process.c 26.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
35
#include <linux/utsname.h>
36 37 38 39 40 41 42 43

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
44
#include <asm/machdep.h>
45
#include <asm/time.h>
46
#include <asm/syscalls.h>
47 48 49
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
50 51 52 53 54 55

extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
56
struct task_struct *last_task_used_vsx = NULL;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
struct task_struct *last_task_used_spe = NULL;
#endif

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
87
			giveup_fpu(tsk);
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
		}
		preempt_enable();
	}
}

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
		giveup_fpu(current);
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
	giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
		giveup_altivec(current);
	else
		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
#else
	giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
136
			giveup_altivec(tsk);
137 138 139 140 141 142
		}
		preempt_enable();
	}
}
#endif /* CONFIG_ALTIVEC */

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
#ifdef CONFIG_VSX
#if 0
/* not currently used, but some crazy RAID module might want to later */
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
#else
	giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);
#endif

162 163 164 165 166 167 168
void giveup_vsx(struct task_struct *tsk)
{
	giveup_fpu(tsk);
	giveup_altivec(tsk);
	__giveup_vsx(tsk);
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
#endif /* CONFIG_VSX */

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
209
			giveup_spe(tsk);
210 211 212 213 214 215
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

216
#ifndef CONFIG_SMP
217 218 219 220
/*
 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 * and the current task has some state, discard it.
 */
221
void discard_lazy_cpu_state(void)
222 223 224 225 226 227 228 229
{
	preempt_disable();
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
230 231 232 233
#ifdef CONFIG_VSX
	if (last_task_used_vsx == current)
		last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
234 235 236 237 238 239
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
	preempt_enable();
}
240
#endif /* CONFIG_SMP */
241

242 243
static DEFINE_PER_CPU(unsigned long, current_dabr);

244 245
int set_dabr(unsigned long dabr)
{
246 247
	__get_cpu_var(current_dabr) = dabr;

248
#ifdef CONFIG_PPC_MERGE		/* XXX for now */
249 250
	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr);
251
#endif
252

253 254
	/* XXX should we have a CPU_FTR_HAS_DABR ? */
#if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
255
	mtspr(SPRN_DABR, dabr);
256
#endif
257
	return 0;
258 259
}

260 261 262
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	unsigned long flags;
	struct task_struct *last;

#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
298 299
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
300 301
		/* VMX and FPU registers are already save here */
		__giveup_vsx(prev);
302
#endif /* CONFIG_VSX */
303 304 305 306 307 308 309 310 311 312
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
313 314 315 316 317 318 319 320 321 322
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
323 324 325 326
#ifdef CONFIG_VSX
	if (new->thread.regs && last_task_used_vsx == new)
		new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
327
#ifdef CONFIG_SPE
328 329 330 331 332 333
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
334

335 336
#endif /* CONFIG_SMP */

337
	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
338 339 340 341
		set_dabr(new->thread.dabr);

	new_thread = &new->thread;
	old_thread = &current->thread;
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
#endif

357
	local_irq_save(flags);
358 359

	account_system_vtime(current);
360
	account_process_vtime(current);
361 362
	calculate_steal_time();

363 364 365 366 367 368
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
369 370 371 372 373 374 375
	last = _switch(old_thread, new_thread);

	local_irq_restore(flags);

	return last;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

392 393 394 395 396 397 398 399
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

400 401 402 403
		/* We use __get_user here *only* to avoid an OOPS on a
		 * bad address because the pc *should* only be a
		 * kernel address.
		 */
404 405
		if (!__kernel_text_address(pc) ||
		     __get_user(instr, (unsigned int __user *)pc)) {
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
			printk("XXXXXXXX ");
		} else {
			if (regs->nip == pc)
				printk("<%08x> ", instr);
			else
				printk("%08x ", instr);
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
427 428
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	{MSR_ME,	"ME"},
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
449
#define REG		"%016lx"
450 451 452
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
453
#define REG		"%08lx"
454 455 456 457
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

458 459 460 461
void show_regs(struct pt_regs * regs)
{
	int i, trap;

462 463 464
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
465
	       regs, regs->trap, print_tainted(), init_utsname()->release);
466 467
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
468
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
469 470
	trap = TRAP(regs);
	if (trap == 0x300 || trap == 0x600)
471 472 473
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
#else
474
		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
475
#endif
476
	printk("TASK = %p[%d] '%s' THREAD: %p",
477
	       current, task_pid_nr(current), current->comm, task_thread_info(current));
478 479

