process.c 55.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45 46 47 48 49 50

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
51
#include <asm/machdep.h>
52
#include <asm/time.h>
53
#include <asm/runlatch.h>
54
#include <asm/syscalls.h>
55
#include <asm/switch_to.h>
56
#include <asm/tm.h>
57
#include <asm/debug.h>
58 59 60
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
61
#include <asm/code-patching.h>
62
#include <asm/exec.h>
63
#include <asm/livepatch.h>
64
#include <asm/cpu_has_feature.h>
65
#include <asm/asm-prototypes.h>
66

67 68
#include <linux/kprobes.h>
#include <linux/kdebug.h>
69

70 71 72 73 74 75 76
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

77 78
extern unsigned long _get_SP(void);

79
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 81 82 83 84 85 86
/*
 * Are we running in "Suspend disabled" mode? If so we have to block any
 * sigreturn that would get us into suspended state, and we also warn in some
 * other paths that we should never reach with suspend disabled.
 */
bool tm_suspend_disabled __ro_after_init = false;

87
static void check_if_tm_restore_required(struct task_struct *tsk)
88 89 90 91 92 93 94 95 96 97
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
98
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99 100 101
		set_thread_flag(TIF_RESTORE_TM);
	}
}
102 103 104 105 106

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
107 108 109 110 111 112 113 114 115 116 117 118

static bool tm_active_with_fp(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_FP);
}

static bool tm_active_with_altivec(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_VEC);
}
119
#else
120
static inline bool msr_tm_active(unsigned long msr) { return false; }
121
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
122 123
static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
124 125
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

126 127 128 129 130 131 132 133 134 135 136 137
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

138
unsigned long msr_check_and_set(unsigned long bits)
139
{
140 141
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
142

143
	newmsr = oldmsr | bits;
144 145

#ifdef CONFIG_VSX
146
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147 148
		newmsr |= MSR_VSX;
#endif
149

150 151
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
152 153

	return newmsr;
154
}
155

156
void __msr_check_and_clear(unsigned long bits)
157 158 159 160 161 162 163 164 165 166 167 168 169 170
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
171
EXPORT_SYMBOL(__msr_check_and_clear);
172 173

#ifdef CONFIG_PPC_FPU
174 175
void __giveup_fpu(struct task_struct *tsk)
{
176 177
	unsigned long msr;

178
	save_fpu(tsk);
179 180
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
181 182
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
183
		msr &= ~MSR_VSX;
184
#endif
185
	tsk->thread.regs->msr = msr;
186 187
}

188 189 190 191 192
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
193
	__giveup_fpu(tsk);
194
	msr_check_and_clear(MSR_FP);
195 196 197
}
EXPORT_SYMBOL(giveup_fpu);

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
218
			 * the FP register state on context switch,
219 220 221 222
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
223
			giveup_fpu(tsk);
224 225 226 227
		}
		preempt_enable();
	}
}
228
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
229 230 231

void enable_kernel_fp(void)
{
232 233
	unsigned long cpumsr;

234 235
	WARN_ON(preemptible());

236
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
237

238 239
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
240 241 242 243 244 245 246 247 248
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
249
		__giveup_fpu(current);
250
	}
251 252
}
EXPORT_SYMBOL(enable_kernel_fp);
253

254 255
static int restore_fp(struct task_struct *tsk)
{
256
	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
257 258 259 260 261 262 263 264
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
265
#endif /* CONFIG_PPC_FPU */
266 267

#ifdef CONFIG_ALTIVEC
268 269
#define loadvec(thr) ((thr).load_vec)

270 271
static void __giveup_altivec(struct task_struct *tsk)
{
272 273
	unsigned long msr;

274
	save_altivec(tsk);
275 276
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
277 278
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
279
		msr &= ~MSR_VSX;
280
#endif
281
	tsk->thread.regs->msr = msr;
282 283
}

284 285 286 287
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

288
	msr_check_and_set(MSR_VEC);
289
	__giveup_altivec(tsk);
290
	msr_check_and_clear(MSR_VEC);
291 292 293
}
EXPORT_SYMBOL(giveup_altivec);

294 295
void enable_kernel_altivec(void)
{
296 297
	unsigned long cpumsr;

