process.c 51.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45 46 47 48 49 50

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
51
#include <asm/machdep.h>
52
#include <asm/time.h>
53
#include <asm/runlatch.h>
54
#include <asm/syscalls.h>
55
#include <asm/switch_to.h>
56
#include <asm/tm.h>
57
#include <asm/debug.h>
58 59 60
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
61
#include <asm/code-patching.h>
62
#include <asm/exec.h>
63
#include <asm/livepatch.h>
64
#include <asm/cpu_has_feature.h>
65
#include <asm/asm-prototypes.h>
66

67 68
#include <linux/kprobes.h>
#include <linux/kdebug.h>
69

70 71 72 73 74 75 76
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

77 78
extern unsigned long _get_SP(void);

79
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80
static void check_if_tm_restore_required(struct task_struct *tsk)
81 82 83 84 85 86 87 88 89 90
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
91
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 93 94
		set_thread_flag(TIF_RESTORE_TM);
	}
}
95 96 97 98 99

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
100
#else
101
static inline bool msr_tm_active(unsigned long msr) { return false; }
102
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 104
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

105 106 107 108 109 110 111 112 113 114 115 116
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

117
unsigned long msr_check_and_set(unsigned long bits)
118
{
119 120
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
121

122
	newmsr = oldmsr | bits;
123 124

#ifdef CONFIG_VSX
125
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 127
		newmsr |= MSR_VSX;
#endif
128

129 130
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
131 132

	return newmsr;
133
}
134

135
void __msr_check_and_clear(unsigned long bits)
136 137 138 139 140 141 142 143 144 145 146 147 148 149
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
150
EXPORT_SYMBOL(__msr_check_and_clear);
151 152

#ifdef CONFIG_PPC_FPU
153 154
void __giveup_fpu(struct task_struct *tsk)
{
155 156
	unsigned long msr;

157
	save_fpu(tsk);
158 159
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
160 161
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
162
		msr &= ~MSR_VSX;
163
#endif
164
	tsk->thread.regs->msr = msr;
165 166
}

167 168 169 170 171
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
172
	__giveup_fpu(tsk);
173
	msr_check_and_clear(MSR_FP);
174 175 176
}
EXPORT_SYMBOL(giveup_fpu);

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
197
			 * the FP register state on context switch,
198 199 200 201
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
202
			giveup_fpu(tsk);
203 204 205 206
		}
		preempt_enable();
	}
}
207
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 209 210

void enable_kernel_fp(void)
{
211 212
	unsigned long cpumsr;

213 214
	WARN_ON(preemptible());

215
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
216

217 218
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
219 220 221 222 223 224 225 226 227
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
228
		__giveup_fpu(current);
229
	}
230 231
}
EXPORT_SYMBOL(enable_kernel_fp);
232

233 234
static int restore_fp(struct task_struct *tsk)
{
235
	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
236 237 238 239 240 241 242 243
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
244
#endif /* CONFIG_PPC_FPU */
245 246

#ifdef CONFIG_ALTIVEC
247 248
#define loadvec(thr) ((thr).load_vec)

249 250
static void __giveup_altivec(struct task_struct *tsk)
{
251 252
	unsigned long msr;

253
	save_altivec(tsk);
254 255
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
256 257
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
258
		msr &= ~MSR_VSX;
259
#endif
260
	tsk->thread.regs->msr = msr;
261 262
}

263 264 265 266
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

267
	msr_check_and_set(MSR_VEC);
268
	__giveup_altivec(tsk);
269
	msr_check_and_clear(MSR_VEC);
270 271 272
}
EXPORT_SYMBOL(giveup_altivec);

273 274
void enable_kernel_altivec(void)
{
275 276
	unsigned long cpumsr;

277 278
	WARN_ON(preemptible());

