process.c 36.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
31
#include <linux/export.h>
32 33 34
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
35
#include <linux/utsname.h>
36
#include <linux/ftrace.h>
37
#include <linux/kernel_stat.h>
38 39
#include <linux/personality.h>
#include <linux/random.h>
40
#include <linux/hw_breakpoint.h>
41 42 43 44 45 46 47

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
48
#include <asm/machdep.h>
49
#include <asm/time.h>
50
#include <asm/runlatch.h>
51
#include <asm/syscalls.h>
52
#include <asm/switch_to.h>
53
#include <asm/tm.h>
54
#include <asm/debug.h>
55 56 57
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
58 59
#include <linux/kprobes.h>
#include <linux/kdebug.h>
60

61 62 63 64 65 66 67
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

68 69 70 71 72
extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
73
struct task_struct *last_task_used_vsx = NULL;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
struct task_struct *last_task_used_spe = NULL;
#endif

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
104
			giveup_fpu(tsk);
105 106 107 108
		}
		preempt_enable();
	}
}
109
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
		giveup_fpu(current);
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
	giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
		giveup_altivec(current);
	else
135
		giveup_altivec_notask();
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
#else
	giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
154
			giveup_altivec(tsk);
155 156 157 158
		}
		preempt_enable();
	}
}
159
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
160 161
#endif /* CONFIG_ALTIVEC */

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#ifdef CONFIG_VSX
#if 0
/* not currently used, but some crazy RAID module might want to later */
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
#else
	giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);
#endif

181 182 183 184 185 186 187
void giveup_vsx(struct task_struct *tsk)
{
	giveup_fpu(tsk);
	giveup_altivec(tsk);
	__giveup_vsx(tsk);
}

188 189 190 191 192 193 194 195 196 197 198 199 200
void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
201
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
202 203
#endif /* CONFIG_VSX */

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
229
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
230
			giveup_spe(tsk);
231 232 233 234 235 236
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

237
#ifndef CONFIG_SMP
238 239 240 241
/*
 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 * and the current task has some state, discard it.
 */
242
void discard_lazy_cpu_state(void)
243 244 245 246 247 248 249 250
{
	preempt_disable();
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
251 252 253 254
#ifdef CONFIG_VSX
	if (last_task_used_vsx == current)
		last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
255 256 257 258 259 260
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
	preempt_enable();
}
261
#endif /* CONFIG_SMP */
262

263 264 265 266 267 268
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

269
	current->thread.trap_nr = signal_code;
270 271 272 273 274 275 276 277 278 279 280 281
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
282
void do_break (struct pt_regs *regs, unsigned long address,
283 284 285 286
		    unsigned long error_code)
{
	siginfo_t info;

287
	current->thread.trap_nr = TRAP_HWBKPT;
288 289 290 291
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

292
	if (debugger_break_match(regs))
293 294
		return;

295 296
	/* Clear the breakpoint */
	hw_breakpoint_disable();
297 298 299 300 301 302 303 304

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
305
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
306

307
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
	thread->iac1 = thread->iac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	thread->iac3 = thread->iac4 = 0;
#endif
	thread->dac1 = thread->dac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	thread->dvc1 = thread->dvc2 = 0;
#endif
	thread->dbcr0 = 0;
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#else
	thread->dbcr1 = 0;
#endif
}

static void prime_debug_regs(struct thread_struct *thread)
{
342 343 344 345 346 347 348
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
	mtspr(SPRN_IAC1, thread->iac1);
	mtspr(SPRN_IAC2, thread->iac2);
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	mtspr(SPRN_IAC3, thread->iac3);
	mtspr(SPRN_IAC4, thread->iac4);
#endif
	mtspr(SPRN_DAC1, thread->dac1);
	mtspr(SPRN_DAC2, thread->dac2);
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	mtspr(SPRN_DVC1, thread->dvc1);
	mtspr(SPRN_DVC2, thread->dvc2);
#endif
	mtspr(SPRN_DBCR0, thread->dbcr0);
	mtspr(SPRN_DBCR1, thread->dbcr1);
#ifdef CONFIG_BOOKE
	mtspr(SPRN_DBCR2, thread->dbcr2);
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
static void switch_booke_debug_regs(struct thread_struct *new_thread)
{
	if ((current->thread.dbcr0 & DBCR0_IDM)
		|| (new_thread->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_thread);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
379
#ifndef CONFIG_HAVE_HW_BREAKPOINT
380 381
static void set_debug_reg_defaults(struct thread_struct *thread)
{
382 383
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
384
	set_breakpoint(&thread->hw_brk);
385
}
386
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
387 388
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

