process.c 50.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45 46 47 48 49 50

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
51
#include <asm/machdep.h>
52
#include <asm/time.h>
53
#include <asm/runlatch.h>
54
#include <asm/syscalls.h>
55
#include <asm/switch_to.h>
56
#include <asm/tm.h>
57
#include <asm/debug.h>
58 59 60
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
61
#include <asm/code-patching.h>
62
#include <asm/exec.h>
63
#include <asm/livepatch.h>
64
#include <asm/cpu_has_feature.h>
65
#include <asm/asm-prototypes.h>
66

67 68
#include <linux/kprobes.h>
#include <linux/kdebug.h>
69

70 71 72 73 74 75 76
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

77 78
extern unsigned long _get_SP(void);

79
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80
static void check_if_tm_restore_required(struct task_struct *tsk)
81 82 83 84 85 86 87 88 89 90
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
91
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 93 94
		set_thread_flag(TIF_RESTORE_TM);
	}
}
95 96 97 98 99

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
100
#else
101
static inline bool msr_tm_active(unsigned long msr) { return false; }
102
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 104
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

105 106 107 108 109 110 111 112 113 114 115 116
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

117
unsigned long msr_check_and_set(unsigned long bits)
118
{
119 120
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
121

122
	newmsr = oldmsr | bits;
123 124

#ifdef CONFIG_VSX
125
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 127
		newmsr |= MSR_VSX;
#endif
128

129 130
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
131 132

	return newmsr;
133
}
134

135
void __msr_check_and_clear(unsigned long bits)
136 137 138 139 140 141 142 143 144 145 146 147 148 149
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
150
EXPORT_SYMBOL(__msr_check_and_clear);
151 152

#ifdef CONFIG_PPC_FPU
153 154
void __giveup_fpu(struct task_struct *tsk)
{
155 156
	unsigned long msr;

157
	save_fpu(tsk);
158 159
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
160 161
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
162
		msr &= ~MSR_VSX;
163
#endif
164
	tsk->thread.regs->msr = msr;
165 166
}

167 168 169 170 171
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
172
	__giveup_fpu(tsk);
173
	msr_check_and_clear(MSR_FP);
174 175 176
}
EXPORT_SYMBOL(giveup_fpu);

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
197
			 * the FP register state on context switch,
198 199 200 201
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
202
			giveup_fpu(tsk);
203 204 205 206
		}
		preempt_enable();
	}
}
207
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 209 210

void enable_kernel_fp(void)
{
211 212
	unsigned long cpumsr;

213 214
	WARN_ON(preemptible());

215
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
216

217 218
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
219 220 221 222 223 224 225 226 227
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
228
		__giveup_fpu(current);
229
	}
230 231
}
EXPORT_SYMBOL(enable_kernel_fp);
232 233

static int restore_fp(struct task_struct *tsk) {
234
	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235 236 237 238 239 240 241 242
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
243
#endif /* CONFIG_PPC_FPU */
244 245

#ifdef CONFIG_ALTIVEC
246 247
#define loadvec(thr) ((thr).load_vec)

248 249
static void __giveup_altivec(struct task_struct *tsk)
{
250 251
	unsigned long msr;

252
	save_altivec(tsk);
253 254
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
255 256
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
257
		msr &= ~MSR_VSX;
258
#endif
259
	tsk->thread.regs->msr = msr;
260 261
}

262 263 264 265
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

266
	msr_check_and_set(MSR_VEC);
267
	__giveup_altivec(tsk);
268
	msr_check_and_clear(MSR_VEC);
269 270 271
}
EXPORT_SYMBOL(giveup_altivec);

272 273
void enable_kernel_altivec(void)
{
274 275
	unsigned long cpumsr;

276 277
	WARN_ON(preemptible());

278
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
279

280 281
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
282 283 284 285 286 287 288 289 290
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
291
		__giveup_altivec(current);
292
	}
293 294 295 296 297 298 299 300 301 302 303 304 305
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
306
			giveup_altivec(tsk);
307 308 309 310
		}
		preempt_enable();
	}
}
311
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
312 313 314

static int restore_altivec(struct task_struct *tsk)
{
315 316
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317 318 319 320 321 322 323 324 325 326 327
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 329
#endif /* CONFIG_ALTIVEC */

