process.c 31.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
31
#include <linux/export.h>
32 33 34
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
35
#include <linux/utsname.h>
36
#include <linux/ftrace.h>
37
#include <linux/kernel_stat.h>
38 39
#include <linux/personality.h>
#include <linux/random.h>
40
#include <linux/hw_breakpoint.h>
41 42 43 44 45 46 47

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
48
#include <asm/machdep.h>
49
#include <asm/time.h>
50
#include <asm/runlatch.h>
51
#include <asm/syscalls.h>
52 53
#include <asm/switch_to.h>
#include <asm/debug.h>
54 55 56
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
57 58
#include <linux/kprobes.h>
#include <linux/kdebug.h>
59 60 61 62 63 64

extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
65
struct task_struct *last_task_used_vsx = NULL;
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
struct task_struct *last_task_used_spe = NULL;
#endif

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
96
			giveup_fpu(tsk);
97 98 99 100
		}
		preempt_enable();
	}
}
101
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
		giveup_fpu(current);
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
	giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
		giveup_altivec(current);
	else
127
		giveup_altivec_notask();
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#else
	giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
146
			giveup_altivec(tsk);
147 148 149 150
		}
		preempt_enable();
	}
}
151
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
152 153
#endif /* CONFIG_ALTIVEC */

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#ifdef CONFIG_VSX
#if 0
/* not currently used, but some crazy RAID module might want to later */
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
#else
	giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);
#endif

173 174 175 176 177 178 179
void giveup_vsx(struct task_struct *tsk)
{
	giveup_fpu(tsk);
	giveup_altivec(tsk);
	__giveup_vsx(tsk);
}

180 181 182 183 184 185 186 187 188 189 190 191 192
void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
193
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
194 195
#endif /* CONFIG_VSX */

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
221
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
222
			giveup_spe(tsk);
223 224 225 226 227 228
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

229
#ifndef CONFIG_SMP
230 231 232 233
/*
 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 * and the current task has some state, discard it.
 */
234
void discard_lazy_cpu_state(void)
235 236 237 238 239 240 241 242
{
	preempt_disable();
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
243 244 245 246
#ifdef CONFIG_VSX
	if (last_task_used_vsx == current)
		last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
247 248 249 250 251 252
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
	preempt_enable();
}
253
#endif /* CONFIG_SMP */
254

255 256 257 258 259 260
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

261
	current->thread.trap_nr = signal_code;
262 263 264 265 266 267 268 269 270 271 272 273
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
274
void do_break (struct pt_regs *regs, unsigned long address,
275 276 277 278
		    unsigned long error_code)
{
	siginfo_t info;

279
	current->thread.trap_nr = TRAP_HWBKPT;
280 281 282 283
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

284
	if (debugger_break_match(regs))
285 286
		return;

287 288
	/* Clear the breakpoint */
	hw_breakpoint_disable();
289 290 291 292 293 294 295 296

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
297
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
298

299
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
	thread->iac1 = thread->iac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	thread->iac3 = thread->iac4 = 0;
#endif
	thread->dac1 = thread->dac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	thread->dvc1 = thread->dvc2 = 0;
#endif
	thread->dbcr0 = 0;
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#else
	thread->dbcr1 = 0;
#endif
}

static void prime_debug_regs(struct thread_struct *thread)
{
	mtspr(SPRN_IAC1, thread->iac1);
	mtspr(SPRN_IAC2, thread->iac2);
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	mtspr(SPRN_IAC3, thread->iac3);
	mtspr(SPRN_IAC4, thread->iac4);
#endif
	mtspr(SPRN_DAC1, thread->dac1);
	mtspr(SPRN_DAC2, thread->dac2);
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	mtspr(SPRN_DVC1, thread->dvc1);
	mtspr(SPRN_DVC2, thread->dvc2);
#endif
	mtspr(SPRN_DBCR0, thread->dbcr0);
	mtspr(SPRN_DBCR1, thread->dbcr1);
#ifdef CONFIG_BOOKE
	mtspr(SPRN_DBCR2, thread->dbcr2);
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
static void switch_booke_debug_regs(struct thread_struct *new_thread)
{
	if ((current->thread.dbcr0 & DBCR0_IDM)
		|| (new_thread->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_thread);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
364
#ifndef CONFIG_HAVE_HW_BREAKPOINT
365 366
static void set_debug_reg_defaults(struct thread_struct *thread)
{
367 368 369
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
	set_break(&thread->hw_brk);
370
}
371
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
372 373
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