#ifdef CONFIG_SMP
480
	printk(" CPU: %d", raw_smp_processor_id());
481 482 483
#endif /* CONFIG_SMP */

	for (i = 0;  i < 32;  i++) {
484
		if ((i % REGS_PER_LINE) == 0)
485
			printk("\n" KERN_INFO "GPR%02d: ", i);
486 487
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
488 489 490 491 492 493 494 495
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
496 497
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
498 499
#endif
	show_stack(current, (unsigned long *) regs->gpr[1]);
500 501
	if (!user_mode(regs))
		show_instructions(regs);
502 503 504 505
}

void exit_thread(void)
{
506
	discard_lazy_cpu_state();
507 508 509 510
}

void flush_thread(void)
{
511 512 513
#ifdef CONFIG_PPC64
	struct thread_info *t = current_thread_info();

514 515 516 517 518 519 520
	if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
		clear_ti_thread_flag(t, TIF_ABI_PENDING);
		if (test_ti_thread_flag(t, TIF_32BIT))
			clear_ti_thread_flag(t, TIF_32BIT);
		else
			set_ti_thread_flag(t, TIF_32BIT);
	}
521 522
#endif

523
	discard_lazy_cpu_state();
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

	if (current->thread.dabr) {
		current->thread.dabr = 0;
		set_dabr(0);
	}
}

void
release_thread(struct task_struct *t)
{
}

/*
 * This gets called before we allocate a new thread and copy
 * the current task into it.
 */
void prepare_to_copy(struct task_struct *tsk)
{
	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
544
	flush_vsx_to_thread(current);
545 546 547 548 549 550
	flush_spe_to_thread(current);
}

/*
 * Copy a thread..
 */
551 552 553
int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
		unsigned long unused, struct task_struct *p,
		struct pt_regs *regs)
554 555 556
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
557
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
558 559 560 561 562 563 564 565 566

	CHECK_FULL_REGS(regs);
	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
	*childregs = *regs;
	if ((childregs->msr & MSR_PR) == 0) {
		/* for kernel thread, set `current' and stackptr in new task */
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
567
#ifdef CONFIG_PPC32
568
		childregs->gpr[2] = (unsigned long) p;
569
#else
A
Al Viro 已提交
570
		clear_tsk_thread_flag(p, TIF_32BIT);
571
#endif
572 573 574 575
		p->thread.regs = NULL;	/* no user register state */
	} else {
		childregs->gpr[1] = usp;
		p->thread.regs = childregs;
576 577 578 579 580 581 582 583
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
			if (!test_thread_flag(TIF_32BIT))
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	}
	childregs->gpr[3] = 0;  /* Result from fork() */
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
600 601
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
602

603 604
#ifdef CONFIG_PPC64
	if (cpu_has_feature(CPU_FTR_SLB)) {
P
Paul Mackerras 已提交
605
		unsigned long sp_vsid;
606
		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
607

P
Paul Mackerras 已提交
608 609 610 611 612 613
		if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
				<< SLB_VSID_SHIFT_1T;
		else
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
				<< SLB_VSID_SHIFT;
614
		sp_vsid |= SLB_VSID_KERNEL | llp;
615 616 617 618 619 620 621 622 623 624 625 626 627
		p->thread.ksp_vsid = sp_vsid;
	}

	/*
	 * The PPC64 ABI makes use of a TOC to contain function 
	 * pointers.  The function (ret_from_except) is actually a pointer
	 * to the TOC entry.  The first entry is a pointer to the actual
	 * function.
 	 */
	kregs->nip = *((unsigned long *)ret_from_fork);
#else
	kregs->nip = (unsigned long)ret_from_fork;
#endif
628 629 630 631 632 633 634

	return 0;
}

/*
 * Set up a thread for executing a new program
 */
635
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
636
{
637 638 639 640
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

641
	set_fs(USER_DS);
642 643 644 645 646 647

	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
648 649
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
650 651
	}

652 653 654 655 656 657
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
658

659 660 661 662 663 664 665
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

666 667 668
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
669
	regs->msr = MSR_USER;
670
#else
S
Stephen Rothwell 已提交
671
	if (!test_thread_flag(TIF_32BIT)) {
672
		unsigned long entry, toc;
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

		/* start is a relocated pointer to the function descriptor for
		 * the elf _start routine.  The first entry in the function
		 * descriptor is the entry address of _start and the second
		 * entry is the TOC value we need to use.
		 */
		__get_user(entry, (unsigned long __user *)start);
		__get_user(toc, (unsigned long __user *)start+1);

		/* Check whether the e_entry function descriptor entries
		 * need to be relocated before we can use them.
		 */
		if (load_addr != 0) {
			entry += load_addr;
			toc   += load_addr;
		}
		regs->nip = entry;
		regs->gpr[2] = toc;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
692 693 694 695
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
696 697 698
	}
#endif