330
#ifdef CONFIG_VSX
331
static void __giveup_vsx(struct task_struct *tsk)
332 333 334 335 336
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
337 338 339 340 341 342 343 344
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345
	__giveup_vsx(tsk);
346
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
347
}
348 349 350 351 352 353 354 355

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
356

357 358
void enable_kernel_vsx(void)
{
359 360
	unsigned long cpumsr;

361 362
	WARN_ON(preemptible());

363
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
364

365
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
366
		check_if_tm_restore_required(current);
367 368 369 370 371 372 373 374 375
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
376 377 378 379 380
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
381
	}
382 383 384 385 386 387 388 389 390 391 392 393 394 395
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
396
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
397 398 399 400 401 402 403 404 405 406 407 408

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
409
static inline void save_vsx(struct task_struct *tsk) { }
410 411
#endif /* CONFIG_VSX */

412
#ifdef CONFIG_SPE
413 414 415 416
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

417
	msr_check_and_set(MSR_SPE);
418
	__giveup_spe(tsk);
419
	msr_check_and_clear(MSR_SPE);
420 421
}
EXPORT_SYMBOL(giveup_spe);
422 423 424 425 426

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

427
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
428

429 430
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
431
		__giveup_spe(current);
432
	}
433 434 435 436 437 438 439 440 441
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
442
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
443
			giveup_spe(tsk);
444 445 446 447 448 449
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
487
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

510 511 512 513
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

514 515
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

555 556 557 558 559 560 561 562 563 564 565 566 567
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
568 569 570 571 572 573 574

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

575 576 577 578 579
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
580
		save_all(tsk);
581 582 583 584 585 586 587 588 589 590 591

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

592 593 594 595 596 597
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

598
	current->thread.trap_nr = signal_code;
599 600 601 602 603 604 605 606 607 608 609 610
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
611
void do_break (struct pt_regs *regs, unsigned long address,
612 613 614 615
		    unsigned long error_code)
{
	siginfo_t info;

616
	current->thread.trap_nr = TRAP_HWBKPT;
617 618 619 620
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

621
	if (debugger_break_match(regs))
622 623
		return;

624 625
	/* Clear the breakpoint */
	hw_breakpoint_disable();
626 627 628 629 630 631 632 633

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
634
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
635

636
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
637

638 639 640 641 642 643
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
644
	thread->debug.iac1 = thread->debug.iac2 = 0;
645
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
646
	thread->debug.iac3 = thread->debug.iac4 = 0;
647
#endif
648
	thread->debug.dac1 = thread->debug.dac2 = 0;
649
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
650
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
651
#endif
652
	thread->debug.dbcr0 = 0;
653 654 655 656
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
657
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
658 659 660 661 662
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
663
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
664
#else
665
	thread->debug.dbcr1 = 0;
666 667 668
#endif
}

669
static void prime_debug_regs(struct debug_reg *debug)
670
{
671 672 673 674 675 676 677
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

678 679
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
680
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
681 682
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
683
#endif
684 685
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
686
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
687 688
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
689
#endif
690 691
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
692
#ifdef CONFIG_BOOKE
693
	mtspr(SPRN_DBCR2, debug->dbcr2);
694 695 696 697 698 699 700
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
701
void switch_booke_debug_regs(struct debug_reg *new_debug)
702
{
703
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
704 705
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
706
}
707
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
708
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
709
#ifndef CONFIG_HAVE_HW_BREAKPOINT
710 711
static void set_debug_reg_defaults(struct thread_struct *thread)
{
712 713
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
714
	set_breakpoint(&thread->hw_brk);
715
}
716
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
717 718
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

719
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
720 721
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
722
	mtspr(SPRN_DAC1, dabr);
723 724 725
#ifdef CONFIG_PPC_47x
	isync();
#endif
726 727
	return 0;
}
728
#elif defined(CONFIG_PPC_BOOK3S)
729 730
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
731
	mtspr(SPRN_DABR, dabr);
732 733
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
734
	return 0;
735
}
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

778 779
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
780
	unsigned long dawr, dawrx, mrd;
781 782 783 784 785 786 787 788 789

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
790 791 792 793 794 795 796 797
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
798 799 800 801 802 803 804 805

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

806
void __set_breakpoint(struct arch_hw_breakpoint *brk)
807
{
808
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
809

810
	if (cpu_has_feature(CPU_FTR_DAWR))
811 812 813
		set_dawr(brk);
	else
		set_dabr(brk);
814
}
815

816 817 818 819 820 821 822
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

