process.c 49.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41
#include <linux/elf-randomize.h>
42 43 44 45 46 47

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
48
#include <asm/machdep.h>
49
#include <asm/time.h>
50
#include <asm/runlatch.h>
51
#include <asm/syscalls.h>
52
#include <asm/switch_to.h>
53
#include <asm/tm.h>
54
#include <asm/debug.h>
55 56 57
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
58
#include <asm/code-patching.h>
59
#include <asm/exec.h>
60
#include <asm/livepatch.h>
61
#include <asm/cpu_has_feature.h>
62
#include <asm/asm-prototypes.h>
63

64 65
#include <linux/kprobes.h>
#include <linux/kdebug.h>
66

67 68 69 70 71 72 73
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

74 75
extern unsigned long _get_SP(void);

76
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77
static void check_if_tm_restore_required(struct task_struct *tsk)
78 79 80 81 82 83 84 85 86 87
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
88
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
89 90 91
		set_thread_flag(TIF_RESTORE_TM);
	}
}
92 93 94 95 96

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
97
#else
98
static inline bool msr_tm_active(unsigned long msr) { return false; }
99
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
100 101
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

102 103 104 105 106 107 108 109 110 111 112 113 114
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

void msr_check_and_set(unsigned long bits)
115
{
116 117
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
118

119
	newmsr = oldmsr | bits;
120 121

#ifdef CONFIG_VSX
122
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
123 124
		newmsr |= MSR_VSX;
#endif
125

126 127
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
128
}
129

130
void __msr_check_and_clear(unsigned long bits)
131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
145
EXPORT_SYMBOL(__msr_check_and_clear);
146 147

#ifdef CONFIG_PPC_FPU
148 149
void __giveup_fpu(struct task_struct *tsk)
{
150 151
	unsigned long msr;

152
	save_fpu(tsk);
153 154
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
155 156
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
157
		msr &= ~MSR_VSX;
158
#endif
159
	tsk->thread.regs->msr = msr;
160 161
}

162 163 164 165 166
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
167
	__giveup_fpu(tsk);
168
	msr_check_and_clear(MSR_FP);
169 170 171
}
EXPORT_SYMBOL(giveup_fpu);

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
192
			 * the FP register state on context switch,
193 194 195 196
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
197
			giveup_fpu(tsk);
198 199 200 201
		}
		preempt_enable();
	}
}
202
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
203 204 205 206 207

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

208
	msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
209

210 211
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
212
		__giveup_fpu(current);
213
	}
214 215
}
EXPORT_SYMBOL(enable_kernel_fp);
216 217

static int restore_fp(struct task_struct *tsk) {
218
	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
219 220 221 222 223 224 225 226
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
227
#endif /* CONFIG_PPC_FPU */
228 229

#ifdef CONFIG_ALTIVEC
230 231
#define loadvec(thr) ((thr).load_vec)

232 233
static void __giveup_altivec(struct task_struct *tsk)
{
234 235
	unsigned long msr;

236
	save_altivec(tsk);
237 238
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
239 240
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
241
		msr &= ~MSR_VSX;
242
#endif
243
	tsk->thread.regs->msr = msr;
244 245
}

246 247 248 249
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

250
	msr_check_and_set(MSR_VEC);
251
	__giveup_altivec(tsk);
252
	msr_check_and_clear(MSR_VEC);
253 254 255
}
EXPORT_SYMBOL(giveup_altivec);

256 257 258 259
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

260
	msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
261

262 263
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
264
		__giveup_altivec(current);
265
	}
266 267 268 269 270 271 272 273 274 275 276 277 278
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
279
			giveup_altivec(tsk);
280 281 282 283
		}
		preempt_enable();
	}
}
284
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
285 286 287

static int restore_altivec(struct task_struct *tsk)
{
288 289
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
290 291 292 293 294 295 296 297 298 299 300
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
301 302
#endif /* CONFIG_ALTIVEC */

303
#ifdef CONFIG_VSX
304
static void __giveup_vsx(struct task_struct *tsk)
305 306 307 308 309
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
310 311 312 313 314 315 316 317
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
318
	__giveup_vsx(tsk);
319
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
320
}
321 322 323 324 325 326 327 328