298 299
	WARN_ON(preemptible());

300
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
301

302 303
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
304 305 306 307 308 309 310 311 312
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
313
		__giveup_altivec(current);
314
	}
315 316 317 318 319 320 321 322 323 324 325 326 327
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
328
			giveup_altivec(tsk);
329 330 331 332
		}
		preempt_enable();
	}
}
333
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
334 335 336

static int restore_altivec(struct task_struct *tsk)
{
337
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
338
		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
339 340 341 342 343 344 345 346 347 348 349
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
350 351
#endif /* CONFIG_ALTIVEC */

352
#ifdef CONFIG_VSX
353
static void __giveup_vsx(struct task_struct *tsk)
354
{
355 356 357 358 359 360 361 362 363 364
	unsigned long msr = tsk->thread.regs->msr;

	/*
	 * We should never be ssetting MSR_VSX without also setting
	 * MSR_FP and MSR_VEC
	 */
	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));

	/* __giveup_fpu will clear MSR_VSX */
	if (msr & MSR_FP)
365
		__giveup_fpu(tsk);
366
	if (msr & MSR_VEC)
367
		__giveup_altivec(tsk);
368 369 370 371 372 373 374
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
375
	__giveup_vsx(tsk);
376
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
377
}
378

379 380
void enable_kernel_vsx(void)
{
381 382
	unsigned long cpumsr;

383 384
	WARN_ON(preemptible());

385
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
386

387 388
	if (current->thread.regs &&
	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
389
		check_if_tm_restore_required(current);
390 391 392 393 394 395 396 397 398
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
399
		__giveup_vsx(current);
A
Anton Blanchard 已提交
400
	}
401 402 403 404 405 406 407
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
408
		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
409 410 411 412 413 414
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
415
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
416 417 418 419 420 421 422 423 424 425 426 427

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
428 429
#endif /* CONFIG_VSX */

430
#ifdef CONFIG_SPE
431 432 433 434
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

435
	msr_check_and_set(MSR_SPE);
436
	__giveup_spe(tsk);
437
	msr_check_and_clear(MSR_SPE);
438 439
}
EXPORT_SYMBOL(giveup_spe);
440 441 442 443 444

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

445
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
446

447 448
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
449
		__giveup_spe(current);
450
	}
451 452 453 454 455 456 457 458 459
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
460
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
461
			giveup_spe(tsk);
462 463 464 465 466 467
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
505
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
506

507 508
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

A
Anton Blanchard 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

526 527 528 529
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

530 531
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

571 572 573 574 575 576 577
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

	if (usermsr & MSR_FP)
		save_fpu(tsk);

	if (usermsr & MSR_VEC)
		save_altivec(tsk);
578 579 580 581 582 583 584

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

585 586 587 588 589
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
590
		save_all(tsk);
591 592 593 594 595 596 597 598 599 600 601

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

602 603 604 605 606 607
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

608
	current->thread.trap_nr = signal_code;
609 610 611 612 613 614 615 616 617 618 619 620
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
621
void do_break (struct pt_regs *regs, unsigned long address,
622 623 624 625
		    unsigned long error_code)
{
	siginfo_t info;

626
	current->thread.trap_nr = TRAP_HWBKPT;
627 628 629 630
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

631
	if (debugger_break_match(regs))
632 633
		return;

634 635
	/* Clear the breakpoint */
	hw_breakpoint_disable();
636 637 638 639 640 641 642 643

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
644
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
645

646
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647

648 649 650 651 652 653
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
654
	thread->debug.iac1 = thread->debug.iac2 = 0;
655
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
656
	thread->debug.iac3 = thread->debug.iac4 = 0;
657
#endif
658
	thread->debug.dac1 = thread->debug.dac2 = 0;
659
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
661
#endif
662
	thread->debug.dbcr0 = 0;
663 664 665 666
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
667
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668 669 670 671 672
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
673
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674
#else
675
	thread->debug.dbcr1 = 0;
676 677 678
#endif
}

679
static void prime_debug_regs(struct debug_reg *debug)
680
{
681 682 683 684 685 686 687
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

