process.c 56.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45 46 47 48 49 50

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
51
#include <asm/machdep.h>
52
#include <asm/time.h>
53
#include <asm/runlatch.h>
54
#include <asm/syscalls.h>
55
#include <asm/switch_to.h>
56
#include <asm/tm.h>
57
#include <asm/debug.h>
58 59
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
60
#include <asm/hw_irq.h>
61
#endif
62
#include <asm/code-patching.h>
63
#include <asm/exec.h>
64
#include <asm/livepatch.h>
65
#include <asm/cpu_has_feature.h>
66
#include <asm/asm-prototypes.h>
67

68 69
#include <linux/kprobes.h>
#include <linux/kdebug.h>
70

71 72 73 74 75 76 77
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

78 79
extern unsigned long _get_SP(void);

80
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 82 83 84 85 86 87
/*
 * Are we running in "Suspend disabled" mode? If so we have to block any
 * sigreturn that would get us into suspended state, and we also warn in some
 * other paths that we should never reach with suspend disabled.
 */
bool tm_suspend_disabled __ro_after_init = false;

88
static void check_if_tm_restore_required(struct task_struct *tsk)
89 90 91 92 93 94 95 96 97 98
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
99
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100 101 102
		set_thread_flag(TIF_RESTORE_TM);
	}
}
103 104 105 106 107

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
108 109 110 111 112 113 114 115 116 117 118 119

static bool tm_active_with_fp(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_FP);
}

static bool tm_active_with_altivec(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_VEC);
}
120
#else
121
static inline bool msr_tm_active(unsigned long msr) { return false; }
122
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
123 124
static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
125 126
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

127 128 129 130 131 132 133 134 135 136 137 138
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

139
unsigned long msr_check_and_set(unsigned long bits)
140
{
141 142
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
143

144
	newmsr = oldmsr | bits;
145 146

#ifdef CONFIG_VSX
147
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
148 149
		newmsr |= MSR_VSX;
#endif
150

151 152
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
153 154

	return newmsr;
155
}
156

157
void __msr_check_and_clear(unsigned long bits)
158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
172
EXPORT_SYMBOL(__msr_check_and_clear);
173 174

#ifdef CONFIG_PPC_FPU
175 176
void __giveup_fpu(struct task_struct *tsk)
{
177 178
	unsigned long msr;

179
	save_fpu(tsk);
180 181
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
182 183
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
184
		msr &= ~MSR_VSX;
185
#endif
186
	tsk->thread.regs->msr = msr;
187 188
}

189 190 191 192 193
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
194
	__giveup_fpu(tsk);
195
	msr_check_and_clear(MSR_FP);
196 197 198
}
EXPORT_SYMBOL(giveup_fpu);

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
219
			 * the FP register state on context switch,
220 221 222 223
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
224
			giveup_fpu(tsk);
225 226 227 228
		}
		preempt_enable();
	}
}
229
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
230 231 232

void enable_kernel_fp(void)
{
233 234
	unsigned long cpumsr;

235 236
	WARN_ON(preemptible());

237
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
238

239 240
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
241 242 243 244 245 246 247 248 249
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
250
		__giveup_fpu(current);
251
	}
252 253
}
EXPORT_SYMBOL(enable_kernel_fp);
254

255 256
static int restore_fp(struct task_struct *tsk)
{
257
	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
258 259 260 261 262 263 264 265
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
266
#endif /* CONFIG_PPC_FPU */
267 268

#ifdef CONFIG_ALTIVEC
269 270
#define loadvec(thr) ((thr).load_vec)

271 272
static void __giveup_altivec(struct task_struct *tsk)
{
273 274
	unsigned long msr;

275
	save_altivec(tsk);
276 277
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
278 279
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
280
		msr &= ~MSR_VSX;
281
#endif
282
	tsk->thread.regs->msr = msr;
283 284
}

285 286 287 288
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

289
	msr_check_and_set(MSR_VEC);
290
	__giveup_altivec(tsk);
291
	msr_check_and_clear(MSR_VEC);
292 293 294
}
EXPORT_SYMBOL(giveup_altivec);

295 296
void enable_kernel_altivec(void)
{
297 298
	unsigned long cpumsr;

299 300
	WARN_ON(preemptible());

