process.c 55.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45
#include <linux/pkeys.h>
46 47 48 49 50 51

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
52
#include <asm/machdep.h>
53
#include <asm/time.h>
54
#include <asm/runlatch.h>
55
#include <asm/syscalls.h>
56
#include <asm/switch_to.h>
57
#include <asm/tm.h>
58
#include <asm/debug.h>
59 60
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
61
#include <asm/hw_irq.h>
62
#endif
63
#include <asm/code-patching.h>
64
#include <asm/exec.h>
65
#include <asm/livepatch.h>
66
#include <asm/cpu_has_feature.h>
67
#include <asm/asm-prototypes.h>
68

69 70
#include <linux/kprobes.h>
#include <linux/kdebug.h>
71

72 73 74 75 76 77 78
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

79 80
extern unsigned long _get_SP(void);

81
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 83 84 85 86 87 88
/*
 * Are we running in "Suspend disabled" mode? If so we have to block any
 * sigreturn that would get us into suspended state, and we also warn in some
 * other paths that we should never reach with suspend disabled.
 */
bool tm_suspend_disabled __ro_after_init = false;

89
static void check_if_tm_restore_required(struct task_struct *tsk)
90 91 92 93 94 95 96 97 98 99
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
100
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101 102 103
		set_thread_flag(TIF_RESTORE_TM);
	}
}
104 105 106 107 108

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
109 110 111 112 113 114 115 116 117 118 119 120

static bool tm_active_with_fp(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_FP);
}

static bool tm_active_with_altivec(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_VEC);
}
121
#else
122
static inline bool msr_tm_active(unsigned long msr) { return false; }
123
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
124 125
static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
126 127
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

128 129 130 131 132 133 134 135 136 137 138 139
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

140
unsigned long msr_check_and_set(unsigned long bits)
141
{
142 143
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
144

145
	newmsr = oldmsr | bits;
146 147

#ifdef CONFIG_VSX
148
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149 150
		newmsr |= MSR_VSX;
#endif
151

152 153
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
154 155

	return newmsr;
156
}
157
EXPORT_SYMBOL_GPL(msr_check_and_set);
158

159
void __msr_check_and_clear(unsigned long bits)
160 161 162 163 164 165 166 167 168 169 170 171 172 173
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
174
EXPORT_SYMBOL(__msr_check_and_clear);
175 176

#ifdef CONFIG_PPC_FPU
177
static void __giveup_fpu(struct task_struct *tsk)
178
{
179 180
	unsigned long msr;

181
	save_fpu(tsk);
182 183
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
184 185
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
186
		msr &= ~MSR_VSX;
187
#endif
188
	tsk->thread.regs->msr = msr;
189 190
}

191 192 193 194 195
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
196
	__giveup_fpu(tsk);
197
	msr_check_and_clear(MSR_FP);
198 199 200
}
EXPORT_SYMBOL(giveup_fpu);

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
221
			 * the FP register state on context switch,
222 223 224 225
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
226
			giveup_fpu(tsk);
227 228 229 230
		}
		preempt_enable();
	}
}
231
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
232 233 234

void enable_kernel_fp(void)
{
235 236
	unsigned long cpumsr;

237 238
	WARN_ON(preemptible());

239
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
240

241 242
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
243 244 245 246 247 248 249 250 251
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
252
		__giveup_fpu(current);
253
	}
254 255
}
EXPORT_SYMBOL(enable_kernel_fp);
256

257 258
static int restore_fp(struct task_struct *tsk)
{
259
	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
260 261 262 263 264 265 266 267
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
268
#endif /* CONFIG_PPC_FPU */
269 270

#ifdef CONFIG_ALTIVEC
271 272
#define loadvec(thr) ((thr).load_vec)

273 274
static void __giveup_altivec(struct task_struct *tsk)
{
275 276
	unsigned long msr;

277
	save_altivec(tsk);
278 279
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
280 281
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
282
		msr &= ~MSR_VSX;
283
#endif
284
	tsk->thread.regs->msr = msr;
285 286
}

287 288 289 290
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

291
	msr_check_and_set(MSR_VEC);
292
	__giveup_altivec(tsk);
293
	msr_check_and_clear(MSR_VEC);
294 295 296
}
EXPORT_SYMBOL(giveup_altivec);

