process.c 49.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45 46 47 48 49 50

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
51
#include <asm/machdep.h>
52
#include <asm/time.h>
53
#include <asm/runlatch.h>
54
#include <asm/syscalls.h>
55
#include <asm/switch_to.h>
56
#include <asm/tm.h>
57
#include <asm/debug.h>
58 59 60
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
61
#include <asm/code-patching.h>
62
#include <asm/exec.h>
63
#include <asm/livepatch.h>
64
#include <asm/cpu_has_feature.h>
65
#include <asm/asm-prototypes.h>
66

67 68
#include <linux/kprobes.h>
#include <linux/kdebug.h>
69

70 71 72 73 74 75 76
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

77 78
extern unsigned long _get_SP(void);

79
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80
static void check_if_tm_restore_required(struct task_struct *tsk)
81 82 83 84 85 86 87 88 89 90
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
91
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 93 94
		set_thread_flag(TIF_RESTORE_TM);
	}
}
95 96 97 98 99

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
100
#else
101
static inline bool msr_tm_active(unsigned long msr) { return false; }
102
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 104
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

105 106 107 108 109 110 111 112 113 114 115 116
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

117
unsigned long msr_check_and_set(unsigned long bits)
118
{
119 120
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
121

122
	newmsr = oldmsr | bits;
123 124

#ifdef CONFIG_VSX
125
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 127
		newmsr |= MSR_VSX;
#endif
128

129 130
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
131 132

	return newmsr;
133
}
134

135
void __msr_check_and_clear(unsigned long bits)
136 137 138 139 140 141 142 143 144 145 146 147 148 149
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
150
EXPORT_SYMBOL(__msr_check_and_clear);
151 152

#ifdef CONFIG_PPC_FPU
153 154
void __giveup_fpu(struct task_struct *tsk)
{
155 156
	unsigned long msr;

157
	save_fpu(tsk);
158 159
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
160 161
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
162
		msr &= ~MSR_VSX;
163
#endif
164
	tsk->thread.regs->msr = msr;
165 166
}

167 168 169 170 171
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
172
	__giveup_fpu(tsk);
173
	msr_check_and_clear(MSR_FP);
174 175 176
}
EXPORT_SYMBOL(giveup_fpu);

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
197
			 * the FP register state on context switch,
198 199 200 201
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
202
			giveup_fpu(tsk);
203 204 205 206
		}
		preempt_enable();
	}
}
207
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 209 210

void enable_kernel_fp(void)
{
211 212
	unsigned long cpumsr;

213 214
	WARN_ON(preemptible());

215
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
216

217 218
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
219 220 221 222 223 224 225 226 227
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
228
		__giveup_fpu(current);
229
	}
230 231
}
EXPORT_SYMBOL(enable_kernel_fp);
232 233

static int restore_fp(struct task_struct *tsk) {
234
	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235 236 237 238 239 240 241 242
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
243
#endif /* CONFIG_PPC_FPU */
244 245

#ifdef CONFIG_ALTIVEC
246 247
#define loadvec(thr) ((thr).load_vec)

248 249
static void __giveup_altivec(struct task_struct *tsk)
{
250 251
	unsigned long msr;

252
	save_altivec(tsk);
253 254
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
255 256
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
257
		msr &= ~MSR_VSX;
258
#endif
259
	tsk->thread.regs->msr = msr;
260 261
}

262 263 264 265
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

266
	msr_check_and_set(MSR_VEC);
267
	__giveup_altivec(tsk);
268
	msr_check_and_clear(MSR_VEC);
269 270 271
}
EXPORT_SYMBOL(giveup_altivec);

272 273
void enable_kernel_altivec(void)
{
274 275
	unsigned long cpumsr;

276 277
	WARN_ON(preemptible());

278
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
279

280 281
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
282 283 284 285 286 287 288 289 290
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
291
		__giveup_altivec(current);
292
	}
293 294 295 296 297 298 299 300 301 302 303 304 305
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
306
			giveup_altivec(tsk);
307 308 309 310
		}
		preempt_enable();
	}
}
311
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
312 313 314

static int restore_altivec(struct task_struct *tsk)
{
315 316
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317 318 319 320 321 322 323 324 325 326 327
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 329
#endif /* CONFIG_ALTIVEC */