688 689
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
690
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
691 692
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
693
#endif
694 695
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
696
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697 698
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
699
#endif
700 701
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
702
#ifdef CONFIG_BOOKE
703
	mtspr(SPRN_DBCR2, debug->dbcr2);
704 705 706 707 708 709 710
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
711
void switch_booke_debug_regs(struct debug_reg *new_debug)
712
{
713
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714 715
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
716
}
717
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
719
#ifndef CONFIG_HAVE_HW_BREAKPOINT
720 721
static void set_debug_reg_defaults(struct thread_struct *thread)
{
722 723
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
724
	set_breakpoint(&thread->hw_brk);
725
}
726
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
727 728
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

729
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
730 731
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
732
	mtspr(SPRN_DAC1, dabr);
733 734 735
#ifdef CONFIG_PPC_47x
	isync();
#endif
736 737
	return 0;
}
738
#elif defined(CONFIG_PPC_BOOK3S)
739 740
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
741
	mtspr(SPRN_DABR, dabr);
742 743
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
744
	return 0;
745
}
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

788 789
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
790
	unsigned long dawr, dawrx, mrd;
791 792 793 794 795 796 797 798 799

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
800 801 802 803 804 805 806 807
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
808 809 810 811 812 813 814 815

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

816
void __set_breakpoint(struct arch_hw_breakpoint *brk)
817
{
818
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
819

820
	if (cpu_has_feature(CPU_FTR_DAWR))
821 822 823
		set_dawr(brk);
	else
		set_dabr(brk);
824
}
825

826 827 828 829 830 831 832
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

833 834 835
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
836

837 838 839 840 841 842 843 844 845 846 847
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
848

849
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
850 851 852 853 854 855

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

856 857 858
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
859 860 861 862 863 864 865 866 867 868 869 870 871
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
872
	 * benefit of checking for a potential TM bad thing exception.
873 874 875 876
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

877 878
	giveup_all(container_of(thr, struct task_struct, thread));

879 880
	tm_reclaim(thr, cause);

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));
899 900 901 902 903 904 905 906
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

907 908 909 910 911 912 913
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
914 915
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
916 917 918 919 920 921 922 923 924 925 926
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

927 928
	WARN_ON(tm_suspend_disabled);

929 930 931 932 933 934
	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

935
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
936 937 938 939 940 941 942 943 944 945 946 947 948

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

949
extern void __tm_recheckpoint(struct thread_struct *thread);
950

951
void tm_recheckpoint(struct thread_struct *thread)
952 953 954
{
	unsigned long flags;

955 956 957
	if (!(thread->regs->msr & MSR_TM))
		return;

958 959 960 961 962 963 964 965 966 967 968 969
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

970
	__tm_recheckpoint(thread);
971 972 973 974

	local_irq_restore(flags);
}

975
static inline void tm_recheckpoint_new_task(struct task_struct *new)
976 977 978 979 980 981 982 983 984
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
985
	 * unavailable later, we are unable to determine which set of FP regs
986 987
	 * need to be restored.
	 */
988
	if (!tm_enabled(new))
989 990
		return;

991 992
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
993
		return;
994
	}
995
	/* Recheckpoint to restore original checkpointed register state. */
996 997
	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
		 new->pid, new->thread.regs->msr);
998

999
	tm_recheckpoint(&new->thread);
1000

1001 1002 1003 1004 1005 1006
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1007 1008 1009 1010 1011 1012

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

1013 1014
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
1015 1016
{
	if (cpu_has_feature(CPU_FTR_TM)) {
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1027
		tm_recheckpoint_new_task(new);
1028 1029
	}
}
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1049 1050 1051 1052 1053 1054
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1055 1056 1057 1058
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1059
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1060
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1061

1062 1063 1064
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1065
#ifdef CONFIG_ALTIVEC
1066 1067 1068
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1069 1070
	restore_math(regs);

1071 1072 1073
	regs->msr |= msr_diff;
}

1074 1075
#else
#define tm_recheckpoint_new_task(new)
1076
#define __switch_to_tm(prev, new)
1077
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1078

1079 1080 1081
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1082
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1118
		if (new_thread->dscr_inherit)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1133 1134 1135
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1136 1137 1138
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
1139 1140 1141 1142

	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
	    old_thread->tidr != new_thread->tidr)
		mtspr(SPRN_TIDR, new_thread->tidr);
1143 1144 1145
#endif
}