279
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
280

281 282
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
283 284 285 286 287 288 289 290 291
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
292
		__giveup_altivec(current);
293
	}
294 295 296 297 298 299 300 301 302 303 304 305 306
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
307
			giveup_altivec(tsk);
308 309 310 311
		}
		preempt_enable();
	}
}
312
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
313 314 315

static int restore_altivec(struct task_struct *tsk)
{
316 317
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
318 319 320 321 322 323 324 325 326 327 328
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
329 330
#endif /* CONFIG_ALTIVEC */

331
#ifdef CONFIG_VSX
332
static void __giveup_vsx(struct task_struct *tsk)
333
{
334 335 336 337 338 339 340 341 342 343
	unsigned long msr = tsk->thread.regs->msr;

	/*
	 * We should never be ssetting MSR_VSX without also setting
	 * MSR_FP and MSR_VEC
	 */
	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));

	/* __giveup_fpu will clear MSR_VSX */
	if (msr & MSR_FP)
344
		__giveup_fpu(tsk);
345
	if (msr & MSR_VEC)
346
		__giveup_altivec(tsk);
347 348 349 350 351 352 353
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
354
	__giveup_vsx(tsk);
355
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
356
}
357

358 359
void enable_kernel_vsx(void)
{
360 361
	unsigned long cpumsr;

362 363
	WARN_ON(preemptible());

364
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
365

366 367
	if (current->thread.regs &&
	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
368
		check_if_tm_restore_required(current);
369 370 371 372 373 374 375 376 377
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
378
		__giveup_vsx(current);
A
Anton Blanchard 已提交
379
	}
380 381 382 383 384 385 386
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
387
		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
388 389 390 391 392 393
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
394
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
395 396 397 398 399 400 401 402 403 404 405 406

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
407 408
#endif /* CONFIG_VSX */

409
#ifdef CONFIG_SPE
410 411 412 413
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

414
	msr_check_and_set(MSR_SPE);
415
	__giveup_spe(tsk);
416
	msr_check_and_clear(MSR_SPE);
417 418
}
EXPORT_SYMBOL(giveup_spe);
419 420 421 422 423

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

424
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
425

426 427
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
428
		__giveup_spe(current);
429
	}
430 431 432 433 434 435 436 437 438
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
439
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
440
			giveup_spe(tsk);
441 442 443 444 445 446
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
484
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
485

486 487
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

A
Anton Blanchard 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

505 506 507 508
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

509 510
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

550 551 552 553 554 555 556
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

	if (usermsr & MSR_FP)
		save_fpu(tsk);

	if (usermsr & MSR_VEC)
		save_altivec(tsk);
557 558 559 560 561 562 563

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

564 565 566 567 568
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
569
		save_all(tsk);
570 571 572 573 574 575 576 577 578 579 580

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

581 582 583 584 585 586
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

587
	current->thread.trap_nr = signal_code;
588 589 590 591 592 593 594 595 596 597 598 599
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
600
void do_break (struct pt_regs *regs, unsigned long address,
601 602 603 604
		    unsigned long error_code)
{
	siginfo_t info;

605
	current->thread.trap_nr = TRAP_HWBKPT;
606 607 608 609
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

610
	if (debugger_break_match(regs))
611 612
		return;

613 614
	/* Clear the breakpoint */
	hw_breakpoint_disable();
615 616 617 618 619 620 621 622

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
623
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
624

625
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
626

627 628 629 630 631 632
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
633
	thread->debug.iac1 = thread->debug.iac2 = 0;
634
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
635
	thread->debug.iac3 = thread->debug.iac4 = 0;
636
#endif
637
	thread->debug.dac1 = thread->debug.dac2 = 0;
638
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
639
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
640
#endif
641
	thread->debug.dbcr0 = 0;
642 643 644 645
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
646
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
647 648 649 650 651
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
652
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
653
#else
654
	thread->debug.dbcr1 = 0;
655 656 657
#endif
}

658
static void prime_debug_regs(struct debug_reg *debug)
659
{
660 661 662 663 664 665 666
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