301
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
302

303 304
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
305 306 307 308 309 310 311 312 313
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
314
		__giveup_altivec(current);
315
	}
316 317 318 319 320 321 322 323 324 325 326 327 328
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
329
			giveup_altivec(tsk);
330 331 332 333
		}
		preempt_enable();
	}
}
334
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
335 336 337

static int restore_altivec(struct task_struct *tsk)
{
338
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
339
		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
340 341 342 343 344 345 346 347 348 349 350
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
351 352
#endif /* CONFIG_ALTIVEC */

353
#ifdef CONFIG_VSX
354
static void __giveup_vsx(struct task_struct *tsk)
355
{
356 357 358 359 360 361 362 363 364 365
	unsigned long msr = tsk->thread.regs->msr;

	/*
	 * We should never be ssetting MSR_VSX without also setting
	 * MSR_FP and MSR_VEC
	 */
	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));

	/* __giveup_fpu will clear MSR_VSX */
	if (msr & MSR_FP)
366
		__giveup_fpu(tsk);
367
	if (msr & MSR_VEC)
368
		__giveup_altivec(tsk);
369 370 371 372 373 374 375
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
376
	__giveup_vsx(tsk);
377
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
378
}
379

380 381
void enable_kernel_vsx(void)
{
382 383
	unsigned long cpumsr;

384 385
	WARN_ON(preemptible());

386
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
387

388 389
	if (current->thread.regs &&
	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
390
		check_if_tm_restore_required(current);
391 392 393 394 395 396 397 398 399
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
400
		__giveup_vsx(current);
A
Anton Blanchard 已提交
401
	}
402 403 404 405 406 407 408
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
409
		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
410 411 412 413 414 415
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
416
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
417 418 419 420 421 422 423 424 425 426 427 428

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
429 430
#endif /* CONFIG_VSX */

431
#ifdef CONFIG_SPE
432 433 434 435
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

436
	msr_check_and_set(MSR_SPE);
437
	__giveup_spe(tsk);
438
	msr_check_and_clear(MSR_SPE);
439 440
}
EXPORT_SYMBOL(giveup_spe);
441 442 443 444 445

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

446
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
447

448 449
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
450
		__giveup_spe(current);
451
	}
452 453 454 455 456 457 458 459 460
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
461
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
462
			giveup_spe(tsk);
463 464 465 466 467 468
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
506
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
507

508 509
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

A
Anton Blanchard 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

527 528 529 530
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

531 532
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

572 573 574 575 576 577 578
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

	if (usermsr & MSR_FP)
		save_fpu(tsk);

	if (usermsr & MSR_VEC)
		save_altivec(tsk);
579 580 581 582 583 584 585

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

586 587 588 589 590
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
591
		save_all(tsk);
592 593 594 595 596 597 598 599 600 601 602

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

603 604 605 606 607 608
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

609
	current->thread.trap_nr = signal_code;
610 611 612 613 614 615 616 617 618 619 620 621
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
622
void do_break (struct pt_regs *regs, unsigned long address,
623 624 625 626
		    unsigned long error_code)
{
	siginfo_t info;

627
	current->thread.trap_nr = TRAP_HWBKPT;
628 629 630 631
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

632
	if (debugger_break_match(regs))
633 634
		return;

635 636
	/* Clear the breakpoint */
	hw_breakpoint_disable();
637 638 639 640 641 642 643 644

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
645
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
646

647
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
648

649 650 651 652 653 654
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
655
	thread->debug.iac1 = thread->debug.iac2 = 0;
656
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
657
	thread->debug.iac3 = thread->debug.iac4 = 0;
658
#endif
659
	thread->debug.dac1 = thread->debug.dac2 = 0;
660
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
661
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
662
#endif
663
	thread->debug.dbcr0 = 0;
664 665 666 667
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
668
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
669 670 671 672 673
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
674
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
675
#else
676
	thread->debug.dbcr1 = 0;
677 678 679
#endif
}

680
static void prime_debug_regs(struct debug_reg *debug)
681
{
682 683 684 685 686 687 688
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