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
329

330 331 332 333
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

334
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
335

336
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
337
		check_if_tm_restore_required(current);
338 339 340 341 342
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
343
	}
344 345 346 347 348 349 350 351 352 353 354 355 356 357
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
358
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
359 360 361 362 363 364 365 366 367 368 369 370

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
371
static inline void save_vsx(struct task_struct *tsk) { }
372 373
#endif /* CONFIG_VSX */

374
#ifdef CONFIG_SPE
375 376 377 378
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

379
	msr_check_and_set(MSR_SPE);
380
	__giveup_spe(tsk);
381
	msr_check_and_clear(MSR_SPE);
382 383
}
EXPORT_SYMBOL(giveup_spe);
384 385 386 387 388

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

389
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
390

391 392
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
393
		__giveup_spe(current);
394
	}
395 396 397 398 399 400 401 402 403
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
404
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
405
			giveup_spe(tsk);
406 407 408 409 410 411
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
449
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

472 473 474 475
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

476 477
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

517 518 519 520 521 522 523 524 525 526 527 528 529
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
530 531 532 533 534 535 536

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

537 538 539 540 541
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
542
		save_all(tsk);
543 544 545 546 547 548 549 550 551 552 553

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

554 555 556 557 558 559
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

560
	current->thread.trap_nr = signal_code;
561 562 563 564 565 566 567 568 569 570 571 572
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
573
void do_break (struct pt_regs *regs, unsigned long address,
574 575 576 577
		    unsigned long error_code)
{
	siginfo_t info;

578
	current->thread.trap_nr = TRAP_HWBKPT;
579 580 581 582
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

583
	if (debugger_break_match(regs))
584 585
		return;

586 587
	/* Clear the breakpoint */
	hw_breakpoint_disable();
588 589 590 591 592 593 594 595

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
596
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
597

598
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
599

600 601 602 603 604 605
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
606
	thread->debug.iac1 = thread->debug.iac2 = 0;
607
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
608
	thread->debug.iac3 = thread->debug.iac4 = 0;
609
#endif
610
	thread->debug.dac1 = thread->debug.dac2 = 0;
611
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
612
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
613
#endif
614
	thread->debug.dbcr0 = 0;
615 616 617 618
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
619
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
620 621 622 623 624
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
625
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
626
#else
627
	thread->debug.dbcr1 = 0;
628 629 630
#endif
}

631
static void prime_debug_regs(struct debug_reg *debug)
632
{
633 634 635 636 637 638 639
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

640 641
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
642
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
643 644
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
645
#endif
646 647
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
648
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
649 650
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
651
#endif
652 653
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
654
#ifdef CONFIG_BOOKE
655
	mtspr(SPRN_DBCR2, debug->dbcr2);
656 657 658 659 660 661 662
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
663
void switch_booke_debug_regs(struct debug_reg *new_debug)
664
{
665
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
666 667
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
668
}
669
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
670
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
671
#ifndef CONFIG_HAVE_HW_BREAKPOINT
672 673
static void set_debug_reg_defaults(struct thread_struct *thread)
{
674 675
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
676
	set_breakpoint(&thread->hw_brk);
677
}
678
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
679 680
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

681
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
682 683
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
684
	mtspr(SPRN_DAC1, dabr);
685 686 687
#ifdef CONFIG_PPC_47x
	isync();
#endif
688 689
	return 0;
}
690
#elif defined(CONFIG_PPC_BOOK3S)
691 692
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
693
	mtspr(SPRN_DABR, dabr);
694 695
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
696
	return 0;
697
}
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

718 719
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
720
	unsigned long dawr, dawrx, mrd;
721 722 723 724 725 726 727 728 729

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
730 731 732 733 734 735 736 737
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
738 739 740 741 742 743 744 745

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

746
void __set_breakpoint(struct arch_hw_breakpoint *brk)
747
{
748
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
749

750
	if (cpu_has_feature(CPU_FTR_DAWR))
751 752 753
		set_dawr(brk);
	else
		set_dabr(brk);
754
}
755

756 757 758 759 760 761 762
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

763 764 765
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
766

767 768 769 770 771 772 773 774 775 776 777
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
778