330
#ifdef CONFIG_VSX
331
static void __giveup_vsx(struct task_struct *tsk)
332 333 334 335 336
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
337 338 339 340 341 342 343 344
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345
	__giveup_vsx(tsk);
346
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
347
}
348 349 350 351 352 353 354 355

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
356

357 358
void enable_kernel_vsx(void)
{
359 360
	unsigned long cpumsr;

361 362
	WARN_ON(preemptible());

363
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
364

365
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
366
		check_if_tm_restore_required(current);
367 368 369 370 371 372 373 374 375
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
376 377 378 379 380
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
381
	}
382 383 384 385 386 387 388 389 390 391 392 393 394 395
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
396
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
397 398 399 400 401 402 403 404 405 406 407 408

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
409
static inline void save_vsx(struct task_struct *tsk) { }
410 411
#endif /* CONFIG_VSX */

412
#ifdef CONFIG_SPE
413 414 415 416
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

417
	msr_check_and_set(MSR_SPE);
418
	__giveup_spe(tsk);
419
	msr_check_and_clear(MSR_SPE);
420 421
}
EXPORT_SYMBOL(giveup_spe);
422 423 424 425 426

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

427
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
428

429 430
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
431
		__giveup_spe(current);
432
	}
433 434 435 436 437 438 439 440 441
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
442
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
443
			giveup_spe(tsk);
444 445 446 447 448 449
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
487
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

510 511 512 513
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

514 515
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

555 556 557 558 559 560 561 562 563 564 565 566 567
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
568 569 570 571 572 573 574

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

575 576 577 578 579
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
580
		save_all(tsk);
581 582 583 584 585 586 587 588 589 590 591

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

592 593 594 595 596 597
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

598
	current->thread.trap_nr = signal_code;
599 600 601 602 603 604 605 606 607 608 609 610
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
611
void do_break (struct pt_regs *regs, unsigned long address,
612 613 614 615
		    unsigned long error_code)
{
	siginfo_t info;

616
	current->thread.trap_nr = TRAP_HWBKPT;
617 618 619 620
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

621
	if (debugger_break_match(regs))
622 623
		return;

624 625
	/* Clear the breakpoint */
	hw_breakpoint_disable();
626 627 628 629 630 631 632 633

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
634
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
635

636
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
637

638 639 640 641 642 643
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
644
	thread->debug.iac1 = thread->debug.iac2 = 0;
645
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
646
	thread->debug.iac3 = thread->debug.iac4 = 0;
647
#endif
648
	thread->debug.dac1 = thread->debug.dac2 = 0;
649
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
650
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
651
#endif
652
	thread->debug.dbcr0 = 0;
653 654 655 656
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
657
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
658 659 660 661 662
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
663
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
664
#else
665
	thread->debug.dbcr1 = 0;
666 667 668
#endif
}

669
static void prime_debug_regs(struct debug_reg *debug)
670
{
671 672 673 674 675 676 677
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

678 679
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
680
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
681 682
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
683
#endif
684 685
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
686
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
687 688
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
689
#endif
690 691
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
692
#ifdef CONFIG_BOOKE
693
	mtspr(SPRN_DBCR2, debug->dbcr2);
694 695 696 697 698 699 700
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
701
void switch_booke_debug_regs(struct debug_reg *new_debug)
702
{
703
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
704 705
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
706
}
707
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
708
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
709
#ifndef CONFIG_HAVE_HW_BREAKPOINT
710 711
static void set_debug_reg_defaults(struct thread_struct *thread)
{
712 713
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
714
	set_breakpoint(&thread->hw_brk);
715
}
716
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
717 718
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

719
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
720 721
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
722
	mtspr(SPRN_DAC1, dabr);
723 724 725
#ifdef CONFIG_PPC_47x
	isync();
#endif
726 727
	return 0;
}
728
#elif defined(CONFIG_PPC_BOOK3S)
729 730
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
731
	mtspr(SPRN_DABR, dabr);
732 733
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
734
	return 0;
735
}
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

778 779
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
780
	unsigned long dawr, dawrx, mrd;
781 782 783 784 785 786 787 788 789

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
790 791 792 793 794 795 796 797
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
798 799 800 801 802 803 804 805

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

806
void __set_breakpoint(struct arch_hw_breakpoint *brk)
807
{
808
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
809

810
	if (cpu_has_feature(CPU_FTR_DAWR))
811 812 813
		set_dawr(brk);
	else
		set_dabr(brk);
814
}
815