689 690
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
691
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
692 693
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
694
#endif
695 696
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
697
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
698 699
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
700
#endif
701 702
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
703
#ifdef CONFIG_BOOKE
704
	mtspr(SPRN_DBCR2, debug->dbcr2);
705 706 707 708 709 710 711
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
712
void switch_booke_debug_regs(struct debug_reg *new_debug)
713
{
714
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
715 716
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
717
}
718
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
719
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
720
#ifndef CONFIG_HAVE_HW_BREAKPOINT
721 722
static void set_debug_reg_defaults(struct thread_struct *thread)
{
723 724
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
725
	set_breakpoint(&thread->hw_brk);
726
}
727
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
728 729
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

730
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
731 732
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
733
	mtspr(SPRN_DAC1, dabr);
734 735 736
#ifdef CONFIG_PPC_47x
	isync();
#endif
737 738
	return 0;
}
739
#elif defined(CONFIG_PPC_BOOK3S)
740 741
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
742
	mtspr(SPRN_DABR, dabr);
743 744
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
745
	return 0;
746
}
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

789 790
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
791
	unsigned long dawr, dawrx, mrd;
792 793 794 795 796 797 798 799 800

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
801 802 803 804 805 806 807 808
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
809 810 811 812 813 814 815 816

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

817
void __set_breakpoint(struct arch_hw_breakpoint *brk)
818
{
819
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
820

821
	if (cpu_has_feature(CPU_FTR_DAWR))
822 823 824
		set_dawr(brk);
	else
		set_dabr(brk);
825
}
826

827 828 829 830 831 832 833
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

834 835 836
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
837

838 839 840 841 842 843 844 845 846 847 848
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
849

850
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
851 852 853 854 855 856

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

857 858 859
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
860 861 862 863 864 865 866 867 868 869 870 871 872
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
873
	 * benefit of checking for a potential TM bad thing exception.
874 875 876 877
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

878 879
	giveup_all(container_of(thr, struct task_struct, thread));

880 881
	tm_reclaim(thr, cause);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));
900 901 902 903 904 905 906 907
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

908 909 910 911 912 913 914
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
915 916
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
917 918 919 920 921 922 923 924 925 926 927
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

928 929
	WARN_ON(tm_suspend_disabled);

930 931 932 933 934 935
	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

936
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
937 938 939 940 941 942 943 944 945 946 947 948 949

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

950
extern void __tm_recheckpoint(struct thread_struct *thread);
951

952
void tm_recheckpoint(struct thread_struct *thread)
953 954 955
{
	unsigned long flags;

956 957 958
	if (!(thread->regs->msr & MSR_TM))
		return;

959 960 961 962 963 964 965 966 967 968 969 970
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

971
	__tm_recheckpoint(thread);
972 973 974 975

	local_irq_restore(flags);
}

976
static inline void tm_recheckpoint_new_task(struct task_struct *new)
977 978 979 980 981 982 983 984 985
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
986
	 * unavailable later, we are unable to determine which set of FP regs
987 988
	 * need to be restored.
	 */
989
	if (!tm_enabled(new))
990 991
		return;

992 993
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
994
		return;
995
	}
996
	/* Recheckpoint to restore original checkpointed register state. */
997 998
	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
		 new->pid, new->thread.regs->msr);
999

1000
	tm_recheckpoint(&new->thread);
1001

1002 1003 1004 1005 1006 1007
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1008 1009 1010 1011 1012 1013

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

1014 1015
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
1016 1017
{
	if (cpu_has_feature(CPU_FTR_TM)) {
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1028
		tm_recheckpoint_new_task(new);
1029 1030
	}
}
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1050 1051 1052 1053 1054 1055
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1056 1057 1058 1059
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1060
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1061
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1062

1063 1064 1065
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1066
#ifdef CONFIG_ALTIVEC
1067 1068 1069
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1070 1071
	restore_math(regs);

1072 1073 1074
	regs->msr |= msr_diff;
}

1075 1076
#else
#define tm_recheckpoint_new_task(new)
1077
#define __switch_to_tm(prev, new)
1078
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1079

1080 1081 1082
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1083
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1119
		if (new_thread->dscr_inherit)
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1134 1135 1136
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1137 1138 1139
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
1140 1141 1142 1143

	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
	    old_thread->tidr != new_thread->tidr)
		mtspr(SPRN_TIDR, new_thread->tidr);
1144 1145 1146
#endif
}