297 298
void enable_kernel_altivec(void)
{
299 300
	unsigned long cpumsr;

301 302
	WARN_ON(preemptible());

303
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
304

305 306
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
307 308 309 310 311 312 313 314 315
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
316
		__giveup_altivec(current);
317
	}
318 319 320 321 322 323 324 325 326 327 328 329 330
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
331
			giveup_altivec(tsk);
332 333 334 335
		}
		preempt_enable();
	}
}
336
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
337 338 339

static int restore_altivec(struct task_struct *tsk)
{
340
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
341
		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
342 343 344 345 346 347 348 349 350 351 352
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
353 354
#endif /* CONFIG_ALTIVEC */

355
#ifdef CONFIG_VSX
356
static void __giveup_vsx(struct task_struct *tsk)
357
{
358 359 360 361 362 363 364 365 366 367
	unsigned long msr = tsk->thread.regs->msr;

	/*
	 * We should never be ssetting MSR_VSX without also setting
	 * MSR_FP and MSR_VEC
	 */
	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));

	/* __giveup_fpu will clear MSR_VSX */
	if (msr & MSR_FP)
368
		__giveup_fpu(tsk);
369
	if (msr & MSR_VEC)
370
		__giveup_altivec(tsk);
371 372 373 374 375 376 377
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
378
	__giveup_vsx(tsk);
379
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
380
}
381

382 383
void enable_kernel_vsx(void)
{
384 385
	unsigned long cpumsr;

386 387
	WARN_ON(preemptible());

388
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
389

390 391
	if (current->thread.regs &&
	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
392
		check_if_tm_restore_required(current);
393 394 395 396 397 398 399 400 401
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
402
		__giveup_vsx(current);
A
Anton Blanchard 已提交
403
	}
404 405 406 407 408 409 410
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
411
		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
412 413 414 415 416 417
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
418
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
419 420 421 422 423 424 425 426 427 428 429 430

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
431 432
#endif /* CONFIG_VSX */

433
#ifdef CONFIG_SPE
434 435 436 437
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

438
	msr_check_and_set(MSR_SPE);
439
	__giveup_spe(tsk);
440
	msr_check_and_clear(MSR_SPE);
441 442
}
EXPORT_SYMBOL(giveup_spe);
443 444 445 446 447

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

448
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
449

450 451
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
452
		__giveup_spe(current);
453
	}
454 455 456 457 458 459 460 461 462
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
463
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
464
			giveup_spe(tsk);
465 466 467 468 469 470
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
508
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
509

510 511
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

A
Anton Blanchard 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

529 530 531 532
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

533 534
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

560
static void save_all(struct task_struct *tsk)
561 562 563 564 565 566 567 568 569 570 571 572 573
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

574 575 576 577 578 579 580
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

	if (usermsr & MSR_FP)
		save_fpu(tsk);

	if (usermsr & MSR_VEC)
		save_altivec(tsk);
581 582 583 584 585

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
586
	thread_pkey_regs_save(&tsk->thread);
587 588
}

589 590 591 592 593
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
594
		save_all(tsk);
595 596 597 598 599 600 601 602 603 604 605

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

606 607
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
608
		  unsigned long error_code, int breakpt)
609
{
610
	current->thread.trap_nr = TRAP_HWBKPT;
611 612 613 614 615
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
616 617
	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
				    (void __user *)address);
618 619
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
620
void do_break (struct pt_regs *regs, unsigned long address,
621 622 623 624
		    unsigned long error_code)
{
	siginfo_t info;

625
	current->thread.trap_nr = TRAP_HWBKPT;
626 627 628 629
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

630
	if (debugger_break_match(regs))
631 632
		return;

633 634
	/* Clear the breakpoint */
	hw_breakpoint_disable();
635 636

	/* Deliver the signal to userspace */
637
	clear_siginfo(&info);
638 639 640 641 642 643
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
644
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
645

646
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647

648 649 650 651 652 653
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
654
	thread->debug.iac1 = thread->debug.iac2 = 0;
655
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
656
	thread->debug.iac3 = thread->debug.iac4 = 0;
657
#endif
658
	thread->debug.dac1 = thread->debug.dac2 = 0;
659
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
661
#endif
662
	thread->debug.dbcr0 = 0;
663 664 665 666
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
667
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668 669 670 671 672
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
673
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674
#else
675
	thread->debug.dbcr1 = 0;
676 677 678
#endif
}