816 817 818 819 820 821 822
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

823 824 825
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
826

827 828 829 830 831 832 833 834 835 836 837
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
838

839
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
840 841 842 843 844 845

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

846 847 848
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
849 850 851 852 853 854 855 856 857 858 859 860 861
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
862
	 * benefit of checking for a potential TM bad thing exception.
863 864 865 866
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

867
	giveup_all(container_of(thr, struct task_struct, thread));
868

869
	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
870 871 872 873 874 875 876 877
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

878 879 880 881 882 883 884
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
885 886
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

904
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
905 906 907 908 909 910 911 912 913 914 915 916 917

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

918 919 920 921 922 923 924 925
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

926 927 928
	if (!(thread->regs->msr & MSR_TM))
		return;

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

946
static inline void tm_recheckpoint_new_task(struct task_struct *new)
947 948 949 950 951 952 953 954 955 956 957
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
958
	 * unavailable later, we are unable to determine which set of FP regs
959 960
	 * need to be restored.
	 */
961
	if (!tm_enabled(new))
962 963
		return;

964 965
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
966
		return;
967
	}
968
	msr = new->thread.ckpt_regs.msr;
969 970 971 972 973 974 975
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	tm_recheckpoint(&new->thread, msr);

976 977 978 979 980 981
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
982 983 984 985 986 987

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

988 989
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
990 991
{
	if (cpu_has_feature(CPU_FTR_TM)) {
992 993 994 995 996 997 998 999 1000 1001
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1002
		tm_recheckpoint_new_task(new);
1003 1004
	}
}
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1024 1025 1026 1027 1028 1029
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1030 1031 1032 1033
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1034
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1035
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1036

1037 1038 1039
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1040
#ifdef CONFIG_ALTIVEC
1041 1042 1043
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1044 1045
	restore_math(regs);

1046 1047 1048
	regs->msr |= msr_diff;
}

1049 1050
#else
#define tm_recheckpoint_new_task(new)
1051
#define __switch_to_tm(prev, new)
1052
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1053

1054 1055 1056
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1057
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1093
		if (new_thread->dscr_inherit)
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1108 1109 1110
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1111 1112 1113 1114 1115 1116
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1117 1118 1119 1120 1121
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1122 1123 1124
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1125

1126 1127 1128
	new_thread = &new->thread;
	old_thread = &current->thread;

1129 1130
	WARN_ON(!irqs_disabled());

1131 1132 1133 1134 1135
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1136
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1137 1138 1139 1140 1141 1142
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1143 1144
#endif /* CONFIG_PPC64 */

1145
#ifdef CONFIG_PPC_STD_MMU_64
1146
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1147 1148 1149 1150 1151 1152
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1153
#endif /* CONFIG_PPC_STD_MMU_64 */
1154

A
Anton Blanchard 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1177 1178
	__switch_to_tm(prev, new);

1179 1180 1181 1182 1183 1184
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1185

1186 1187 1188 1189 1190 1191 1192
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1193 1194
	restore_sprs(old_thread, new_thread);

1195 1196
	last = _switch(old_thread, new_thread);

1197
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1198 1199
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1200
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1201 1202
		batch->active = 1;
	}
1203 1204 1205

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);
1206
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1207

1208 1209 1210
	return last;
}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1225
			pr_cont("\n");
1226

1227 1228 1229 1230 1231 1232 1233 1234
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1235
		if (!__kernel_text_address(pc) ||
1236
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1237
			pr_cont("XXXXXXXX ");
1238 1239
		} else {
			if (regs->nip == pc)
1240
				pr_cont("<%08x> ", instr);
1241
			else
1242
				pr_cont("%08x ", instr);
1243 1244 1245 1246 1247
		}

		pc += sizeof(int);
	}

1248
	pr_cont("\n");
1249 1250
}

1251
struct regbit {
1252 1253
	unsigned long bit;
	const char *name;
1254 1255 1256
};

static struct regbit msr_bits[] = {
1257 1258 1259 1260 1261 1262 1263 1264 1265
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1266 1267 1268 1269
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1270
#ifdef CONFIG_BOOKE
1271
	{MSR_DE,	"DE"},
1272 1273 1274 1275
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1276 1277
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1278 1279 1280 1281 1282
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1283 1284 1285
	{0,		NULL}
};

1286
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1287
{
1288
	const char *s = "";
1289 1290 1291