823 824 825
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
826

827 828 829 830 831 832 833 834 835 836 837
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
838

839
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
840 841 842 843 844 845

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

846 847 848
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
849 850 851 852 853 854 855 856 857 858 859 860 861
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
862
	 * benefit of checking for a potential TM bad thing exception.
863 864 865 866
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));

886
	giveup_all(container_of(thr, struct task_struct, thread));
887

888
	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
889 890 891 892 893 894 895 896
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

897 898 899 900 901 902 903
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
904 905
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

923
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
924 925 926 927 928 929 930 931 932 933 934 935 936

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

937 938 939 940 941 942 943 944
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

945 946 947
	if (!(thread->regs->msr & MSR_TM))
		return;

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

965
static inline void tm_recheckpoint_new_task(struct task_struct *new)
966 967 968 969 970 971 972 973 974 975 976
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
977
	 * unavailable later, we are unable to determine which set of FP regs
978 979
	 * need to be restored.
	 */
980
	if (!tm_enabled(new))
981 982
		return;

983 984
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
985
		return;
986
	}
987
	msr = new->thread.ckpt_regs.msr;
988 989 990 991 992 993 994
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	tm_recheckpoint(&new->thread, msr);

995 996 997 998 999 1000
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1001 1002 1003 1004 1005 1006

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

1007 1008
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
1009 1010
{
	if (cpu_has_feature(CPU_FTR_TM)) {
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1021
		tm_recheckpoint_new_task(new);
1022 1023
	}
}
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1043 1044 1045 1046 1047 1048
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1049 1050 1051 1052
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1053
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1054
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1055

1056 1057 1058
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1059
#ifdef CONFIG_ALTIVEC
1060 1061 1062
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1063 1064
	restore_math(regs);

1065 1066 1067
	regs->msr |= msr_diff;
}

1068 1069
#else
#define tm_recheckpoint_new_task(new)
1070
#define __switch_to_tm(prev, new)
1071
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1072

1073 1074 1075
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1076
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1112
		if (new_thread->dscr_inherit)
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1127 1128 1129
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1130 1131 1132 1133 1134 1135
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1136 1137 1138 1139 1140
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1141 1142 1143
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1144

1145 1146 1147
	new_thread = &new->thread;
	old_thread = &current->thread;

1148 1149
	WARN_ON(!irqs_disabled());

1150 1151 1152 1153 1154
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1155
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1156 1157 1158 1159 1160 1161
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1162 1163
#endif /* CONFIG_PPC64 */

1164
#ifdef CONFIG_PPC_STD_MMU_64
1165
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1166 1167 1168 1169 1170 1171
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1172
#endif /* CONFIG_PPC_STD_MMU_64 */
1173

A
Anton Blanchard 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1196 1197
	__switch_to_tm(prev, new);

1198 1199 1200 1201 1202 1203
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1204

1205 1206 1207 1208 1209 1210 1211
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1212 1213
	restore_sprs(old_thread, new_thread);

1214 1215
	last = _switch(old_thread, new_thread);

1216
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1217 1218
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1219
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1220 1221
		batch->active = 1;
	}
1222 1223 1224

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);
1225
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1226

1227 1228 1229
	return last;
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1244
			pr_cont("\n");
1245

1246 1247 1248 1249 1250 1251 1252 1253
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1254
		if (!__kernel_text_address(pc) ||
1255
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1256
			pr_cont("XXXXXXXX ");
1257 1258
		} else {
			if (regs->nip == pc)
1259
				pr_cont("<%08x> ", instr);
1260
			else
1261
				pr_cont("%08x ", instr);
1262 1263 1264 1265 1266
		}

		pc += sizeof(int);
	}

1267
	pr_cont("\n");
1268 1269
}

1270
struct regbit {
1271 1272
	unsigned long bit;
	const char *name;
1273 1274 1275
};

static struct regbit msr_bits[] = {
1276 1277 1278 1279 1280 1281 1282 1283 1284
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1285 1286 1287 1288
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1289
#ifdef CONFIG_BOOKE
1290
	{MSR_DE,	"DE"},
1291 1292 1293 1294
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1295 1296
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1297 1298 1299 1300 1301
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1302 1303 1304
	{0,		NULL}
};

1305
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1306
{
1307
	const char *s = "";
1308 1309 1310