679
static void prime_debug_regs(struct debug_reg *debug)
680
{
681 682 683 684 685 686 687
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

688 689
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
690
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
691 692
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
693
#endif
694 695
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
696
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697 698
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
699
#endif
700 701
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
702
#ifdef CONFIG_BOOKE
703
	mtspr(SPRN_DBCR2, debug->dbcr2);
704 705 706 707 708 709 710
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
711
void switch_booke_debug_regs(struct debug_reg *new_debug)
712
{
713
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714 715
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
716
}
717
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
719
#ifndef CONFIG_HAVE_HW_BREAKPOINT
720 721 722 723 724 725 726
static void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

727 728
static void set_debug_reg_defaults(struct thread_struct *thread)
{
729 730
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
731 732
	if (ppc_breakpoint_available())
		set_breakpoint(&thread->hw_brk);
733
}
734
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
735 736
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

737
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
738 739
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
740
	mtspr(SPRN_DAC1, dabr);
741 742 743
#ifdef CONFIG_PPC_47x
	isync();
#endif
744 745
	return 0;
}
746
#elif defined(CONFIG_PPC_BOOK3S)
747 748
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
749
	mtspr(SPRN_DABR, dabr);
750 751
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
752
	return 0;
753
}
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

796 797
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
798
	unsigned long dawr, dawrx, mrd;
799 800 801 802 803 804 805 806 807

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
808 809 810 811 812 813 814 815
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
816 817 818 819 820 821 822 823

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

824
void __set_breakpoint(struct arch_hw_breakpoint *brk)
825
{
826
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
827

828
	if (cpu_has_feature(CPU_FTR_DAWR))
829
		// Power8 or later
830
		set_dawr(brk);
831 832
	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		// Power7 or earlier
833
		set_dabr(brk);
834 835 836
	else
		// Shouldn't happen due to higher level checks
		WARN_ON_ONCE(1);
837
}
838

839 840 841 842 843 844 845 846 847 848 849 850
/* Check if we have DAWR or DABR hardware */
bool ppc_breakpoint_available(void)
{
	if (cpu_has_feature(CPU_FTR_DAWR))
		return true; /* POWER8 DAWR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		return false; /* POWER9 with DAWR disabled */
	/* DABR: Everything but POWER8 and POWER9 */
	return true;
}
EXPORT_SYMBOL_GPL(ppc_breakpoint_available);

851 852 853 854 855 856 857 858 859 860 861
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
862

863
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
864 865 866 867 868 869

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

870
static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
871
{
872 873 874 875 876 877 878 879 880 881 882 883 884
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
885
	 * benefit of checking for a potential TM bad thing exception.
886 887 888 889
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

890 891
	giveup_all(container_of(thr, struct task_struct, thread));

892 893
	tm_reclaim(thr, cause);

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));
912 913 914 915 916
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
917
	tm_reclaim_thread(&current->thread, cause);
918 919
}

920 921 922 923 924 925 926
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
927 928
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
929 930 931 932 933 934 935 936 937 938 939
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

940 941
	WARN_ON(tm_suspend_disabled);

942 943 944 945 946 947
	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

948
	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
949 950 951 952 953 954 955 956 957 958 959 960 961

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

962
extern void __tm_recheckpoint(struct thread_struct *thread);
963

964
void tm_recheckpoint(struct thread_struct *thread)
965 966 967
{
	unsigned long flags;

968 969 970
	if (!(thread->regs->msr & MSR_TM))
		return;

971 972 973 974 975 976 977 978 979 980 981 982
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

983
	__tm_recheckpoint(thread);
984 985 986 987

	local_irq_restore(flags);
}

988
static inline void tm_recheckpoint_new_task(struct task_struct *new)
989 990 991 992 993 994 995 996 997
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
998
	 * unavailable later, we are unable to determine which set of FP regs
999 1000
	 * need to be restored.
	 */
1001
	if (!tm_enabled(new))
1002 1003
		return;

1004 1005
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
1006
		return;
1007
	}
1008
	/* Recheckpoint to restore original checkpointed register state. */
1009 1010
	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
		 new->pid, new->thread.regs->msr);
1011