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1292
			pr_cont("%s%s", s, bits->name);
1293
			s = sep;
1294
		}
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1315
		pr_cont(",TM[");
1316
		print_bits(val, msr_tm_bits, "");
1317
		pr_cont("]");
1318 1319 1320 1321 1322 1323 1324 1325
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1326
	pr_cont("<");
1327 1328
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1329
	pr_cont(">");
1330 1331 1332
}

#ifdef CONFIG_PPC64
1333
#define REG		"%016lx"
1334 1335 1336
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1337
#define REG		"%08lx"
1338 1339 1340 1341
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1342 1343 1344 1345
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1346 1347
	show_regs_print_info(KERN_DEFAULT);

1348 1349 1350
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1351
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1352
	printk("MSR: "REG" ", regs->msr);
1353
	print_msr_bits(regs->msr);
1354
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1355
	trap = TRAP(regs);
1356
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1357
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1358
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1359
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1360
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1361
#else
1362
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1363 1364
#endif
#ifdef CONFIG_PPC64
1365
	pr_cont("SOFTE: %ld ", regs->softe);
1366 1367
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1368
	if (MSR_TM_ACTIVE(regs->msr))
1369
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1370
#endif
1371 1372

	for (i = 0;  i < 32;  i++) {
1373
		if ((i % REGS_PER_LINE) == 0)
1374 1375
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1376
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1377 1378
			break;
	}
1379
	pr_cont("\n");
1380 1381 1382 1383 1384
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1385 1386
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1387
#endif
1388
	show_stack(current, (unsigned long *) regs->gpr[1]);
1389 1390
	if (!user_mode(regs))
		show_instructions(regs);
1391 1392 1393 1394
}

void flush_thread(void)
{
1395
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1396
	flush_ptrace_hw_breakpoint(current);
1397
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1398
	set_debug_reg_defaults(&current->thread);
1399
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1400 1401 1402 1403 1404 1405 1406 1407
}

void
release_thread(struct task_struct *t)
{
}

/*
1408 1409
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1410
 */
1411
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1412
{
1413
	flush_all_to_thread(src);
1414 1415 1416 1417 1418 1419
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1420 1421 1422
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1423
	 */
1424
	__switch_to_tm(src, src);
1425

1426
	*dst = *src;
1427 1428 1429

	clear_task_ebb(dst);

1430
	return 0;
1431 1432
}

1433 1434 1435 1436 1437 1438
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1439 1440 1441
	if (radix_enabled())
		return;

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1453 1454 1455
/*
 * Copy a thread..
 */
1456

1457 1458 1459
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1460
int copy_thread(unsigned long clone_flags, unsigned long usp,
1461
		unsigned long kthread_arg, struct task_struct *p)
1462 1463 1464
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1465 1466
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1467
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1468 1469 1470
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1471 1472 1473 1474

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1475
	if (unlikely(p->flags & PF_KTHREAD)) {
1476
		/* kernel thread */
A
Al Viro 已提交
1477
		memset(childregs, 0, sizeof(struct pt_regs));
1478
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1479 1480 1481
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1482
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1483
		clear_tsk_thread_flag(p, TIF_32BIT);
1484
		childregs->softe = 1;
1485
#endif
1486
		childregs->gpr[15] = kthread_arg;
1487
		p->thread.regs = NULL;	/* no user register state */
1488
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1489
		f = ret_from_kernel_thread;
1490
	} else {
1491
		/* user thread */
1492
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1493 1494
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1495 1496
		if (usp)
			childregs->gpr[1] = usp;
1497
		p->thread.regs = childregs;
A
Al Viro 已提交
1498
		childregs->gpr[3] = 0;  /* Result from fork() */
1499 1500
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1501
			if (!is_32bit_task())
1502 1503 1504 1505 1506
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1507 1508

		f = ret_from_fork;
1509
	}
1510
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1521
	((unsigned long *)sp)[0] = 0;
1522 1523 1524 1525
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1526
#ifdef CONFIG_PPC32
1527 1528
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1529
#endif
1530 1531 1532 1533
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1534 1535 1536 1537 1538
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1539 1540
	setup_ksp_vsid(p, sp);

1541 1542
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1543
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1544
		p->thread.dscr = mfspr(SPRN_DSCR);
1545
	}
1546 1547
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1548
#endif
1549
	kregs->nip = ppc_function_entry(f);
1550 1551 1552 1553 1554 1555
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1556
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1557
{
1558 1559 1560 1561
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1562 1563 1564 1565 1566
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1567 1568
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1569 1570
	}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1581 1582 1583 1584 1585 1586
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1587