1146 1147 1148 1149 1150
#ifdef CONFIG_PPC_BOOK3S_64
#define CP_SIZE 128
static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
#endif

1151 1152 1153 1154 1155
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1156 1157 1158
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1159

1160 1161 1162
	new_thread = &new->thread;
	old_thread = &current->thread;

1163 1164
	WARN_ON(!irqs_disabled());

1165 1166 1167 1168 1169
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1170
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1171 1172 1173 1174 1175 1176
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1177 1178
#endif /* CONFIG_PPC64 */

1179
#ifdef CONFIG_PPC_BOOK3S_64
1180
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1181 1182 1183 1184 1185 1186
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1187
#endif /* CONFIG_PPC_BOOK3S_64 */
1188

A
Anton Blanchard 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1211 1212
	__switch_to_tm(prev, new);

1213 1214 1215 1216 1217 1218 1219 1220
	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}
1221

1222 1223 1224 1225 1226 1227 1228
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1229 1230
	restore_sprs(old_thread, new_thread);

1231 1232
	last = _switch(old_thread, new_thread);

1233
#ifdef CONFIG_PPC_BOOK3S_64
P
Peter Zijlstra 已提交
1234 1235
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1236
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1237 1238
		batch->active = 1;
	}
1239

1240
	if (current_thread_info()->task->thread.regs) {
1241
		restore_math(current_thread_info()->task->thread.regs);
1242 1243 1244 1245 1246

		/*
		 * The copy-paste buffer can only store into foreign real
		 * addresses, so unprivileged processes can not see the
		 * data or use it in any way unless they have foreign real
1247 1248 1249 1250 1251 1252 1253
		 * mappings. If the new process has the foreign real address
		 * mappings, we must issue a cp_abort to clear any state and
		 * prevent snooping, corruption or a covert channel.
		 *
		 * DD1 allows paste into normal system memory so we do an
		 * unpaired copy, rather than cp_abort, to clear the buffer,
		 * since cp_abort is quite expensive.
1254
		 */
1255 1256 1257
		if (current_thread_info()->task->thread.used_vas) {
			asm volatile(PPC_CP_ABORT);
		} else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1258 1259 1260 1261
			asm volatile(PPC_COPY(%0, %1)
					: : "r"(dummy_copy_buffer), "r"(0));
		}
	}
1262
#endif /* CONFIG_PPC_BOOK3S_64 */
P
Peter Zijlstra 已提交
1263

1264 1265 1266
	return last;
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1281
			pr_cont("\n");
1282

1283 1284 1285 1286 1287 1288 1289 1290
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1291
		if (!__kernel_text_address(pc) ||
1292
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1293
			pr_cont("XXXXXXXX ");
1294 1295
		} else {
			if (regs->nip == pc)
1296
				pr_cont("<%08x> ", instr);
1297
			else
1298
				pr_cont("%08x ", instr);
1299 1300 1301 1302 1303
		}

		pc += sizeof(int);
	}

1304
	pr_cont("\n");
1305 1306
}

1307
struct regbit {
1308 1309
	unsigned long bit;
	const char *name;
1310 1311 1312
};

static struct regbit msr_bits[] = {
1313 1314 1315 1316 1317 1318 1319 1320 1321
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1322 1323 1324 1325
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1326
#ifdef CONFIG_BOOKE
1327
	{MSR_DE,	"DE"},
1328 1329 1330 1331
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1332 1333
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1334 1335 1336 1337 1338
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1339 1340 1341
	{0,		NULL}
};

1342
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1343
{
1344
	const char *s = "";
1345 1346 1347

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1348
			pr_cont("%s%s", s, bits->name);
1349
			s = sep;
1350
		}
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1371
		pr_cont(",TM[");
1372
		print_bits(val, msr_tm_bits, "");
1373
		pr_cont("]");
1374 1375 1376 1377 1378 1379 1380 1381
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1382
	pr_cont("<");
1383 1384
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1385
	pr_cont(">");
1386 1387 1388
}

#ifdef CONFIG_PPC64
1389
#define REG		"%016lx"
1390 1391 1392
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1393
#define REG		"%08lx"
1394 1395 1396 1397
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1398 1399 1400 1401
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1402 1403
	show_regs_print_info(KERN_DEFAULT);