1012
	tm_recheckpoint(&new->thread);
1013

1014 1015 1016 1017 1018 1019
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1020 1021 1022 1023 1024 1025

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

1026 1027
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
1028 1029
{
	if (cpu_has_feature(CPU_FTR_TM)) {
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1040
		tm_recheckpoint_new_task(new);
1041 1042
	}
}
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1062 1063 1064 1065 1066 1067
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1068 1069 1070 1071
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1072
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1073
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1074

1075 1076 1077
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1078
#ifdef CONFIG_ALTIVEC
1079 1080 1081
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1082 1083
	restore_math(regs);

1084 1085 1086
	regs->msr |= msr_diff;
}

1087 1088
#else
#define tm_recheckpoint_new_task(new)
1089
#define __switch_to_tm(prev, new)
1090
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1091

1092 1093 1094
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1095
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
1118 1119

	thread_pkey_regs_save(t);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1133
		if (new_thread->dscr_inherit)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1148 1149 1150
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1151 1152 1153
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
1154

1155
	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1156 1157
	    old_thread->tidr != new_thread->tidr)
		mtspr(SPRN_TIDR, new_thread->tidr);
1158
#endif
1159 1160

	thread_pkey_regs_restore(new_thread, old_thread);
1161 1162
}

1163 1164 1165 1166 1167
#ifdef CONFIG_PPC_BOOK3S_64
#define CP_SIZE 128
static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
#endif

1168 1169 1170 1171 1172
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1173 1174 1175
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1176

1177 1178 1179
	new_thread = &new->thread;
	old_thread = &current->thread;

1180 1181
	WARN_ON(!irqs_disabled());

1182
#ifdef CONFIG_PPC_BOOK3S_64
1183
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1184 1185 1186 1187 1188 1189
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1190
#endif /* CONFIG_PPC_BOOK3S_64 */
1191

A
Anton Blanchard 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1214 1215
	__switch_to_tm(prev, new);

1216 1217 1218 1219 1220 1221 1222 1223
	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}
1224

1225 1226 1227 1228 1229 1230 1231
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1232 1233
	restore_sprs(old_thread, new_thread);

1234 1235
	last = _switch(old_thread, new_thread);

1236
#ifdef CONFIG_PPC_BOOK3S_64
P
Peter Zijlstra 已提交
1237 1238
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1239
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1240 1241
		batch->active = 1;
	}
1242

1243
	if (current_thread_info()->task->thread.regs) {
1244
		restore_math(current_thread_info()->task->thread.regs);
1245 1246 1247 1248 1249

		/*
		 * The copy-paste buffer can only store into foreign real
		 * addresses, so unprivileged processes can not see the
		 * data or use it in any way unless they have foreign real
1250 1251 1252
		 * mappings. If the new process has the foreign real address
		 * mappings, we must issue a cp_abort to clear any state and
		 * prevent snooping, corruption or a covert channel.
1253
		 */
1254
		if (current_thread_info()->task->thread.used_vas)
1255
			asm volatile(PPC_CP_ABORT);
1256
	}
1257
#endif /* CONFIG_PPC_BOOK3S_64 */
P
Peter Zijlstra 已提交
1258

1259 1260 1261
	return last;
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1276
			pr_cont("\n");
1277

1278 1279 1280 1281 1282 1283 1284 1285
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1286
		if (!__kernel_text_address(pc) ||
1287
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1288
			pr_cont("XXXXXXXX ");
1289 1290
		} else {
			if (regs->nip == pc)
1291
				pr_cont("<%08x> ", instr);
1292
			else
1293
				pr_cont("%08x ", instr);
1294 1295 1296 1297 1298
		}

		pc += sizeof(int);
	}

1299
	pr_cont("\n");
1300 1301
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
void show_user_instructions(struct pt_regs *regs)
{
	unsigned long pc;
	int i;

	pc = regs->nip - (instructions_to_print * 3 / 4 * sizeof(int));

	pr_info("%s[%d]: code: ", current->comm, current->pid);