1588 1589 1590 1591 1592 1593 1594
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1595 1596 1597
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1598
	regs->msr = MSR_USER;
1599
#else
1600
	if (!is_32bit_task()) {
1601
		unsigned long entry;
1602

1603 1604 1605
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1638 1639 1640
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1641 1642 1643 1644
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1645 1646
	}
#endif
1647 1648 1649
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1650
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1651
	current->thread.fp_save_area = NULL;
1652
#ifdef CONFIG_ALTIVEC
1653 1654
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1655
	current->thread.vr_save_area = NULL;
1656 1657 1658 1659 1660 1661 1662 1663 1664
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1665 1666 1667 1668 1669
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1670
}
1671
EXPORT_SYMBOL(start_thread);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1686
		if (cpu_has_feature(CPU_FTR_SPE)) {
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1700 1701 1702 1703 1704 1705
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1706 1707 1708 1709
#else
		return -EINVAL;
#endif
	}
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1722 1723 1724 1725 1726 1727 1728 1729 1730
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1745
			val = tsk->thread.fpexc_mode;
1746
		} else
1747
			return -EINVAL;
1748 1749 1750 1751 1752 1753 1754 1755
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1835
int validate_sp(unsigned long sp, struct task_struct *p,
1836 1837
		       unsigned long nbytes)
{
A
Al Viro 已提交
1838
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1839 1840 1841 1842 1843

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1844
	return valid_irq_stack(sp, p, nbytes);
1845 1846
}

1847 1848
EXPORT_SYMBOL(validate_sp);

1849 1850 1851 1852 1853 1854 1855 1856 1857
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1858
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1859 1860 1861 1862
		return 0;

	do {
		sp = *(unsigned long *)sp;
1863
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1864 1865
			return 0;
		if (count > 0) {
1866
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1867 1868 1869 1870 1871 1872
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1873

1874
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1875 1876 1877 1878 1879 1880

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1881 1882 1883
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1884
	unsigned long rth = (unsigned long)return_to_handler;
1885
#endif
1886 1887 1888 1889 1890 1891

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1892
			sp = current_stack_pointer();
1893 1894 1895 1896 1897 1898 1899
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1900
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1901 1902 1903 1904
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1905
		ip = stack[STACK_FRAME_LR_SAVE];
1906
		if (!firstframe || ip != lr) {
1907
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1908
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1909
			if ((ip == rth) && curr_frame >= 0) {
1910
				pr_cont(" (%pS)",
1911 1912 1913 1914
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1915
			if (firstframe)
1916 1917
				pr_cont(" (unreliable)");
			pr_cont("\n");
1918 1919 1920 1921 1922 1923 1924
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1925 1926
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1927 1928 1929
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1930
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1931
			       regs->trap, (void *)regs->nip, (void *)lr);
1932 1933 1934 1935 1936 1937 1938
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1939
#ifdef CONFIG_PPC64
1940
/* Called with hard IRQs off */
1941
void notrace __ppc64_runlatch_on(void)
1942
{
1943
	struct thread_info *ti = current_thread_info();
1944 1945
	unsigned long ctrl;

1946 1947 1948
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1949

1950
	ti->local_flags |= _TLF_RUNLATCH;
1951 1952
}

1953
/* Called with hard IRQs off */
1954
void notrace __ppc64_runlatch_off(void)
1955
{
1956
	struct thread_info *ti = current_thread_info();
1957 1958
	unsigned long ctrl;

1959
	ti->local_flags &= ~_TLF_RUNLATCH;
1960

1961 1962 1963
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1964
}
1965
#endif /* CONFIG_PPC64 */
1966

1967 1968 1969 1970 1971 1972
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1973 1974 1975 1976 1977 1978 1979

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
1980
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1981
	else
D
Daniel Cashman 已提交
1982
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1983 1984 1985 1986 1987 1988

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1989 1990 1991
	unsigned long base = mm->brk;
	unsigned long ret;

1992
#ifdef CONFIG_PPC_STD_MMU_64
1993 1994 1995 1996 1997
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
1998 1999
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2000 2001 2002 2003 2004 2005
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2006 2007 2008 2009 2010 2011

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2012