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1311
			pr_cont("%s%s", s, bits->name);
1312
			s = sep;
1313
		}
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1334
		pr_cont(",TM[");
1335
		print_bits(val, msr_tm_bits, "");
1336
		pr_cont("]");
1337 1338 1339 1340 1341 1342 1343 1344
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1345
	pr_cont("<");
1346 1347
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1348
	pr_cont(">");
1349 1350 1351
}

#ifdef CONFIG_PPC64
1352
#define REG		"%016lx"
1353 1354 1355
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1356
#define REG		"%08lx"
1357 1358 1359 1360
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1361 1362 1363 1364
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1365 1366
	show_regs_print_info(KERN_DEFAULT);

1367 1368 1369
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1370
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1371
	printk("MSR: "REG" ", regs->msr);
1372
	print_msr_bits(regs->msr);
1373
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1374
	trap = TRAP(regs);
1375
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1376
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1377
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1378
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1379
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1380
#else
1381
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1382 1383
#endif
#ifdef CONFIG_PPC64
1384
	pr_cont("SOFTE: %ld ", regs->softe);
1385 1386
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1387
	if (MSR_TM_ACTIVE(regs->msr))
1388
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1389
#endif
1390 1391

	for (i = 0;  i < 32;  i++) {
1392
		if ((i % REGS_PER_LINE) == 0)
1393 1394
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1395
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1396 1397
			break;
	}
1398
	pr_cont("\n");
1399 1400 1401 1402 1403
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1404 1405
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1406
#endif
1407
	show_stack(current, (unsigned long *) regs->gpr[1]);
1408 1409
	if (!user_mode(regs))
		show_instructions(regs);
1410 1411 1412 1413
}

void flush_thread(void)
{
1414
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1415
	flush_ptrace_hw_breakpoint(current);
1416
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1417
	set_debug_reg_defaults(&current->thread);
1418
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1419 1420 1421 1422 1423 1424 1425 1426
}

void
release_thread(struct task_struct *t)
{
}

/*
1427 1428
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1429
 */
1430
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1431
{
1432
	flush_all_to_thread(src);
1433 1434 1435 1436 1437 1438
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1439 1440 1441
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1442
	 */
1443
	__switch_to_tm(src, src);
1444

1445
	*dst = *src;
1446 1447 1448

	clear_task_ebb(dst);

1449
	return 0;
1450 1451
}

1452 1453 1454 1455 1456 1457
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1458 1459 1460
	if (radix_enabled())
		return;

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1472 1473 1474
/*
 * Copy a thread..
 */
1475

1476 1477 1478
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1479
int copy_thread(unsigned long clone_flags, unsigned long usp,
1480
		unsigned long kthread_arg, struct task_struct *p)
1481 1482 1483
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1484 1485
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1486
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1487 1488 1489
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1490 1491 1492 1493

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1494
	if (unlikely(p->flags & PF_KTHREAD)) {
1495
		/* kernel thread */
A
Al Viro 已提交
1496
		memset(childregs, 0, sizeof(struct pt_regs));
1497
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1498 1499 1500
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1501
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1502
		clear_tsk_thread_flag(p, TIF_32BIT);
1503
		childregs->softe = 1;
1504
#endif
1505
		childregs->gpr[15] = kthread_arg;
1506
		p->thread.regs = NULL;	/* no user register state */
1507
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1508
		f = ret_from_kernel_thread;
1509
	} else {
1510
		/* user thread */
1511
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1512 1513
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1514 1515
		if (usp)
			childregs->gpr[1] = usp;
1516
		p->thread.regs = childregs;
A
Al Viro 已提交
1517
		childregs->gpr[3] = 0;  /* Result from fork() */
1518 1519
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1520
			if (!is_32bit_task())
1521 1522 1523 1524 1525
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1526 1527

		f = ret_from_fork;
1528
	}
1529
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1540
	((unsigned long *)sp)[0] = 0;
1541 1542 1543 1544
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1545
#ifdef CONFIG_PPC32
1546 1547
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1548
#endif
1549 1550 1551 1552
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1553 1554 1555 1556 1557
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1558 1559
	setup_ksp_vsid(p, sp);

1560 1561
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1562
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1563
		p->thread.dscr = mfspr(SPRN_DSCR);
1564
	}
1565 1566
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1567
#endif
1568
	kregs->nip = ppc_function_entry(f);
1569 1570 1571 1572 1573 1574
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1575
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1576
{
1577 1578 1579 1580
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1581 1582 1583 1584 1585
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1586 1587
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1588 1589
	}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1600 1601 1602 1603 1604 1605
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1606