1404
	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1405 1406
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1407
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1408
	printk("MSR:  "REG" ", regs->msr);
1409
	print_msr_bits(regs->msr);
1410
	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1411
	trap = TRAP(regs);
1412
	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1413
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1414
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1415
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1416
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1417
#else
1418
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1419 1420
#endif
#ifdef CONFIG_PPC64
1421
	pr_cont("SOFTE: %ld ", regs->softe);
1422 1423
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1424
	if (MSR_TM_ACTIVE(regs->msr))
1425
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1426
#endif
1427 1428

	for (i = 0;  i < 32;  i++) {
1429
		if ((i % REGS_PER_LINE) == 0)
1430 1431
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1432
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1433 1434
			break;
	}
1435
	pr_cont("\n");
1436 1437 1438 1439 1440
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1441 1442
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1443
#endif
1444
	show_stack(current, (unsigned long *) regs->gpr[1]);
1445 1446
	if (!user_mode(regs))
		show_instructions(regs);
1447 1448 1449 1450
}

void flush_thread(void)
{
1451
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1452
	flush_ptrace_hw_breakpoint(current);
1453
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1454
	set_debug_reg_defaults(&current->thread);
1455
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1456 1457
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
int set_thread_uses_vas(void)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -EINVAL;

	current->thread.used_vas = 1;

	/*
	 * Even a process that has no foreign real address mapping can use
	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
	 * to clear any pending COPY and prevent a covert channel.
	 *
	 * __switch_to() will issue CP_ABORT on future context switches.
	 */
	asm volatile(PPC_CP_ABORT);

#endif /* CONFIG_PPC_BOOK3S_64 */
	return 0;
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
#ifdef CONFIG_PPC64
static DEFINE_SPINLOCK(vas_thread_id_lock);
static DEFINE_IDA(vas_thread_ida);

/*
 * We need to assign a unique thread id to each thread in a process.
 *
 * This thread id, referred to as TIDR, and separate from the Linux's tgid,
 * is intended to be used to direct an ASB_Notify from the hardware to the
 * thread, when a suitable event occurs in the system.
 *
 * One such event is a "paste" instruction in the context of Fast Thread
 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
 * (VAS) in POWER9.
 *
 * To get a unique TIDR per process we could simply reuse task_pid_nr() but
 * the problem is that task_pid_nr() is not yet available copy_thread() is
 * called. Fixing that would require changing more intrusive arch-neutral
 * code in code path in copy_process()?.
 *
 * Further, to assign unique TIDRs within each process, we need an atomic
 * field (or an IDR) in task_struct, which again intrudes into the arch-
 * neutral code. So try to assign globally unique TIDRs for now.
 *
 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
 *	 For now, only threads that expect to be notified by the VAS
 *	 hardware need a TIDR value and we assign values > 0 for those.
 */
#define MAX_THREAD_CONTEXT	((1 << 16) - 1)
static int assign_thread_tidr(void)
{
	int index;
	int err;

again:
	if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
		return -ENOMEM;

	spin_lock(&vas_thread_id_lock);
	err = ida_get_new_above(&vas_thread_ida, 1, &index);
	spin_unlock(&vas_thread_id_lock);

	if (err == -EAGAIN)
		goto again;
	else if (err)
		return err;

	if (index > MAX_THREAD_CONTEXT) {
		spin_lock(&vas_thread_id_lock);
		ida_remove(&vas_thread_ida, index);
		spin_unlock(&vas_thread_id_lock);
		return -ENOMEM;
	}

	return index;
}

static void free_thread_tidr(int id)
{
	spin_lock(&vas_thread_id_lock);
	ida_remove(&vas_thread_ida, id);
	spin_unlock(&vas_thread_id_lock);
}

/*
 * Clear any TIDR value assigned to this thread.
 */
void clear_thread_tidr(struct task_struct *t)
{
	if (!t->thread.tidr)
		return;

	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		WARN_ON_ONCE(1);
		return;
	}

	mtspr(SPRN_TIDR, 0);
	free_thread_tidr(t->thread.tidr);
	t->thread.tidr = 0;
}

void arch_release_task_struct(struct task_struct *t)
{
	clear_thread_tidr(t);
}

/*
 * Assign a unique TIDR (thread id) for task @t and set it in the thread
 * structure. For now, we only support setting TIDR for 'current' task.
 */
int set_thread_tidr(struct task_struct *t)
{
1572 1573
	int rc;