779
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
780 781 782 783 784 785 786 787 788 789 790 791
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
792
		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
793 794 795 796 797 798 799 800 801 802
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

803 804 805 806 807 808 809 810 811 812 813 814 815
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
816
	 * benefit of checking for a potential TM bad thing exception.
817 818 819 820
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
860
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
861
	 * ckpt_regs.msr is already set.
862
	 */
863
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
864
		thr->ckpt_regs.msr = thr->regs->msr;
865 866 867 868 869 870 871

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

872
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
873 874 875 876 877 878 879 880 881 882 883 884 885

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

911
static inline void tm_recheckpoint_new_task(struct task_struct *new)
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

929 930
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
931
		return;
932
	}
933
	msr = new->thread.ckpt_regs.msr;
934 935 936 937 938 939 940 941 942 943 944 945 946 947
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
948
#ifdef CONFIG_ALTIVEC
949 950 951 952
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
953
#endif
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

993
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
994
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
995

996 997 998 999 1000 1001 1002
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
#ifdef CONFIG_ALIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1003 1004
	restore_math(regs);

1005 1006 1007
	regs->msr |= msr_diff;
}

1008 1009 1010 1011
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1012

1013 1014 1015
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1016
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
1038 1039 1040 1041 1042 1043 1044 1045

	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* Conditionally save Load Monitor registers, if enabled */
		if (t->fscr & FSCR_LM) {
			t->lmrr = mfspr(SPRN_LMRR);
			t->lmser = mfspr(SPRN_LMSER);
		}
	}
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1060
		if (new_thread->dscr_inherit)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1075 1076 1077
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1078 1079 1080
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* Conditionally restore Load Monitor registers, if enabled */
		if (new_thread->fscr & FSCR_LM) {
			if (old_thread->lmrr != new_thread->lmrr)
				mtspr(SPRN_LMRR, new_thread->lmrr);
			if (old_thread->lmser != new_thread->lmser)
				mtspr(SPRN_LMSER, new_thread->lmser);
		}
	}
1091 1092 1093
#endif
}

1094 1095 1096 1097 1098
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1099 1100 1101
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1102

1103 1104 1105
	new_thread = &new->thread;
	old_thread = &current->thread;

1106 1107
	WARN_ON(!irqs_disabled());

1108 1109 1110 1111 1112
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1113
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1114 1115 1116 1117 1118 1119
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1120 1121
#endif /* CONFIG_PPC64 */

1122
#ifdef CONFIG_PPC_STD_MMU_64
1123
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1124 1125 1126 1127 1128 1129
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1130
#endif /* CONFIG_PPC_STD_MMU_64 */
1131

A
Anton Blanchard 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	__switch_to_tm(prev);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1156 1157 1158 1159 1160 1161
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1162 1163 1164

	tm_recheckpoint_new_task(new);

1165 1166 1167 1168 1169 1170 1171
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1172 1173
	restore_sprs(old_thread, new_thread);

1174 1175
	last = _switch(old_thread, new_thread);

1176
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1177 1178
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1179
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1180 1181
		batch->active = 1;
	}
1182 1183 1184

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);
1185
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1186

1187 1188 1189
	return last;
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

1206 1207 1208 1209 1210 1211 1212 1213
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1214
		if (!__kernel_text_address(pc) ||
1215
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1216
			printk(KERN_CONT "XXXXXXXX ");
1217 1218
		} else {
			if (regs->nip == pc)
1219
				printk(KERN_CONT "<%08x> ", instr);
1220
			else
1221
				printk(KERN_CONT "%08x ", instr);
1222 1223 1224 1225 1226 1227 1228 1229
		}

		pc += sizeof(int);
	}

	printk("\n");
}

1230
struct regbit {
1231 1232
	unsigned long bit;
	const char *name;
1233 1234 1235
};

static struct regbit msr_bits[] = {
1236 1237 1238 1239 1240 1241 1242 1243 1244
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1245 1246 1247 1248
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1249
#ifdef CONFIG_BOOKE
1250
	{MSR_DE,	"DE"},
1251 1252 1253 1254
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1255 1256
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1257 1258 1259 1260 1261
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1262 1263 1264
	{0,		NULL}
};