389
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
390 391
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
392
	mtspr(SPRN_DAC1, dabr);
393 394 395
#ifdef CONFIG_PPC_47x
	isync();
#endif
396 397
	return 0;
}
398
#elif defined(CONFIG_PPC_BOOK3S)
399 400
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
401
	mtspr(SPRN_DABR, dabr);
402
	mtspr(SPRN_DABRX, dabrx);
403
	return 0;
404
}
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

425 426
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
427
	unsigned long dawr, dawrx, mrd;
428 429 430 431 432 433 434 435 436

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
437 438 439 440 441 442 443 444
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
445 446 447 448 449 450 451 452

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

453
int set_breakpoint(struct arch_hw_breakpoint *brk)
454 455 456
{
	__get_cpu_var(current_brk) = *brk;

457 458 459
	if (cpu_has_feature(CPU_FTR_DAWR))
		return set_dawr(brk);

460 461
	return set_dabr(brk);
}
462

463 464 465
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
466

467 468 469 470 471 472 473 474 475 476 477
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
	 * FP & vector regs.
	 */
	thr->tm_orig_msr = thr->regs->msr;

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

	tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

525
static inline void tm_recheckpoint_new_task(struct task_struct *new)
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(&new->thread);

	if (!MSR_TM_ACTIVE(new->thread.regs->msr))
		return;
	msr = new->thread.tm_orig_msr;
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
565
#ifdef CONFIG_ALTIVEC
566 567 568 569
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
570
#endif
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
591

592 593 594 595 596 597
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	unsigned long flags;
	struct task_struct *last;
P
Peter Zijlstra 已提交
598 599 600
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
601

602 603
	__switch_to_tm(prev);

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
631 632
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
633 634
		/* VMX and FPU registers are already save here */
		__giveup_vsx(prev);
635
#endif /* CONFIG_VSX */
636 637 638 639 640 641 642 643 644 645
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
646 647 648 649 650 651 652 653 654 655
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
656 657 658 659
#ifdef CONFIG_VSX
	if (new->thread.regs && last_task_used_vsx == new)
		new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
660
#ifdef CONFIG_SPE
661 662 663 664 665 666
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
667

668 669
#endif /* CONFIG_SMP */

670
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
671
	switch_booke_debug_regs(&new->thread);
672
#else
673 674 675 676 677
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
678
	if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
679
		set_breakpoint(&new->thread.hw_brk);
680
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
681 682
#endif

683

684 685
	new_thread = &new->thread;
	old_thread = &current->thread;
686 687 688 689 690 691 692 693 694 695 696 697 698

#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
699 700 701 702 703 704 705 706 707 708 709
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
	batch = &__get_cpu_var(ppc64_tlb_batch);
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
710

711
	local_irq_save(flags);
712

713 714 715 716 717 718
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
719 720 721

	tm_recheckpoint_new_task(new);

722 723
	last = _switch(old_thread, new_thread);

P
Peter Zijlstra 已提交
724 725 726 727 728 729 730 731
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
		batch = &__get_cpu_var(ppc64_tlb_batch);
		batch->active = 1;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */

732 733 734 735 736
	local_irq_restore(flags);

	return last;
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

753 754 755 756 757 758 759 760
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

761 762 763 764
		/* We use __get_user here *only* to avoid an OOPS on a
		 * bad address because the pc *should* only be a
		 * kernel address.
		 */
765 766
		if (!__kernel_text_address(pc) ||
		     __get_user(instr, (unsigned int __user *)pc)) {
767
			printk(KERN_CONT "XXXXXXXX ");
768 769
		} else {
			if (regs->nip == pc)
770
				printk(KERN_CONT "<%08x> ", instr);
771
			else
772
				printk(KERN_CONT "%08x ", instr);
773 774 775 776 777 778 779 780 781 782 783 784
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
785 786 787 788 789 790 791 792 793
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
794 795 796 797
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
798
#ifdef CONFIG_BOOKE
799
	{MSR_DE,	"DE"},
800 801 802 803
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
804 805
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
806 807 808 809 810
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
828
#define REG		"%016lx"
829 830 831
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
832
#define REG		"%08lx"
833 834 835 836
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

837 838 839 840
void show_regs(struct pt_regs * regs)
{
	int i, trap;

841 842
	show_regs_print_info(KERN_DEFAULT);