1147 1148 1149 1150 1151
#ifdef CONFIG_PPC_BOOK3S_64
#define CP_SIZE 128
static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
#endif

1152 1153 1154 1155 1156
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1157 1158 1159
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1160

1161 1162 1163
	new_thread = &new->thread;
	old_thread = &current->thread;

1164 1165
	WARN_ON(!irqs_disabled());

1166 1167 1168 1169 1170
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1171
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1172 1173 1174 1175 1176 1177
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1178 1179
#endif /* CONFIG_PPC64 */

1180
#ifdef CONFIG_PPC_BOOK3S_64
1181
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1182 1183 1184 1185 1186 1187
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1188
#endif /* CONFIG_PPC_BOOK3S_64 */
1189

A
Anton Blanchard 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1212 1213
	__switch_to_tm(prev, new);

1214 1215 1216 1217 1218 1219 1220 1221
	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}
1222

1223 1224 1225 1226 1227 1228 1229
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1230 1231
	restore_sprs(old_thread, new_thread);

1232 1233
	last = _switch(old_thread, new_thread);

1234
#ifdef CONFIG_PPC_BOOK3S_64
P
Peter Zijlstra 已提交
1235 1236
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1237
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1238 1239
		batch->active = 1;
	}
1240

1241
	if (current_thread_info()->task->thread.regs) {
1242
		restore_math(current_thread_info()->task->thread.regs);
1243 1244 1245 1246 1247

		/*
		 * The copy-paste buffer can only store into foreign real
		 * addresses, so unprivileged processes can not see the
		 * data or use it in any way unless they have foreign real
1248 1249 1250 1251 1252 1253 1254
		 * mappings. If the new process has the foreign real address
		 * mappings, we must issue a cp_abort to clear any state and
		 * prevent snooping, corruption or a covert channel.
		 *
		 * DD1 allows paste into normal system memory so we do an
		 * unpaired copy, rather than cp_abort, to clear the buffer,
		 * since cp_abort is quite expensive.
1255
		 */
1256 1257 1258
		if (current_thread_info()->task->thread.used_vas) {
			asm volatile(PPC_CP_ABORT);
		} else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1259 1260 1261 1262
			asm volatile(PPC_COPY(%0, %1)
					: : "r"(dummy_copy_buffer), "r"(0));
		}
	}
1263
#endif /* CONFIG_PPC_BOOK3S_64 */
P
Peter Zijlstra 已提交
1264

1265 1266 1267
	return last;
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1282
			pr_cont("\n");
1283

1284 1285 1286 1287 1288 1289 1290 1291
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1292
		if (!__kernel_text_address(pc) ||
1293
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1294
			pr_cont("XXXXXXXX ");
1295 1296
		} else {
			if (regs->nip == pc)
1297
				pr_cont("<%08x> ", instr);
1298
			else
1299
				pr_cont("%08x ", instr);
1300 1301 1302 1303 1304
		}

		pc += sizeof(int);
	}

1305
	pr_cont("\n");
1306 1307
}

1308
struct regbit {
1309 1310
	unsigned long bit;
	const char *name;
1311 1312 1313
};

static struct regbit msr_bits[] = {
1314 1315 1316 1317 1318 1319 1320 1321 1322
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1323 1324 1325 1326
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1327
#ifdef CONFIG_BOOKE
1328
	{MSR_DE,	"DE"},
1329 1330 1331 1332
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1333 1334
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1335 1336 1337 1338 1339
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1340 1341 1342
	{0,		NULL}
};

1343
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1344
{
1345
	const char *s = "";
1346 1347 1348

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1349
			pr_cont("%s%s", s, bits->name);
1350
			s = sep;
1351
		}
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1372
		pr_cont(",TM[");
1373
		print_bits(val, msr_tm_bits, "");
1374
		pr_cont("]");
1375 1376 1377 1378 1379 1380 1381 1382
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1383
	pr_cont("<");
1384 1385
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1386
	pr_cont(">");
1387 1388 1389
}

#ifdef CONFIG_PPC64
1390
#define REG		"%016lx"
1391 1392 1393
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1394
#define REG		"%08lx"
1395 1396 1397 1398
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1399 1400 1401 1402
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1403 1404
	show_regs_print_info(KERN_DEFAULT);