1607 1608 1609 1610 1611 1612 1613
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1614 1615 1616
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1617
	regs->msr = MSR_USER;
1618
#else
1619
	if (!is_32bit_task()) {
1620
		unsigned long entry;
1621

1622 1623 1624
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1625

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1657 1658 1659
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1660 1661 1662 1663
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1664 1665
	}
#endif
1666 1667 1668
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1669
	current->thread.load_fp = 0;
1670
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1671
	current->thread.fp_save_area = NULL;
1672
#ifdef CONFIG_ALTIVEC
1673 1674
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1675
	current->thread.vr_save_area = NULL;
1676 1677
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
1678
	current->thread.load_vec = 0;
1679 1680 1681 1682 1683 1684 1685
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1686 1687 1688 1689 1690
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1691
}
1692
EXPORT_SYMBOL(start_thread);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1707
		if (cpu_has_feature(CPU_FTR_SPE)) {
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1721 1722 1723 1724 1725 1726
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1727 1728 1729 1730
#else
		return -EINVAL;
#endif
	}
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1743 1744 1745 1746 1747 1748 1749 1750 1751
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1766
			val = tsk->thread.fpexc_mode;
1767
		} else
1768
			return -EINVAL;
1769 1770 1771 1772 1773 1774 1775 1776
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1856
int validate_sp(unsigned long sp, struct task_struct *p,
1857 1858
		       unsigned long nbytes)
{
A
Al Viro 已提交
1859
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1860 1861 1862 1863 1864

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1865
	return valid_irq_stack(sp, p, nbytes);
1866 1867
}

1868 1869
EXPORT_SYMBOL(validate_sp);

1870 1871 1872 1873 1874 1875 1876 1877 1878
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1879
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1880 1881 1882 1883
		return 0;

	do {
		sp = *(unsigned long *)sp;
1884
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1885 1886
			return 0;
		if (count > 0) {
1887
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1888 1889 1890 1891 1892 1893
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1894

1895
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1896 1897 1898 1899 1900 1901

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1902 1903 1904
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1905
	unsigned long rth = (unsigned long)return_to_handler;
1906
#endif
1907 1908 1909 1910 1911 1912

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1913
			sp = current_stack_pointer();
1914 1915 1916 1917 1918 1919 1920
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1921
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1922 1923 1924 1925
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1926
		ip = stack[STACK_FRAME_LR_SAVE];
1927
		if (!firstframe || ip != lr) {
1928
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1929
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1930
			if ((ip == rth) && curr_frame >= 0) {
1931
				pr_cont(" (%pS)",
1932 1933 1934 1935
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1936
			if (firstframe)
1937 1938
				pr_cont(" (unreliable)");
			pr_cont("\n");
1939 1940 1941 1942 1943 1944 1945
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1946 1947
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1948 1949 1950
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1951
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1952
			       regs->trap, (void *)regs->nip, (void *)lr);
1953 1954 1955 1956 1957 1958 1959
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1960
#ifdef CONFIG_PPC64
1961
/* Called with hard IRQs off */
1962
void notrace __ppc64_runlatch_on(void)
1963
{
1964
	struct thread_info *ti = current_thread_info();
1965 1966
	unsigned long ctrl;

1967 1968 1969
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1970

1971
	ti->local_flags |= _TLF_RUNLATCH;
1972 1973
}

1974
/* Called with hard IRQs off */
1975
void notrace __ppc64_runlatch_off(void)
1976
{
1977
	struct thread_info *ti = current_thread_info();
1978 1979
	unsigned long ctrl;

1980
	ti->local_flags &= ~_TLF_RUNLATCH;
1981

1982 1983 1984
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1985
}
1986
#endif /* CONFIG_PPC64 */
1987

1988 1989 1990 1991 1992 1993
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1994 1995 1996 1997 1998 1999 2000

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
2001
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2002
	else
D
Daniel Cashman 已提交
2003
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2004 2005 2006 2007 2008 2009

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
2010 2011 2012
	unsigned long base = mm->brk;
	unsigned long ret;

2013
#ifdef CONFIG_PPC_STD_MMU_64
2014 2015 2016 2017 2018
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
2019 2020
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2021 2022 2023 2024 2025 2026
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2027 2028 2029 2030 2031 2032

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2033