374
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
375 376
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
377
	mtspr(SPRN_DAC1, dabr);
378 379 380
#ifdef CONFIG_PPC_47x
	isync();
#endif
381 382
	return 0;
}
383
#elif defined(CONFIG_PPC_BOOK3S)
384 385
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
386
	mtspr(SPRN_DABR, dabr);
387
	mtspr(SPRN_DABRX, dabrx);
388
	return 0;
389
}
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

int set_break(struct arch_hw_breakpoint *brk)
{
	__get_cpu_var(current_brk) = *brk;

	return set_dabr(brk);
}
416

417 418 419
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
420

421 422 423 424 425 426 427 428 429 430 431 432
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}

433 434 435 436 437 438
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	unsigned long flags;
	struct task_struct *last;
P
Peter Zijlstra 已提交
439 440 441
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
470 471
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
472 473
		/* VMX and FPU registers are already save here */
		__giveup_vsx(prev);
474
#endif /* CONFIG_VSX */
475 476 477 478 479 480 481 482 483 484
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
485 486 487 488 489 490 491 492 493 494
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
495 496 497 498
#ifdef CONFIG_VSX
	if (new->thread.regs && last_task_used_vsx == new)
		new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
499
#ifdef CONFIG_SPE
500 501 502 503 504 505
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
506

507 508
#endif /* CONFIG_SMP */

509
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
510
	switch_booke_debug_regs(&new->thread);
511
#else
512 513 514 515 516
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
517 518
	if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
		set_break(&new->thread.hw_brk);
519
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
520 521
#endif

522

523 524
	new_thread = &new->thread;
	old_thread = &current->thread;
525 526 527 528 529 530 531 532 533 534 535 536 537

#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
538 539 540 541 542 543 544 545 546 547 548
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
	batch = &__get_cpu_var(ppc64_tlb_batch);
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
549

550
	local_irq_save(flags);
551

552 553 554 555 556 557
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
558 559
	last = _switch(old_thread, new_thread);

P
Peter Zijlstra 已提交
560 561 562 563 564 565 566 567
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
		batch = &__get_cpu_var(ppc64_tlb_batch);
		batch->active = 1;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */

568 569 570 571 572
	local_irq_restore(flags);

	return last;
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

589 590 591 592 593 594 595 596
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

597 598 599 600
		/* We use __get_user here *only* to avoid an OOPS on a
		 * bad address because the pc *should* only be a
		 * kernel address.
		 */
601 602
		if (!__kernel_text_address(pc) ||
		     __get_user(instr, (unsigned int __user *)pc)) {
603
			printk(KERN_CONT "XXXXXXXX ");
604 605
		} else {
			if (regs->nip == pc)
606
				printk(KERN_CONT "<%08x> ", instr);
607
			else
608
				printk(KERN_CONT "%08x ", instr);
609 610 611 612 613 614 615 616 617 618 619 620
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
621 622 623 624 625 626 627 628 629
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
630 631 632 633
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
634
#ifdef CONFIG_BOOKE
635
	{MSR_DE,	"DE"},
636 637 638 639
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
640 641
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
642 643 644 645 646
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
664
#define REG		"%016lx"
665 666 667
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
668
#define REG		"%08lx"
669 670 671 672
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

673 674 675 676
void show_regs(struct pt_regs * regs)
{
	int i, trap;

677 678 679
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
680
	       regs, regs->trap, print_tainted(), init_utsname()->release);
681 682
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
683
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
684 685 686
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld\n", regs->softe);
#endif
687
	trap = TRAP(regs);
688 689
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
		printk("CFAR: "REG"\n", regs->orig_gpr3);
690
	if (trap == 0x300 || trap == 0x600)
691
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
692 693
		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
#else
694
		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
695
#endif
696
	printk("TASK = %p[%d] '%s' THREAD: %p",
697
	       current, task_pid_nr(current), current->comm, task_thread_info(current));
698 699