1405
	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1406 1407
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1408
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1409
	printk("MSR:  "REG" ", regs->msr);
1410
	print_msr_bits(regs->msr);
1411
	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1412
	trap = TRAP(regs);
1413
	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1414
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1415
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1416
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1417
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1418
#else
1419
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1420 1421
#endif
#ifdef CONFIG_PPC64
1422
	pr_cont("SOFTE: %ld ", regs->softe);
1423 1424
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1425
	if (MSR_TM_ACTIVE(regs->msr))
1426
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1427
#endif
1428 1429

	for (i = 0;  i < 32;  i++) {
1430
		if ((i % REGS_PER_LINE) == 0)
1431 1432
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1433
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1434 1435
			break;
	}
1436
	pr_cont("\n");
1437 1438 1439 1440 1441
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1442 1443
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1444
#endif
1445
	show_stack(current, (unsigned long *) regs->gpr[1]);
1446 1447
	if (!user_mode(regs))
		show_instructions(regs);
1448 1449 1450 1451
}

void flush_thread(void)
{
1452
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1453
	flush_ptrace_hw_breakpoint(current);
1454
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1455
	set_debug_reg_defaults(&current->thread);
1456
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1457 1458
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
int set_thread_uses_vas(void)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -EINVAL;

	current->thread.used_vas = 1;

	/*
	 * Even a process that has no foreign real address mapping can use
	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
	 * to clear any pending COPY and prevent a covert channel.
	 *
	 * __switch_to() will issue CP_ABORT on future context switches.
	 */
	asm volatile(PPC_CP_ABORT);

#endif /* CONFIG_PPC_BOOK3S_64 */
	return 0;
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
#ifdef CONFIG_PPC64
static DEFINE_SPINLOCK(vas_thread_id_lock);
static DEFINE_IDA(vas_thread_ida);

/*
 * We need to assign a unique thread id to each thread in a process.
 *
 * This thread id, referred to as TIDR, and separate from the Linux's tgid,
 * is intended to be used to direct an ASB_Notify from the hardware to the
 * thread, when a suitable event occurs in the system.
 *
 * One such event is a "paste" instruction in the context of Fast Thread
 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
 * (VAS) in POWER9.
 *
 * To get a unique TIDR per process we could simply reuse task_pid_nr() but
 * the problem is that task_pid_nr() is not yet available copy_thread() is
 * called. Fixing that would require changing more intrusive arch-neutral
 * code in code path in copy_process()?.
 *
 * Further, to assign unique TIDRs within each process, we need an atomic
 * field (or an IDR) in task_struct, which again intrudes into the arch-
 * neutral code. So try to assign globally unique TIDRs for now.
 *
 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
 *	 For now, only threads that expect to be notified by the VAS
 *	 hardware need a TIDR value and we assign values > 0 for those.
 */
#define MAX_THREAD_CONTEXT	((1 << 16) - 1)
static int assign_thread_tidr(void)
{
	int index;
	int err;

again:
	if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
		return -ENOMEM;

	spin_lock(&vas_thread_id_lock);
	err = ida_get_new_above(&vas_thread_ida, 1, &index);
	spin_unlock(&vas_thread_id_lock);

	if (err == -EAGAIN)
		goto again;
	else if (err)
		return err;

	if (index > MAX_THREAD_CONTEXT) {
		spin_lock(&vas_thread_id_lock);
		ida_remove(&vas_thread_ida, index);
		spin_unlock(&vas_thread_id_lock);
		return -ENOMEM;
	}

	return index;
}

static void free_thread_tidr(int id)
{
	spin_lock(&vas_thread_id_lock);
	ida_remove(&vas_thread_ida, id);
	spin_unlock(&vas_thread_id_lock);
}

/*
 * Clear any TIDR value assigned to this thread.
 */
void clear_thread_tidr(struct task_struct *t)
{
	if (!t->thread.tidr)
		return;