1574 1575 1576 1577 1578 1579
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -EINVAL;

	if (t != current)
		return -EINVAL;

1580 1581 1582
	if (t->thread.tidr)
		return 0;

1583 1584 1585
	rc = assign_thread_tidr();
	if (rc < 0)
		return rc;
1586

1587
	t->thread.tidr = rc;
1588 1589 1590 1591 1592 1593 1594
	mtspr(SPRN_TIDR, t->thread.tidr);

	return 0;
}

#endif /* CONFIG_PPC64 */

1595 1596 1597 1598 1599 1600
void
release_thread(struct task_struct *t)
{
}

/*
1601 1602
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1603
 */
1604
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1605
{
1606
	flush_all_to_thread(src);
1607 1608 1609 1610 1611 1612
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1613 1614 1615
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1616
	 */
1617
	__switch_to_tm(src, src);
1618

1619
	*dst = *src;
1620 1621 1622

	clear_task_ebb(dst);

1623
	return 0;
1624 1625
}

1626 1627
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
1628
#ifdef CONFIG_PPC_BOOK3S_64
1629 1630 1631
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1632 1633 1634
	if (radix_enabled())
		return;

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1646 1647 1648
/*
 * Copy a thread..
 */
1649

1650 1651 1652
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1653
int copy_thread(unsigned long clone_flags, unsigned long usp,
1654
		unsigned long kthread_arg, struct task_struct *p)
1655 1656 1657
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1658 1659
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1660
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1661 1662 1663
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1664 1665 1666 1667

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1668
	if (unlikely(p->flags & PF_KTHREAD)) {
1669
		/* kernel thread */
A
Al Viro 已提交
1670
		memset(childregs, 0, sizeof(struct pt_regs));
1671
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1672 1673 1674
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1675
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1676
		clear_tsk_thread_flag(p, TIF_32BIT);
1677
		childregs->softe = 1;
1678
#endif
1679
		childregs->gpr[15] = kthread_arg;
1680
		p->thread.regs = NULL;	/* no user register state */
1681
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1682
		f = ret_from_kernel_thread;
1683
	} else {
1684
		/* user thread */
1685
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1686 1687
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1688 1689
		if (usp)
			childregs->gpr[1] = usp;
1690
		p->thread.regs = childregs;
A
Al Viro 已提交
1691
		childregs->gpr[3] = 0;  /* Result from fork() */
1692 1693
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1694
			if (!is_32bit_task())
1695 1696 1697 1698 1699
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1700 1701

		f = ret_from_fork;
1702
	}
1703
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1714
	((unsigned long *)sp)[0] = 0;
1715 1716 1717 1718
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1719
#ifdef CONFIG_PPC32
1720 1721
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1722
#endif
1723 1724 1725 1726
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1727 1728 1729 1730 1731
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1732 1733
	setup_ksp_vsid(p, sp);

1734 1735
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1736
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1737
		p->thread.dscr = mfspr(SPRN_DSCR);
1738
	}
1739 1740
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1741 1742

	p->thread.tidr = 0;
1743
#endif
1744
	kregs->nip = ppc_function_entry(f);
1745 1746 1747 1748 1749 1750
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1751
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1752
{
1753 1754 1755 1756
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1757 1758 1759 1760 1761
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1762 1763
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1764 1765
	}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1776 1777 1778 1779 1780 1781
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1782

1783 1784 1785 1786 1787 1788 1789
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1790 1791 1792
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1793
	regs->msr = MSR_USER;
1794
#else
1795
	if (!is_32bit_task()) {
1796
		unsigned long entry;
1797