#ifdef CONFIG_SMP
700
	printk(" CPU: %d", raw_smp_processor_id());
701 702 703
#endif /* CONFIG_SMP */

	for (i = 0;  i < 32;  i++) {
704
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
705
			printk("\nGPR%02d: ", i);
706 707
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
708 709 710 711 712 713 714 715
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
716 717
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
718 719
#endif
	show_stack(current, (unsigned long *) regs->gpr[1]);
720 721
	if (!user_mode(regs))
		show_instructions(regs);
722 723 724 725
}

void exit_thread(void)
{
726
	discard_lazy_cpu_state();
727 728 729 730
}

void flush_thread(void)
{
731
	discard_lazy_cpu_state();
732

733
#ifdef CONFIG_HAVE_HW_BREAKPOINT
734
	flush_ptrace_hw_breakpoint(current);
735
#else /* CONFIG_HAVE_HW_BREAKPOINT */
736
	set_debug_reg_defaults(&current->thread);
737
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
738 739 740 741 742 743 744 745
}

void
release_thread(struct task_struct *t)
{
}

/*
746 747
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
748
 */
749
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
750
{
751 752 753 754
	flush_fp_to_thread(src);
	flush_altivec_to_thread(src);
	flush_vsx_to_thread(src);
	flush_spe_to_thread(src);
755
#ifdef CONFIG_HAVE_HW_BREAKPOINT
756
	flush_ptrace_hw_breakpoint(src);
757
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
758 759 760

	*dst = *src;
	return 0;
761 762 763 764 765
}

/*
 * Copy a thread..
 */
766 767
extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */

A
Alexey Dobriyan 已提交
768
int copy_thread(unsigned long clone_flags, unsigned long usp,
769
		unsigned long arg, struct task_struct *p)
770 771 772
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
773 774
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
775
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
776 777 778 779

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
780
	if (unlikely(p->flags & PF_KTHREAD)) {
781
		struct thread_info *ti = (void *)task_stack_page(p);
A
Al Viro 已提交
782
		memset(childregs, 0, sizeof(struct pt_regs));
783
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
784
		childregs->gpr[14] = usp;	/* function */
A
Al Viro 已提交
785
#ifdef CONFIG_PPC64
A
Al Viro 已提交
786
		clear_tsk_thread_flag(p, TIF_32BIT);
787
		childregs->softe = 1;
788
#endif
A
Al Viro 已提交
789
		childregs->gpr[15] = arg;
790
		p->thread.regs = NULL;	/* no user register state */
791
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
792
		f = ret_from_kernel_thread;
793
	} else {
794
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
795 796
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
797 798
		if (usp)
			childregs->gpr[1] = usp;
799
		p->thread.regs = childregs;
A
Al Viro 已提交
800
		childregs->gpr[3] = 0;  /* Result from fork() */
801 802
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
803
			if (!is_32bit_task())
804 805 806 807 808
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
809 810

		f = ret_from_fork;
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	}
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
826 827
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
828

829
#ifdef CONFIG_PPC_STD_MMU_64
830
	if (mmu_has_feature(MMU_FTR_SLB)) {
P
Paul Mackerras 已提交
831
		unsigned long sp_vsid;
832
		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
833

834
		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
P
Paul Mackerras 已提交
835 836 837 838 839
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
				<< SLB_VSID_SHIFT_1T;
		else
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
				<< SLB_VSID_SHIFT;
840
		sp_vsid |= SLB_VSID_KERNEL | llp;
841 842
		p->thread.ksp_vsid = sp_vsid;
	}
843
#endif /* CONFIG_PPC_STD_MMU_64 */
844 845
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
846 847
		p->thread.dscr_inherit = current->thread.dscr_inherit;
		p->thread.dscr = current->thread.dscr;
848
	}
849 850
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
851
#endif
852 853 854 855 856
	/*
	 * The PPC64 ABI makes use of a TOC to contain function 
	 * pointers.  The function (ret_from_except) is actually a pointer
	 * to the TOC entry.  The first entry is a pointer to the actual
	 * function.
A
Al Viro 已提交
857
	 */
858
#ifdef CONFIG_PPC64
A
Al Viro 已提交
859
	kregs->nip = *((unsigned long *)f);
860
#else
A
Al Viro 已提交
861
	kregs->nip = (unsigned long)f;
862
#endif
863 864 865 866 867 868
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
869
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
870
{
871 872 873 874
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

875 876 877 878 879
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
880 881
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
882 883
	}

884 885 886 887 888 889
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
890

891 892 893 894 895 896 897
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

898 899 900
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
901
	regs->msr = MSR_USER;
902
#else
903
	if (!is_32bit_task()) {
904
		unsigned long entry, toc;
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