667 668
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
669
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
670 671
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
672
#endif
673 674
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
675
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
676 677
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
678
#endif
679 680
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
681
#ifdef CONFIG_BOOKE
682
	mtspr(SPRN_DBCR2, debug->dbcr2);
683 684 685 686 687 688 689
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
690
void switch_booke_debug_regs(struct debug_reg *new_debug)
691
{
692
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
693 694
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
695
}
696
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
697
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
698
#ifndef CONFIG_HAVE_HW_BREAKPOINT
699 700
static void set_debug_reg_defaults(struct thread_struct *thread)
{
701 702
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
703
	set_breakpoint(&thread->hw_brk);
704
}
705
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
706 707
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

708
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
709 710
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
711
	mtspr(SPRN_DAC1, dabr);
712 713 714
#ifdef CONFIG_PPC_47x
	isync();
#endif
715 716
	return 0;
}
717
#elif defined(CONFIG_PPC_BOOK3S)
718 719
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
720
	mtspr(SPRN_DABR, dabr);
721 722
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
723
	return 0;
724
}
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

767 768
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
769
	unsigned long dawr, dawrx, mrd;
770 771 772 773 774 775 776 777 778

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
779 780 781 782 783 784 785 786
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
787 788 789 790 791 792 793 794

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

795
void __set_breakpoint(struct arch_hw_breakpoint *brk)
796
{
797
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
798

799
	if (cpu_has_feature(CPU_FTR_DAWR))
800 801 802
		set_dawr(brk);
	else
		set_dabr(brk);
803
}
804

805 806 807 808 809 810 811
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

812 813 814
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
815

816 817 818 819 820 821 822 823 824 825 826
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
827

828
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
829 830 831 832 833 834

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

835 836 837
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
838 839 840 841 842 843 844 845 846 847 848 849 850
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
851
	 * benefit of checking for a potential TM bad thing exception.
852 853 854 855
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));

875
	giveup_all(container_of(thr, struct task_struct, thread));
876

877
	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
878 879 880 881 882 883 884 885
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

886 887 888 889 890 891 892
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
893 894
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

912
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
913 914 915 916 917 918 919 920 921 922 923 924 925

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

926 927 928 929 930 931 932 933
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

934 935 936
	if (!(thread->regs->msr & MSR_TM))
		return;

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

954
static inline void tm_recheckpoint_new_task(struct task_struct *new)
955 956 957 958 959 960 961 962 963 964 965
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
966
	 * unavailable later, we are unable to determine which set of FP regs
967 968
	 * need to be restored.
	 */
969
	if (!tm_enabled(new))
970 971
		return;

972 973
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
974
		return;
975
	}
976
	msr = new->thread.ckpt_regs.msr;
977 978 979 980 981 982 983
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	tm_recheckpoint(&new->thread, msr);

984 985 986 987 988 989
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
990 991 992 993 994 995

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

996 997
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
998 999
{
	if (cpu_has_feature(CPU_FTR_TM)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1010
		tm_recheckpoint_new_task(new);
1011 1012
	}
}
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1032 1033 1034 1035 1036 1037
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1038 1039 1040 1041
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1042
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1043
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1044

1045 1046 1047
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1048
#ifdef CONFIG_ALTIVEC
1049 1050 1051
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1052 1053
	restore_math(regs);

1054 1055 1056
	regs->msr |= msr_diff;
}

1057 1058
#else
#define tm_recheckpoint_new_task(new)
1059
#define __switch_to_tm(prev, new)
1060
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1061

1062 1063 1064
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1065
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1101
		if (new_thread->dscr_inherit)
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1116 1117 1118
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1119 1120 1121 1122 1123 1124
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1125 1126 1127 1128 1129
#ifdef CONFIG_PPC_BOOK3S_64
#define CP_SIZE 128
static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
#endif

1130 1131 1132 1133 1134
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1135 1136 1137
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1138

1139 1140 1141
	new_thread = &new->thread;
	old_thread = &current->thread;

1142 1143
	WARN_ON(!irqs_disabled());