843 844 845
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
846
	       regs, regs->trap, print_tainted(), init_utsname()->release);
847 848
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
849
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
850 851 852
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld\n", regs->softe);
#endif
853
	trap = TRAP(regs);
854 855
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
		printk("CFAR: "REG"\n", regs->orig_gpr3);
856
	if (trap == 0x300 || trap == 0x600)
857
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
858 859
		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
#else
860
		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
861
#endif
862 863

	for (i = 0;  i < 32;  i++) {
864
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
865
			printk("\nGPR%02d: ", i);
866 867
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
868 869 870 871 872 873 874 875
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
876 877
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
878
#endif
879 880 881
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
#endif
882
	show_stack(current, (unsigned long *) regs->gpr[1]);
883 884
	if (!user_mode(regs))
		show_instructions(regs);
885 886 887 888
}

void exit_thread(void)
{
889
	discard_lazy_cpu_state();
890 891 892 893
}

void flush_thread(void)
{
894
	discard_lazy_cpu_state();
895

896
#ifdef CONFIG_HAVE_HW_BREAKPOINT
897
	flush_ptrace_hw_breakpoint(current);
898
#else /* CONFIG_HAVE_HW_BREAKPOINT */
899
	set_debug_reg_defaults(&current->thread);
900
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
901 902 903 904 905 906 907 908
}

void
release_thread(struct task_struct *t)
{
}

/*
909 910
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
911
 */
912
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
913
{
914 915 916 917 918 919
	flush_fp_to_thread(src);
	flush_altivec_to_thread(src);
	flush_vsx_to_thread(src);
	flush_spe_to_thread(src);
	*dst = *src;
	return 0;
920 921 922 923 924
}

/*
 * Copy a thread..
 */
925 926
extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */

A
Alexey Dobriyan 已提交
927
int copy_thread(unsigned long clone_flags, unsigned long usp,
928
		unsigned long arg, struct task_struct *p)
929 930 931
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
932 933
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
934
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
935 936 937 938

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
939
	if (unlikely(p->flags & PF_KTHREAD)) {
940
		struct thread_info *ti = (void *)task_stack_page(p);
A
Al Viro 已提交
941
		memset(childregs, 0, sizeof(struct pt_regs));
942
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
943
		childregs->gpr[14] = usp;	/* function */
A
Al Viro 已提交
944
#ifdef CONFIG_PPC64
A
Al Viro 已提交
945
		clear_tsk_thread_flag(p, TIF_32BIT);
946
		childregs->softe = 1;
947
#endif
A
Al Viro 已提交
948
		childregs->gpr[15] = arg;
949
		p->thread.regs = NULL;	/* no user register state */
950
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
951
		f = ret_from_kernel_thread;
952
	} else {
953
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
954 955
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
956 957
		if (usp)
			childregs->gpr[1] = usp;
958
		p->thread.regs = childregs;
A
Al Viro 已提交
959
		childregs->gpr[3] = 0;  /* Result from fork() */
960 961
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
962
			if (!is_32bit_task())
963 964 965 966 967
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
968 969

		f = ret_from_fork;
970 971 972 973 974 975 976 977 978 979 980
	}
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
981
	((unsigned long *)sp)[0] = 0;
982 983 984 985
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
986 987
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
988

989 990 991 992
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

993
#ifdef CONFIG_PPC_STD_MMU_64
994
	if (mmu_has_feature(MMU_FTR_SLB)) {
P
Paul Mackerras 已提交
995
		unsigned long sp_vsid;
996
		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
997

998
		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
P
Paul Mackerras 已提交
999 1000 1001 1002 1003
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
				<< SLB_VSID_SHIFT_1T;
		else
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
				<< SLB_VSID_SHIFT;
1004
		sp_vsid |= SLB_VSID_KERNEL | llp;
1005 1006
		p->thread.ksp_vsid = sp_vsid;
	}
1007
#endif /* CONFIG_PPC_STD_MMU_64 */
1008 1009
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1010 1011
		p->thread.dscr_inherit = current->thread.dscr_inherit;
		p->thread.dscr = current->thread.dscr;
1012
	}
1013 1014
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1015
#endif
1016 1017 1018 1019 1020
	/*
	 * The PPC64 ABI makes use of a TOC to contain function 
	 * pointers.  The function (ret_from_except) is actually a pointer
	 * to the TOC entry.  The first entry is a pointer to the actual
	 * function.
A
Al Viro 已提交
1021
	 */
1022
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1023
	kregs->nip = *((unsigned long *)f);
1024
#else
A
Al Viro 已提交
1025
	kregs->nip = (unsigned long)f;
1026
#endif
1027 1028 1029 1030 1031 1032
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1033
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1034
{
1035 1036 1037 1038
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1039 1040 1041 1042 1043
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1044 1045
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1046 1047
	}

1048 1049 1050 1051 1052 1053
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1054