		/* start is a relocated pointer to the function descriptor for
		 * the elf _start routine.  The first entry in the function
		 * descriptor is the entry address of _start and the second
		 * entry is the TOC value we need to use.
		 */
		__get_user(entry, (unsigned long __user *)start);
		__get_user(toc, (unsigned long __user *)start+1);

		/* Check whether the e_entry function descriptor entries
		 * need to be relocated before we can use them.
		 */
		if (load_addr != 0) {
			entry += load_addr;
			toc   += load_addr;
		}
		regs->nip = entry;
		regs->gpr[2] = toc;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
924 925 926 927
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
928 929 930
	}
#endif

931
	discard_lazy_cpu_state();
932 933 934
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
935
	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
936
	current->thread.fpscr.val = 0;
937 938 939
#ifdef CONFIG_ALTIVEC
	memset(current->thread.vr, 0, sizeof(current->thread.vr));
	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
940
	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
}

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
965 966 967 968 969 970 971
		if (cpu_has_feature(CPU_FTR_SPE)) {
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
972 973 974 975
#else
		return -EINVAL;
#endif
	}
976 977 978 979 980 981 982 983 984 985 986 987

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
988 989 990 991 992 993 994 995 996
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
997 998 999 1000
		if (cpu_has_feature(CPU_FTR_SPE))
			val = tsk->thread.fpexc_mode;
		else
			return -EINVAL;
1001 1002 1003 1004 1005 1006 1007 1008
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1088
int validate_sp(unsigned long sp, struct task_struct *p,
1089 1090
		       unsigned long nbytes)
{
A
Al Viro 已提交
1091
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1092 1093 1094 1095 1096

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1097
	return valid_irq_stack(sp, p, nbytes);
1098 1099
}

1100 1101
EXPORT_SYMBOL(validate_sp);

1102 1103 1104 1105 1106 1107 1108 1109 1110
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1111
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1112 1113 1114 1115
		return 0;

	do {
		sp = *(unsigned long *)sp;
1116
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1117 1118
			return 0;
		if (count > 0) {
1119
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1120 1121 1122 1123 1124 1125
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1126

1127
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1128 1129 1130 1131 1132 1133

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1134 1135 1136
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1137 1138
	unsigned long rth = (unsigned long)return_to_handler;
	unsigned long mrth = -1;
1139
#ifdef CONFIG_PPC64
1140 1141 1142 1143
	extern void mod_return_to_handler(void);
	rth = *(unsigned long *)rth;
	mrth = (unsigned long)mod_return_to_handler;
	mrth = *(unsigned long *)mrth;
1144 1145
#endif
#endif
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
			asm("mr %0,1" : "=r" (sp));
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1160
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1161 1162 1163 1164
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1165
		ip = stack[STACK_FRAME_LR_SAVE];
1166
		if (!firstframe || ip != lr) {
1167
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1168
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1169
			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1170 1171 1172 1173 1174
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1185 1186
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1187 1188 1189
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1190 1191
			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
			       regs->trap, (void *)regs->nip, (void *)lr);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

void dump_stack(void)
{
	show_stack(current, NULL);
}
EXPORT_SYMBOL(dump_stack);
1204 1205

#ifdef CONFIG_PPC64
1206 1207
/* Called with hard IRQs off */
void __ppc64_runlatch_on(void)
1208
{
1209
	struct thread_info *ti = current_thread_info();
1210 1211
	unsigned long ctrl;

1212 1213 1214
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1215

1216
	ti->local_flags |= _TLF_RUNLATCH;
1217 1218
}

1219
/* Called with hard IRQs off */
1220
void __ppc64_runlatch_off(void)
1221
{
1222
	struct thread_info *ti = current_thread_info();
1223 1224
	unsigned long ctrl;

1225
	ti->local_flags &= ~_TLF_RUNLATCH;
1226

1227 1228 1229
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1230
}
1231
#endif /* CONFIG_PPC64 */
1232

1233 1234 1235 1236 1237 1238
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1255 1256 1257
	unsigned long base = mm->brk;
	unsigned long ret;

1258
#ifdef CONFIG_PPC_STD_MMU_64
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1271 1272 1273 1274 1275 1276

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

unsigned long randomize_et_dyn(unsigned long base)
{
	unsigned long ret = PAGE_ALIGN(base + brk_rnd());

	if (ret < base)
		return base;

	return ret;
}