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8) && (i > 0)) {
			pr_cont("\n");
			pr_info("%s[%d]: code: ", current->comm, current->pid);
		}

		if (probe_kernel_address((unsigned int __user *)pc, instr)) {
			pr_cont("XXXXXXXX ");
		} else {
			if (regs->nip == pc)
				pr_cont("<%08x> ", instr);
			else
				pr_cont("%08x ", instr);
		}

		pc += sizeof(int);
	}

	pr_cont("\n");
}

1334
struct regbit {
1335 1336
	unsigned long bit;
	const char *name;
1337 1338 1339
};

static struct regbit msr_bits[] = {
1340 1341 1342 1343 1344 1345 1346 1347 1348
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1349 1350 1351 1352
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1353
#ifdef CONFIG_BOOKE
1354
	{MSR_DE,	"DE"},
1355 1356 1357 1358
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1359 1360
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1361 1362 1363 1364 1365
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1366 1367 1368
	{0,		NULL}
};

1369
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1370
{
1371
	const char *s = "";
1372 1373 1374

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1375
			pr_cont("%s%s", s, bits->name);
1376
			s = sep;
1377
		}
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1398
		pr_cont(",TM[");
1399
		print_bits(val, msr_tm_bits, "");
1400
		pr_cont("]");
1401 1402 1403 1404 1405 1406 1407 1408
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1409
	pr_cont("<");
1410 1411
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1412
	pr_cont(">");
1413 1414 1415
}

#ifdef CONFIG_PPC64
1416
#define REG		"%016lx"
1417 1418 1419
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1420
#define REG		"%08lx"
1421 1422 1423 1424
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1425 1426 1427 1428
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1429 1430
	show_regs_print_info(KERN_DEFAULT);

1431
	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1432
	       regs->nip, regs->link, regs->ctr);
1433
	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1434
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1435
	printk("MSR:  "REG" ", regs->msr);
1436
	print_msr_bits(regs->msr);
1437
	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1438
	trap = TRAP(regs);
1439
	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1440
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1441
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1442
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1443
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1444
#else
1445
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1446 1447
#endif
#ifdef CONFIG_PPC64
1448
	pr_cont("IRQMASK: %lx ", regs->softe);
1449 1450
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1451
	if (MSR_TM_ACTIVE(regs->msr))
1452
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1453
#endif
1454 1455

	for (i = 0;  i < 32;  i++) {
1456
		if ((i % REGS_PER_LINE) == 0)
1457 1458
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1459
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1460 1461
			break;
	}
1462
	pr_cont("\n");
1463 1464 1465 1466 1467
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1468 1469
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1470
#endif
1471
	show_stack(current, (unsigned long *) regs->gpr[1]);
1472 1473
	if (!user_mode(regs))
		show_instructions(regs);
1474 1475 1476 1477
}

void flush_thread(void)
{
1478
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1479
	flush_ptrace_hw_breakpoint(current);
1480
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1481
	set_debug_reg_defaults(&current->thread);
1482
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1483 1484
}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
int set_thread_uses_vas(void)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -EINVAL;

	current->thread.used_vas = 1;

	/*
	 * Even a process that has no foreign real address mapping can use
	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
	 * to clear any pending COPY and prevent a covert channel.
	 *
	 * __switch_to() will issue CP_ABORT on future context switches.
	 */
	asm volatile(PPC_CP_ABORT);

#endif /* CONFIG_PPC_BOOK3S_64 */
	return 0;
}

1506
#ifdef CONFIG_PPC64
1507 1508 1509
/**
 * Assign a TIDR (thread ID) for task @t and set it in the thread
 * structure. For now, we only support setting TIDR for 'current' task.
1510
 *
1511 1512 1513 1514
 * Since the TID value is a truncated form of it PID, it is possible
 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
 * that 2 threads share the same TID and are waiting, one of the following
 * cases will happen:
1515
 *
1516 1517 1518
 * 1. The correct thread is running, the wrong thread is not
 * In this situation, the correct thread is woken and proceeds to pass it's
 * condition check.
1519
 *
1520 1521 1522 1523 1524
 * 2. Neither threads are running
 * In this situation, neither thread will be woken. When scheduled, the waiting
 * threads will execute either a wait, which will return immediately, followed
 * by a condition check, which will pass for the correct thread and fail
 * for the wrong thread, or they will execute the condition check immediately.
1525
 *
1526 1527 1528 1529 1530 1531
 * 3. The wrong thread is running, the correct thread is not
 * The wrong thread will be woken, but will fail it's condition check and
 * re-execute wait. The correct thread, when scheduled, will execute either
 * it's condition check (which will pass), or wait, which returns immediately
 * when called the first time after the thread is scheduled, followed by it's
 * condition check (which will pass).
1532
 *
1533 1534 1535 1536 1537 1538
 * 4. Both threads are running
 * Both threads will be woken. The wrong thread will fail it's condition check
 * and execute another wait, while the correct thread will pass it's condition
 * check.
 *
 * @t: the task to set the thread ID for
1539 1540 1541
 */
int set_thread_tidr(struct task_struct *t)
{
1542
	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1543 1544 1545 1546 1547
		return -EINVAL;

	if (t != current)
		return -EINVAL;