1144 1145 1146 1147 1148
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1149
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1150 1151 1152 1153 1154 1155
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1156 1157
#endif /* CONFIG_PPC64 */

1158
#ifdef CONFIG_PPC_STD_MMU_64
1159
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1160 1161 1162 1163 1164 1165
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1166
#endif /* CONFIG_PPC_STD_MMU_64 */
1167

A
Anton Blanchard 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1190 1191
	__switch_to_tm(prev, new);

1192 1193 1194 1195 1196 1197 1198 1199
	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}
1200

1201 1202 1203 1204 1205 1206 1207
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1208 1209
	restore_sprs(old_thread, new_thread);

1210 1211
	last = _switch(old_thread, new_thread);

1212
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1213 1214
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1215
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1216 1217
		batch->active = 1;
	}
1218

1219
	if (current_thread_info()->task->thread.regs) {
1220
		restore_math(current_thread_info()->task->thread.regs);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

		/*
		 * The copy-paste buffer can only store into foreign real
		 * addresses, so unprivileged processes can not see the
		 * data or use it in any way unless they have foreign real
		 * mappings. We don't have a VAS driver that allocates those
		 * yet, so no cpabort is required.
		 */
		if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
			/*
			 * DD1 allows paste into normal system memory, so we
			 * do an unpaired copy here to clear the buffer and
			 * prevent a covert channel being set up.
			 *
			 * cpabort is not used because it is quite expensive.
			 */
			asm volatile(PPC_COPY(%0, %1)
					: : "r"(dummy_copy_buffer), "r"(0));
		}
	}
1241
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1242

1243 1244 1245
	return last;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1260
			pr_cont("\n");
1261

1262 1263 1264 1265 1266 1267 1268 1269
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1270
		if (!__kernel_text_address(pc) ||
1271
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1272
			pr_cont("XXXXXXXX ");
1273 1274
		} else {
			if (regs->nip == pc)
1275
				pr_cont("<%08x> ", instr);
1276
			else
1277
				pr_cont("%08x ", instr);
1278 1279 1280 1281 1282
		}

		pc += sizeof(int);
	}

1283
	pr_cont("\n");
1284 1285
}

1286
struct regbit {
1287 1288
	unsigned long bit;
	const char *name;
1289 1290 1291
};

static struct regbit msr_bits[] = {
1292 1293 1294 1295 1296 1297 1298 1299 1300
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1301 1302 1303 1304
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1305
#ifdef CONFIG_BOOKE
1306
	{MSR_DE,	"DE"},
1307 1308 1309 1310
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1311 1312
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1313 1314 1315 1316 1317
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1318 1319 1320
	{0,		NULL}
};

1321
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1322
{
1323
	const char *s = "";
1324 1325 1326

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1327
			pr_cont("%s%s", s, bits->name);
1328
			s = sep;
1329
		}
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1350
		pr_cont(",TM[");
1351
		print_bits(val, msr_tm_bits, "");
1352
		pr_cont("]");
1353 1354 1355 1356 1357 1358 1359 1360
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1361
	pr_cont("<");
1362 1363
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1364
	pr_cont(">");
1365 1366 1367
}

#ifdef CONFIG_PPC64
1368
#define REG		"%016lx"
1369 1370 1371
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1372
#define REG		"%08lx"
1373 1374 1375 1376
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1377 1378 1379 1380
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1381 1382
	show_regs_print_info(KERN_DEFAULT);