	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		WARN_ON_ONCE(1);
		return;
	}

	mtspr(SPRN_TIDR, 0);
	free_thread_tidr(t->thread.tidr);
	t->thread.tidr = 0;
}

void arch_release_task_struct(struct task_struct *t)
{
	clear_thread_tidr(t);
}

/*
 * Assign a unique TIDR (thread id) for task @t and set it in the thread
 * structure. For now, we only support setting TIDR for 'current' task.
 */
int set_thread_tidr(struct task_struct *t)
{
1573 1574
	int rc;

1575 1576 1577 1578 1579 1580
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -EINVAL;

	if (t != current)
		return -EINVAL;

1581 1582 1583
	if (t->thread.tidr)
		return 0;

1584 1585 1586
	rc = assign_thread_tidr();
	if (rc < 0)
		return rc;
1587

1588
	t->thread.tidr = rc;
1589 1590 1591 1592 1593 1594 1595
	mtspr(SPRN_TIDR, t->thread.tidr);

	return 0;
}

#endif /* CONFIG_PPC64 */

1596 1597 1598 1599 1600 1601
void
release_thread(struct task_struct *t)
{
}

/*
1602 1603
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1604
 */
1605
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1606
{
1607
	flush_all_to_thread(src);
1608 1609 1610 1611 1612 1613
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1614 1615 1616
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1617
	 */
1618
	__switch_to_tm(src, src);
1619

1620
	*dst = *src;
1621 1622 1623

	clear_task_ebb(dst);

1624
	return 0;
1625 1626
}

1627 1628
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
1629
#ifdef CONFIG_PPC_BOOK3S_64
1630 1631 1632
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1633 1634 1635
	if (radix_enabled())
		return;

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1647 1648 1649
/*
 * Copy a thread..
 */
1650

1651 1652 1653
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1654
int copy_thread(unsigned long clone_flags, unsigned long usp,
1655
		unsigned long kthread_arg, struct task_struct *p)
1656 1657 1658
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1659 1660
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1661
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1662 1663 1664
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1665 1666 1667 1668

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1669
	if (unlikely(p->flags & PF_KTHREAD)) {
1670
		/* kernel thread */
A
Al Viro 已提交
1671
		memset(childregs, 0, sizeof(struct pt_regs));
1672
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1673 1674 1675
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1676
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1677
		clear_tsk_thread_flag(p, TIF_32BIT);
1678
		childregs->softe = IRQS_ENABLED;
1679
#endif
1680
		childregs->gpr[15] = kthread_arg;
1681
		p->thread.regs = NULL;	/* no user register state */
1682
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1683
		f = ret_from_kernel_thread;
1684
	} else {
1685
		/* user thread */
1686
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1687 1688
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1689 1690
		if (usp)
			childregs->gpr[1] = usp;
1691
		p->thread.regs = childregs;
A
Al Viro 已提交
1692
		childregs->gpr[3] = 0;  /* Result from fork() */
1693 1694
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1695
			if (!is_32bit_task())
1696 1697 1698 1699 1700
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1701 1702

		f = ret_from_fork;
1703
	}
1704
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1715
	((unsigned long *)sp)[0] = 0;
1716 1717 1718 1719
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1720
#ifdef CONFIG_PPC32
1721 1722
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1723
#endif
1724 1725 1726 1727
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1728 1729 1730 1731 1732
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1733 1734
	setup_ksp_vsid(p, sp);

1735 1736
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1737
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1738
		p->thread.dscr = mfspr(SPRN_DSCR);
1739
	}
1740 1741
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1742 1743

	p->thread.tidr = 0;
1744
#endif
1745
	kregs->nip = ppc_function_entry(f);
1746 1747 1748 1749 1750 1751
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1752
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1753
{
1754 1755 1756 1757
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1758 1759 1760 1761 1762
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1763 1764
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1765 1766
	}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1777 1778 1779 1780 1781 1782
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1783

1784 1785 1786 1787 1788 1789 1790
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1791 1792 1793
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1794
	regs->msr = MSR_USER;
1795
#else
1796
	if (!is_32bit_task()) {
1797
		unsigned long entry;
1798