699
	discard_lazy_cpu_state();
700 701 702
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
703
	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
704
	current->thread.fpscr.val = 0;
705 706 707
#ifdef CONFIG_ALTIVEC
	memset(current->thread.vr, 0, sizeof(current->thread.vr));
	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
708
	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
}

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
733 734 735 736 737 738 739
		if (cpu_has_feature(CPU_FTR_SPE)) {
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
740 741 742 743
#else
		return -EINVAL;
#endif
	}
744 745 746 747 748 749 750 751 752 753 754 755

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
756 757 758 759 760 761 762 763 764
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
765 766 767 768
		if (cpu_has_feature(CPU_FTR_SPE))
			val = tsk->thread.fpexc_mode;
		else
			return -EINVAL;
769 770 771 772 773 774 775 776
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

821 822 823 824 825 826 827 828 829 830 831
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

832 833
#define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))

834 835 836 837 838 839 840 841
int sys_clone(unsigned long clone_flags, unsigned long usp,
	      int __user *parent_tidp, void __user *child_threadptr,
	      int __user *child_tidp, int p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	if (usp == 0)
		usp = regs->gpr[1];	/* stack pointer for child */
842 843 844 845 846 847
#ifdef CONFIG_PPC64
	if (test_thread_flag(TIF_32BIT)) {
		parent_tidp = TRUNC_PTR(parent_tidp);
		child_tidp = TRUNC_PTR(child_tidp);
	}
#endif
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
 	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
}

int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
	     unsigned long p4, unsigned long p5, unsigned long p6,
	     struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
}

int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
	      unsigned long p4, unsigned long p5, unsigned long p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
			regs, 0, NULL, NULL);
}

int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
	       unsigned long a3, unsigned long a4, unsigned long a5,
	       struct pt_regs *regs)
{
	int error;
873
	char *filename;
874 875 876 877 878 879 880 881

	filename = getname((char __user *) a0);
	error = PTR_ERR(filename);
	if (IS_ERR(filename))
		goto out;
	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_spe_to_thread(current);
882 883
	error = do_execve(filename, (char __user * __user *) a1,
			  (char __user * __user *) a2, regs);
884 885 886 887 888
	putname(filename);
out:
	return error;
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
#ifdef CONFIG_IRQSTACKS
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

#else
#define valid_irq_stack(sp, p, nb)	0
#endif /* CONFIG_IRQSTACKS */

918
int validate_sp(unsigned long sp, struct task_struct *p,
919 920
		       unsigned long nbytes)
{
A
Al Viro 已提交
921
	unsigned long stack_page = (unsigned long)task_stack_page(p);
922 923 924 925 926

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

927
	return valid_irq_stack(sp, p, nbytes);
928 929
}

930 931
EXPORT_SYMBOL(validate_sp);

932 933 934 935 936 937 938 939 940
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
941
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
942 943 944 945
		return 0;

	do {
		sp = *(unsigned long *)sp;
946
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
947 948
			return 0;
		if (count > 0) {
949
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
950 951 952 953 954 955
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

static int kstack_depth_to_print = 64;

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
			asm("mr %0,1" : "=r" (sp));
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
978
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
979 980 981 982
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
983
		ip = stack[STACK_FRAME_LR_SAVE];
984
		if (!firstframe || ip != lr) {
985
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
986 987 988 989 990 991 992 993 994 995
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
996 997
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
998 999 1000
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1001 1002
			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
			       regs->trap, (void *)regs->nip, (void *)lr);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

void dump_stack(void)
{
	show_stack(current, NULL);
}
EXPORT_SYMBOL(dump_stack);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

#ifdef CONFIG_PPC64
void ppc64_runlatch_on(void)
{
	unsigned long ctrl;

	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
		HMT_medium();

		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);

		set_thread_flag(TIF_RUNLATCH);
	}
}

void ppc64_runlatch_off(void)
{
	unsigned long ctrl;

	if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
		HMT_medium();

		clear_thread_flag(TIF_RUNLATCH);

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
}
#endif
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

#if THREAD_SHIFT < PAGE_SHIFT

static struct kmem_cache *thread_info_cache;

struct thread_info *alloc_thread_info(struct task_struct *tsk)
{
	struct thread_info *ti;

	ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
	if (unlikely(ti == NULL))
		return NULL;
#ifdef CONFIG_DEBUG_STACK_USAGE
	memset(ti, 0, THREAD_SIZE);
#endif
	return ti;
}

void free_thread_info(struct thread_info *ti)
{
	kmem_cache_free(thread_info_cache, ti);
}

void thread_info_cache_init(void)
{
	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
					      THREAD_SIZE, 0, NULL);
	BUG_ON(thread_info_cache == NULL);
}

#endif /* THREAD_SHIFT < PAGE_SHIFT */