1383 1384 1385
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1386
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1387
	printk("MSR: "REG" ", regs->msr);
1388
	print_msr_bits(regs->msr);
1389
	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1390
	trap = TRAP(regs);
1391
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1392
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1393
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1394
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1395
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1396
#else
1397
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1398 1399
#endif
#ifdef CONFIG_PPC64
1400
	pr_cont("SOFTE: %ld ", regs->softe);
1401 1402
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1403
	if (MSR_TM_ACTIVE(regs->msr))
1404
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1405
#endif
1406 1407

	for (i = 0;  i < 32;  i++) {
1408
		if ((i % REGS_PER_LINE) == 0)
1409 1410
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1411
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1412 1413
			break;
	}
1414
	pr_cont("\n");
1415 1416 1417 1418 1419
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1420 1421
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1422
#endif
1423
	show_stack(current, (unsigned long *) regs->gpr[1]);
1424 1425
	if (!user_mode(regs))
		show_instructions(regs);
1426 1427 1428 1429
}

void flush_thread(void)
{
1430
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1431
	flush_ptrace_hw_breakpoint(current);
1432
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1433
	set_debug_reg_defaults(&current->thread);
1434
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1435 1436 1437 1438 1439 1440 1441 1442
}

void
release_thread(struct task_struct *t)
{
}

/*
1443 1444
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1445
 */
1446
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1447
{
1448
	flush_all_to_thread(src);
1449 1450 1451 1452 1453 1454
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1455 1456 1457
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1458
	 */
1459
	__switch_to_tm(src, src);
1460

1461
	*dst = *src;
1462 1463 1464

	clear_task_ebb(dst);

1465
	return 0;
1466 1467
}

1468 1469 1470 1471 1472 1473
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1474 1475 1476
	if (radix_enabled())
		return;

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1488 1489 1490
/*
 * Copy a thread..
 */
1491

1492 1493 1494
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1495
int copy_thread(unsigned long clone_flags, unsigned long usp,
1496
		unsigned long kthread_arg, struct task_struct *p)
1497 1498 1499
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1500 1501
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1502
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1503 1504 1505
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1506 1507 1508 1509

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1510
	if (unlikely(p->flags & PF_KTHREAD)) {
1511
		/* kernel thread */
A
Al Viro 已提交
1512
		memset(childregs, 0, sizeof(struct pt_regs));
1513
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1514 1515 1516
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1517
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1518
		clear_tsk_thread_flag(p, TIF_32BIT);
1519
		childregs->softe = 1;
1520
#endif
1521
		childregs->gpr[15] = kthread_arg;
1522
		p->thread.regs = NULL;	/* no user register state */
1523
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1524
		f = ret_from_kernel_thread;
1525
	} else {
1526
		/* user thread */
1527
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1528 1529
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1530 1531
		if (usp)
			childregs->gpr[1] = usp;
1532
		p->thread.regs = childregs;
A
Al Viro 已提交
1533
		childregs->gpr[3] = 0;  /* Result from fork() */
1534 1535
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1536
			if (!is_32bit_task())
1537 1538 1539 1540 1541
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1542 1543

		f = ret_from_fork;
1544
	}
1545
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1556
	((unsigned long *)sp)[0] = 0;
1557 1558 1559 1560
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1561
#ifdef CONFIG_PPC32
1562 1563
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1564
#endif
1565 1566 1567 1568
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1569 1570 1571 1572 1573
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1574 1575
	setup_ksp_vsid(p, sp);

1576 1577
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1578
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1579
		p->thread.dscr = mfspr(SPRN_DSCR);
1580
	}
1581 1582
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1583
#endif
1584
	kregs->nip = ppc_function_entry(f);
1585 1586 1587 1588 1589 1590
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1591
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1592
{
1593 1594 1595 1596
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1597 1598 1599 1600 1601
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1602 1603
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1604 1605
	}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1616 1617 1618 1619 1620 1621
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1622

1623 1624 1625 1626 1627 1628 1629
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1630 1631 1632
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1633
	regs->msr = MSR_USER;
1634
#else
1635
	if (!is_32bit_task()) {
1636
		unsigned long entry;
1637