1799 1800 1801
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1834 1835 1836
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1837 1838 1839 1840
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1841 1842
	}
#endif
1843 1844 1845
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1846
	current->thread.load_fp = 0;
1847
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1848
	current->thread.fp_save_area = NULL;
1849
#ifdef CONFIG_ALTIVEC
1850 1851
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1852
	current->thread.vr_save_area = NULL;
1853 1854
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
1855
	current->thread.load_vec = 0;
1856 1857 1858 1859 1860 1861 1862
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1863 1864 1865 1866
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
1867
	current->thread.load_tm = 0;
1868
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1869
}
1870
EXPORT_SYMBOL(start_thread);
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1885
		if (cpu_has_feature(CPU_FTR_SPE)) {
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1899 1900 1901 1902 1903 1904
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1905 1906 1907 1908
#else
		return -EINVAL;
#endif
	}
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1921 1922 1923 1924 1925 1926 1927 1928 1929
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1944
			val = tsk->thread.fpexc_mode;
1945
		} else
1946
			return -EINVAL;
1947 1948 1949 1950 1951 1952 1953 1954
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

2034
int validate_sp(unsigned long sp, struct task_struct *p,
2035 2036
		       unsigned long nbytes)
{
A
Al Viro 已提交
2037
	unsigned long stack_page = (unsigned long)task_stack_page(p);
2038 2039 2040 2041 2042

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

2043
	return valid_irq_stack(sp, p, nbytes);
2044 2045
}

2046 2047
EXPORT_SYMBOL(validate_sp);

2048 2049 2050 2051 2052 2053 2054 2055 2056
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
2057
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2058 2059 2060 2061
		return 0;

	do {
		sp = *(unsigned long *)sp;
2062 2063
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
		    p->state == TASK_RUNNING)
2064 2065
			return 0;
		if (count > 0) {
2066
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2067 2068 2069 2070 2071 2072
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
2073

2074
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2075 2076 2077 2078 2079 2080

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
2081 2082 2083
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
2084
	unsigned long rth = (unsigned long)return_to_handler;
2085
#endif
2086 2087 2088 2089 2090 2091

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
2092
			sp = current_stack_pointer();
2093 2094 2095 2096 2097 2098 2099
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
2100
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2101 2102 2103 2104
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
2105
		ip = stack[STACK_FRAME_LR_SAVE];
2106
		if (!firstframe || ip != lr) {
2107
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2108
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2109
			if ((ip == rth) && curr_frame >= 0) {
2110
				pr_cont(" (%pS)",
2111 2112 2113 2114
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
2115
			if (firstframe)
2116 2117
				pr_cont(" (unreliable)");
			pr_cont("\n");
2118 2119 2120 2121 2122 2123 2124
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
2125 2126
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2127 2128 2129
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
2130
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2131
			       regs->trap, (void *)regs->nip, (void *)lr);
2132 2133 2134 2135 2136 2137 2138
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

2139
#ifdef CONFIG_PPC64
2140
/* Called with hard IRQs off */
2141
void notrace __ppc64_runlatch_on(void)
2142
{
2143
	struct thread_info *ti = current_thread_info();
2144

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		/*
		 * Least significant bit (RUN) is the only writable bit of
		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
		 * earliest ISA where this is the case, but it's convenient.
		 */
		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
	} else {
		unsigned long ctrl;

		/*
		 * Some architectures (e.g., Cell) have writable fields other
		 * than RUN, so do the read-modify-write.
		 */
		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2163

2164
	ti->local_flags |= _TLF_RUNLATCH;
2165 2166
}

2167
/* Called with hard IRQs off */
2168
void notrace __ppc64_runlatch_off(void)
2169
{
2170
	struct thread_info *ti = current_thread_info();
2171

2172
	ti->local_flags &= ~_TLF_RUNLATCH;
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		mtspr(SPRN_CTRLT, 0);
	} else {
		unsigned long ctrl;

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2183
}
2184
#endif /* CONFIG_PPC64 */
2185

2186 2187 2188 2189 2190 2191
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
2192 2193 2194 2195 2196 2197 2198

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
2199
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2200
	else
D
Daniel Cashman 已提交
2201
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2202 2203 2204 2205 2206 2207

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
2208 2209 2210
	unsigned long base = mm->brk;
	unsigned long ret;

2211
#ifdef CONFIG_PPC_BOOK3S_64
2212 2213 2214 2215 2216
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
2217 2218
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2219 2220 2221 2222 2223 2224
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2225 2226 2227 2228 2229 2230

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2231