1055 1056 1057 1058 1059 1060 1061
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1062 1063 1064
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1065
	regs->msr = MSR_USER;
1066
#else
1067
	if (!is_32bit_task()) {
1068
		unsigned long entry, toc;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

		/* start is a relocated pointer to the function descriptor for
		 * the elf _start routine.  The first entry in the function
		 * descriptor is the entry address of _start and the second
		 * entry is the TOC value we need to use.
		 */
		__get_user(entry, (unsigned long __user *)start);
		__get_user(toc, (unsigned long __user *)start+1);

		/* Check whether the e_entry function descriptor entries
		 * need to be relocated before we can use them.
		 */
		if (load_addr != 0) {
			entry += load_addr;
			toc   += load_addr;
		}
		regs->nip = entry;
		regs->gpr[2] = toc;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1088 1089 1090 1091
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1092 1093
	}
#endif
1094
	discard_lazy_cpu_state();
1095 1096 1097
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1098
	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
1099
	current->thread.fpscr.val = 0;
1100 1101 1102
#ifdef CONFIG_ALTIVEC
	memset(current->thread.vr, 0, sizeof(current->thread.vr));
	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
1103
	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
1104 1105 1106 1107 1108 1109 1110 1111 1112
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1113 1114 1115 1116 1117 1118 1119
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
}

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1135 1136 1137 1138 1139 1140 1141
		if (cpu_has_feature(CPU_FTR_SPE)) {
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1142 1143 1144 1145
#else
		return -EINVAL;
#endif
	}
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1158 1159 1160 1161 1162 1163 1164 1165 1166
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1167 1168 1169 1170
		if (cpu_has_feature(CPU_FTR_SPE))
			val = tsk->thread.fpexc_mode;
		else
			return -EINVAL;
1171 1172 1173 1174 1175 1176 1177 1178
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1258
int validate_sp(unsigned long sp, struct task_struct *p,
1259 1260
		       unsigned long nbytes)
{
A
Al Viro 已提交
1261
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1262 1263 1264 1265 1266

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1267
	return valid_irq_stack(sp, p, nbytes);
1268 1269
}

1270 1271
EXPORT_SYMBOL(validate_sp);

1272 1273 1274 1275 1276 1277 1278 1279 1280
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1281
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1282 1283 1284 1285
		return 0;

	do {
		sp = *(unsigned long *)sp;
1286
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1287 1288
			return 0;
		if (count > 0) {
1289
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1290 1291 1292 1293 1294 1295
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1296

1297
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1298 1299 1300 1301 1302 1303

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1304 1305 1306
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1307 1308
	unsigned long rth = (unsigned long)return_to_handler;
	unsigned long mrth = -1;
1309
#ifdef CONFIG_PPC64
1310 1311 1312 1313
	extern void mod_return_to_handler(void);
	rth = *(unsigned long *)rth;
	mrth = (unsigned long)mod_return_to_handler;
	mrth = *(unsigned long *)mrth;
1314 1315
#endif
#endif
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
			asm("mr %0,1" : "=r" (sp));
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1330
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1331 1332 1333 1334
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1335
		ip = stack[STACK_FRAME_LR_SAVE];
1336
		if (!firstframe || ip != lr) {
1337
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1338
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1339
			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1340 1341 1342 1343 1344
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1355 1356
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1357 1358 1359
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1360 1361
			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
			       regs->trap, (void *)regs->nip, (void *)lr);
1362 1363 1364 1365 1366 1367 1368
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1369
#ifdef CONFIG_PPC64
1370 1371
/* Called with hard IRQs off */
void __ppc64_runlatch_on(void)
1372
{
1373
	struct thread_info *ti = current_thread_info();
1374 1375
	unsigned long ctrl;

1376 1377 1378
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1379

1380
	ti->local_flags |= _TLF_RUNLATCH;
1381 1382
}

1383
/* Called with hard IRQs off */
1384
void __ppc64_runlatch_off(void)
1385
{
1386
	struct thread_info *ti = current_thread_info();
1387 1388
	unsigned long ctrl;

1389
	ti->local_flags &= ~_TLF_RUNLATCH;
1390

1391 1392 1393
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1394
}
1395
#endif /* CONFIG_PPC64 */
1396

1397 1398 1399 1400 1401 1402
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1419 1420 1421
	unsigned long base = mm->brk;
	unsigned long ret;

1422
#ifdef CONFIG_PPC_STD_MMU_64
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1435 1436 1437 1438 1439 1440

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

unsigned long randomize_et_dyn(unsigned long base)
{
	unsigned long ret = PAGE_ALIGN(base + brk_rnd());

	if (ret < base)
		return base;

	return ret;
}