1638 1639 1640
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1673 1674 1675
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1676 1677 1678 1679
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1680 1681
	}
#endif
1682 1683 1684
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1685
	current->thread.load_fp = 0;
1686
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1687
	current->thread.fp_save_area = NULL;
1688
#ifdef CONFIG_ALTIVEC
1689 1690
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1691
	current->thread.vr_save_area = NULL;
1692 1693
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
1694
	current->thread.load_vec = 0;
1695 1696 1697 1698 1699 1700 1701
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1702 1703 1704 1705
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
1706
	current->thread.load_tm = 0;
1707
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1708
}
1709
EXPORT_SYMBOL(start_thread);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1724
		if (cpu_has_feature(CPU_FTR_SPE)) {
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1738 1739 1740 1741 1742 1743
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1744 1745 1746 1747
#else
		return -EINVAL;
#endif
	}
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1760 1761 1762 1763 1764 1765 1766 1767 1768
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1783
			val = tsk->thread.fpexc_mode;
1784
		} else
1785
			return -EINVAL;
1786 1787 1788 1789 1790 1791 1792 1793
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1873
int validate_sp(unsigned long sp, struct task_struct *p,
1874 1875
		       unsigned long nbytes)
{
A
Al Viro 已提交
1876
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1877 1878 1879 1880 1881

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1882
	return valid_irq_stack(sp, p, nbytes);
1883 1884
}

1885 1886
EXPORT_SYMBOL(validate_sp);

1887 1888 1889 1890 1891 1892 1893 1894 1895
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1896
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1897 1898 1899 1900
		return 0;

	do {
		sp = *(unsigned long *)sp;
1901
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1902 1903
			return 0;
		if (count > 0) {
1904
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1905 1906 1907 1908 1909 1910
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1911

1912
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1913 1914 1915 1916 1917 1918

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1919 1920 1921
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1922
	unsigned long rth = (unsigned long)return_to_handler;
1923
#endif
1924 1925 1926 1927 1928 1929

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1930
			sp = current_stack_pointer();
1931 1932 1933 1934 1935 1936 1937
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1938
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1939 1940 1941 1942
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1943
		ip = stack[STACK_FRAME_LR_SAVE];
1944
		if (!firstframe || ip != lr) {
1945
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1946
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1947
			if ((ip == rth) && curr_frame >= 0) {
1948
				pr_cont(" (%pS)",
1949 1950 1951 1952
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1953
			if (firstframe)
1954 1955
				pr_cont(" (unreliable)");
			pr_cont("\n");
1956 1957 1958 1959 1960 1961 1962
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1963 1964
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1965 1966 1967
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1968
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1969
			       regs->trap, (void *)regs->nip, (void *)lr);
1970 1971 1972 1973 1974 1975 1976
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1977
#ifdef CONFIG_PPC64
1978
/* Called with hard IRQs off */
1979
void notrace __ppc64_runlatch_on(void)
1980
{
1981
	struct thread_info *ti = current_thread_info();
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		/*
		 * Least significant bit (RUN) is the only writable bit of
		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
		 * earliest ISA where this is the case, but it's convenient.
		 */
		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
	} else {
		unsigned long ctrl;

		/*
		 * Some architectures (e.g., Cell) have writable fields other
		 * than RUN, so do the read-modify-write.
		 */
		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2001

2002
	ti->local_flags |= _TLF_RUNLATCH;
2003 2004
}

2005
/* Called with hard IRQs off */
2006
void notrace __ppc64_runlatch_off(void)
2007
{
2008
	struct thread_info *ti = current_thread_info();
2009

2010
	ti->local_flags &= ~_TLF_RUNLATCH;
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		mtspr(SPRN_CTRLT, 0);
	} else {
		unsigned long ctrl;

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2021
}
2022
#endif /* CONFIG_PPC64 */
2023

2024 2025 2026 2027 2028 2029
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
2030 2031 2032 2033 2034 2035 2036

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
2037
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2038
	else
D
Daniel Cashman 已提交
2039
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2040 2041 2042 2043 2044 2045

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
2046 2047 2048
	unsigned long base = mm->brk;
	unsigned long ret;

2049
#ifdef CONFIG_PPC_STD_MMU_64
2050 2051 2052 2053 2054
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
2055 2056
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2057 2058 2059 2060 2061 2062
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2063 2064 2065 2066 2067 2068

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2069