1265
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1266
{
1267
	const char *s = "";
1268 1269 1270

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1271 1272
			printk("%s%s", s, bits->name);
			s = sep;
1273
		}
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
		printk(",TM[");
		print_bits(val, msr_tm_bits, "");
		printk("]");
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
	printk("<");
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1308 1309 1310 1311
	printk(">");
}

#ifdef CONFIG_PPC64
1312
#define REG		"%016lx"
1313 1314 1315
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1316
#define REG		"%08lx"
1317 1318 1319 1320
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1321 1322 1323 1324
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1325 1326
	show_regs_print_info(KERN_DEFAULT);

1327 1328 1329
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1330
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1331
	printk("MSR: "REG" ", regs->msr);
1332
	print_msr_bits(regs->msr);
1333
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1334
	trap = TRAP(regs);
1335
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1336
		printk("CFAR: "REG" ", regs->orig_gpr3);
1337
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1338
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1339
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1340
#else
1341 1342 1343 1344 1345 1346
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1347 1348
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1349
#endif
1350 1351

	for (i = 0;  i < 32;  i++) {
1352
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
1353
			printk("\nGPR%02d: ", i);
1354 1355
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1356 1357 1358 1359 1360 1361 1362 1363
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1364 1365
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1366
#endif
1367
	show_stack(current, (unsigned long *) regs->gpr[1]);
1368 1369
	if (!user_mode(regs))
		show_instructions(regs);
1370 1371 1372 1373
}

void flush_thread(void)
{
1374
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1375
	flush_ptrace_hw_breakpoint(current);
1376
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1377
	set_debug_reg_defaults(&current->thread);
1378
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1379 1380 1381 1382 1383 1384 1385 1386
}

void
release_thread(struct task_struct *t)
{
}

/*
1387 1388
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1389
 */
1390
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1391
{
1392
	flush_all_to_thread(src);
1393 1394 1395 1396 1397 1398 1399 1400 1401
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1402

1403
	*dst = *src;
1404 1405 1406

	clear_task_ebb(dst);

1407
	return 0;
1408 1409
}

1410 1411 1412 1413 1414 1415
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1416 1417 1418
	if (radix_enabled())
		return;

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1430 1431 1432
/*
 * Copy a thread..
 */
1433

1434 1435 1436
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1437
int copy_thread(unsigned long clone_flags, unsigned long usp,
1438
		unsigned long kthread_arg, struct task_struct *p)
1439 1440 1441
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1442 1443
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1444
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1445 1446 1447
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1448 1449 1450 1451

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1452
	if (unlikely(p->flags & PF_KTHREAD)) {
1453
		/* kernel thread */
A
Al Viro 已提交
1454
		memset(childregs, 0, sizeof(struct pt_regs));
1455
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1456 1457 1458
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1459
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1460
		clear_tsk_thread_flag(p, TIF_32BIT);
1461
		childregs->softe = 1;
1462
#endif
1463
		childregs->gpr[15] = kthread_arg;
1464
		p->thread.regs = NULL;	/* no user register state */
1465
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1466
		f = ret_from_kernel_thread;
1467
	} else {
1468
		/* user thread */
1469
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1470 1471
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1472 1473
		if (usp)
			childregs->gpr[1] = usp;
1474
		p->thread.regs = childregs;
A
Al Viro 已提交
1475
		childregs->gpr[3] = 0;  /* Result from fork() */
1476 1477
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1478
			if (!is_32bit_task())
1479 1480 1481 1482 1483
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1484 1485

		f = ret_from_fork;
1486
	}
1487
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1498
	((unsigned long *)sp)[0] = 0;
1499 1500 1501 1502
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1503
#ifdef CONFIG_PPC32
1504 1505
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1506
#endif
1507 1508 1509 1510
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1511 1512 1513 1514 1515
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1516 1517
	setup_ksp_vsid(p, sp);

1518 1519
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1520
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1521
		p->thread.dscr = mfspr(SPRN_DSCR);
1522
	}
1523 1524
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1525
#endif
1526
	kregs->nip = ppc_function_entry(f);
1527 1528 1529 1530 1531 1532
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1533
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1534
{
1535 1536 1537 1538
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1539 1540 1541 1542 1543
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1544 1545
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1546 1547
	}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1558 1559 1560 1561 1562 1563
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1564

