1948

1949
	ti->local_flags |= _TLF_RUNLATCH;
1950 1951
}

1952
/* Called with hard IRQs off */
1953
void notrace __ppc64_runlatch_off(void)
1954
{
1955
	struct thread_info *ti = current_thread_info();
1956 1957
	unsigned long ctrl;

1958
	ti->local_flags &= ~_TLF_RUNLATCH;
1959

1960 1961 1962
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1963
}
1964
#endif /* CONFIG_PPC64 */
1965

1966 1967 1968 1969 1970 1971
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1972 1973 1974 1975 1976 1977 1978

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
1979
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1980
	else
D
Daniel Cashman 已提交
1981
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1982 1983 1984 1985 1986 1987

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1988 1989 1990
	unsigned long base = mm->brk;
	unsigned long ret;

1991
#ifdef CONFIG_PPC_STD_MMU_64
1992 1993 1994 1995 1996
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
1997 1998
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1999 2000 2001 2002 2003 2004
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2005 2006 2007 2008 2009 2010

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2011