1798 1799 1800
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1833 1834 1835
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1836 1837 1838 1839
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1840 1841
	}
#endif
1842 1843 1844
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1845
	current->thread.load_fp = 0;
1846
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1847
	current->thread.fp_save_area = NULL;
1848
#ifdef CONFIG_ALTIVEC
1849 1850
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1851
	current->thread.vr_save_area = NULL;
1852 1853
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
1854
	current->thread.load_vec = 0;
1855 1856 1857 1858 1859 1860 1861
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1862 1863 1864 1865
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
1866
	current->thread.load_tm = 0;
1867
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1868
}
1869
EXPORT_SYMBOL(start_thread);
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1884
		if (cpu_has_feature(CPU_FTR_SPE)) {
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1898 1899 1900 1901 1902 1903
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1904 1905 1906 1907
#else
		return -EINVAL;
#endif
	}
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1920 1921 1922 1923 1924 1925 1926 1927 1928
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1943
			val = tsk->thread.fpexc_mode;
1944
		} else
1945
			return -EINVAL;
1946 1947 1948 1949 1950 1951 1952 1953
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

2033
int validate_sp(unsigned long sp, struct task_struct *p,
2034 2035
		       unsigned long nbytes)
{
A
Al Viro 已提交
2036
	unsigned long stack_page = (unsigned long)task_stack_page(p);
2037 2038 2039 2040 2041

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

2042
	return valid_irq_stack(sp, p, nbytes);
2043 2044
}

2045 2046
EXPORT_SYMBOL(validate_sp);

2047 2048 2049 2050 2051 2052 2053 2054 2055
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
2056
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2057 2058 2059 2060
		return 0;

	do {
		sp = *(unsigned long *)sp;
2061 2062
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
		    p->state == TASK_RUNNING)
2063 2064
			return 0;
		if (count > 0) {
2065
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2066 2067 2068 2069 2070 2071
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
2072

2073
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2074 2075 2076 2077 2078 2079

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
2080 2081 2082
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
2083
	unsigned long rth = (unsigned long)return_to_handler;
2084
#endif
2085 2086 2087 2088 2089 2090

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
2091
			sp = current_stack_pointer();
2092 2093 2094 2095 2096 2097 2098
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
2099
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2100 2101 2102 2103
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
2104
		ip = stack[STACK_FRAME_LR_SAVE];
2105
		if (!firstframe || ip != lr) {
2106
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2107
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2108
			if ((ip == rth) && curr_frame >= 0) {
2109
				pr_cont(" (%pS)",
2110 2111 2112 2113
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
2114
			if (firstframe)
2115 2116
				pr_cont(" (unreliable)");
			pr_cont("\n");
2117 2118 2119 2120 2121 2122 2123
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
2124 2125
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2126 2127 2128
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
2129
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2130
			       regs->trap, (void *)regs->nip, (void *)lr);
2131 2132 2133 2134 2135 2136 2137
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

2138
#ifdef CONFIG_PPC64
2139
/* Called with hard IRQs off */
2140
void notrace __ppc64_runlatch_on(void)
2141
{
2142
	struct thread_info *ti = current_thread_info();
2143

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		/*
		 * Least significant bit (RUN) is the only writable bit of
		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
		 * earliest ISA where this is the case, but it's convenient.
		 */
		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
	} else {
		unsigned long ctrl;

		/*
		 * Some architectures (e.g., Cell) have writable fields other
		 * than RUN, so do the read-modify-write.
		 */
		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2162

2163
	ti->local_flags |= _TLF_RUNLATCH;
2164 2165
}

2166
/* Called with hard IRQs off */
2167
void notrace __ppc64_runlatch_off(void)
2168
{
2169
	struct thread_info *ti = current_thread_info();
2170

2171
	ti->local_flags &= ~_TLF_RUNLATCH;
2172

2173 2174 2175 2176 2177 2178 2179 2180 2181
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		mtspr(SPRN_CTRLT, 0);
	} else {
		unsigned long ctrl;

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2182
}
2183
#endif /* CONFIG_PPC64 */
2184

2185 2186 2187 2188 2189 2190
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
2191 2192 2193 2194 2195 2196 2197

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
2198
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2199
	else
D
Daniel Cashman 已提交
2200
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2201 2202 2203 2204 2205 2206

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
2207 2208 2209
	unsigned long base = mm->brk;
	unsigned long ret;

2210
#ifdef CONFIG_PPC_BOOK3S_64
2211 2212 2213 2214 2215
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
2216 2217
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2218 2219 2220 2221 2222 2223
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2224 2225 2226 2227 2228 2229

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2230