1565 1566 1567 1568 1569 1570 1571
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1572 1573 1574
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1575
	regs->msr = MSR_USER;
1576
#else
1577
	if (!is_32bit_task()) {
1578
		unsigned long entry;
1579

1580 1581 1582
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1583

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1615 1616 1617
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1618 1619 1620 1621
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1622 1623
	}
#endif
1624 1625 1626
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1627
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1628
	current->thread.fp_save_area = NULL;
1629
#ifdef CONFIG_ALTIVEC
1630 1631
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1632
	current->thread.vr_save_area = NULL;
1633 1634 1635 1636 1637 1638 1639 1640 1641
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1642 1643 1644 1645 1646 1647 1648
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1649
}
1650
EXPORT_SYMBOL(start_thread);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1665
		if (cpu_has_feature(CPU_FTR_SPE)) {
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1679 1680 1681 1682 1683 1684
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1685 1686 1687 1688
#else
		return -EINVAL;
#endif
	}
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1701 1702 1703 1704 1705 1706 1707 1708 1709
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1724
			val = tsk->thread.fpexc_mode;
1725
		} else
1726
			return -EINVAL;
1727 1728 1729 1730 1731 1732 1733 1734
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1814
int validate_sp(unsigned long sp, struct task_struct *p,
1815 1816
		       unsigned long nbytes)
{
A
Al Viro 已提交
1817
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1818 1819 1820 1821 1822

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1823
	return valid_irq_stack(sp, p, nbytes);
1824 1825
}

1826 1827
EXPORT_SYMBOL(validate_sp);

1828 1829 1830 1831 1832 1833 1834 1835 1836
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1837
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1838 1839 1840 1841
		return 0;

	do {
		sp = *(unsigned long *)sp;
1842
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1843 1844
			return 0;
		if (count > 0) {
1845
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1846 1847 1848 1849 1850 1851
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1852

1853
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1854 1855 1856 1857 1858 1859

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1860 1861 1862
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1863
	unsigned long rth = (unsigned long)return_to_handler;
1864
#endif
1865 1866 1867 1868 1869 1870

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1871
			sp = current_stack_pointer();
1872 1873 1874 1875 1876 1877 1878
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1879
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1880 1881 1882 1883
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1884
		ip = stack[STACK_FRAME_LR_SAVE];
1885
		if (!firstframe || ip != lr) {
1886
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1887
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1888
			if ((ip == rth) && curr_frame >= 0) {
1889 1890 1891 1892 1893
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1904 1905
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1906 1907 1908
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1909
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1910
			       regs->trap, (void *)regs->nip, (void *)lr);
1911 1912 1913 1914 1915 1916 1917
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1918
#ifdef CONFIG_PPC64
1919
/* Called with hard IRQs off */
1920
void notrace __ppc64_runlatch_on(void)
1921
{
1922
	struct thread_info *ti = current_thread_info();
1923 1924
	unsigned long ctrl;

1925 1926 1927
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1928

1929
	ti->local_flags |= _TLF_RUNLATCH;
1930 1931
}

1932
/* Called with hard IRQs off */
1933
void notrace __ppc64_runlatch_off(void)
1934
{
1935
	struct thread_info *ti = current_thread_info();
1936 1937
	unsigned long ctrl;

1938
	ti->local_flags &= ~_TLF_RUNLATCH;
1939

1940 1941 1942
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1943
}
1944
#endif /* CONFIG_PPC64 */
1945

1946 1947 1948 1949 1950 1951
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1952 1953 1954 1955 1956 1957 1958

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
1959
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1960
	else
D
Daniel Cashman 已提交
1961
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1962 1963 1964 1965 1966 1967

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1968 1969 1970
	unsigned long base = mm->brk;
	unsigned long ret;

1971
#ifdef CONFIG_PPC_STD_MMU_64
1972 1973 1974 1975 1976
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
1977 1978
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1979 1980 1981 1982 1983 1984
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1985 1986 1987 1988 1989 1990

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1991