1548 1549 1550
	if (t->thread.tidr)
		return 0;

1551
	t->thread.tidr = (u16)task_pid_nr(t);
1552 1553 1554 1555
	mtspr(SPRN_TIDR, t->thread.tidr);

	return 0;
}
1556
EXPORT_SYMBOL_GPL(set_thread_tidr);
1557 1558 1559

#endif /* CONFIG_PPC64 */

1560 1561 1562 1563 1564 1565
void
release_thread(struct task_struct *t)
{
}

/*
1566 1567
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1568
 */
1569
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1570
{
1571
	flush_all_to_thread(src);
1572 1573 1574 1575 1576 1577
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1578 1579 1580
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1581
	 */
1582
	__switch_to_tm(src, src);
1583

1584
	*dst = *src;
1585 1586 1587

	clear_task_ebb(dst);

1588
	return 0;
1589 1590
}

1591 1592
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
1593
#ifdef CONFIG_PPC_BOOK3S_64
1594 1595 1596
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1597 1598 1599
	if (radix_enabled())
		return;

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1611 1612 1613
/*
 * Copy a thread..
 */
1614

1615 1616 1617
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1618
int copy_thread(unsigned long clone_flags, unsigned long usp,
1619
		unsigned long kthread_arg, struct task_struct *p)
1620 1621 1622
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1623 1624
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1625
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1626 1627 1628
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1629 1630 1631 1632

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1633
	if (unlikely(p->flags & PF_KTHREAD)) {
1634
		/* kernel thread */
A
Al Viro 已提交
1635
		memset(childregs, 0, sizeof(struct pt_regs));
1636
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1637 1638 1639
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1640
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1641
		clear_tsk_thread_flag(p, TIF_32BIT);
1642
		childregs->softe = IRQS_ENABLED;
1643
#endif
1644
		childregs->gpr[15] = kthread_arg;
1645
		p->thread.regs = NULL;	/* no user register state */
1646
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1647
		f = ret_from_kernel_thread;
1648
	} else {
1649
		/* user thread */
1650
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1651 1652
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1653 1654
		if (usp)
			childregs->gpr[1] = usp;
1655
		p->thread.regs = childregs;
A
Al Viro 已提交
1656
		childregs->gpr[3] = 0;  /* Result from fork() */
1657 1658
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1659
			if (!is_32bit_task())
1660 1661 1662 1663 1664
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1665 1666

		f = ret_from_fork;
1667
	}
1668
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1679
	((unsigned long *)sp)[0] = 0;
1680 1681 1682 1683
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1684
#ifdef CONFIG_PPC32
1685 1686
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1687
#endif
1688 1689 1690 1691
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1692 1693 1694 1695 1696
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1697 1698
	setup_ksp_vsid(p, sp);

1699 1700
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1701
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1702
		p->thread.dscr = mfspr(SPRN_DSCR);
1703
	}
1704 1705
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1706 1707

	p->thread.tidr = 0;
1708
#endif
1709
	kregs->nip = ppc_function_entry(f);
1710 1711 1712 1713 1714 1715
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1716
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1717
{
1718 1719 1720 1721
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1722 1723 1724 1725 1726
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1727 1728
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1729 1730
	}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1741 1742 1743 1744 1745 1746
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1747

1748 1749 1750 1751 1752 1753 1754
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1755 1756 1757
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1758
	regs->msr = MSR_USER;
1759
#else
1760
	if (!is_32bit_task()) {
1761
		unsigned long entry;
1762

1763 1764 1765
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1766

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1798 1799 1800
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1801 1802 1803 1804
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1805 1806
	}
#endif
1807 1808 1809
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1810
	current->thread.load_fp = 0;
1811
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1812
	current->thread.fp_save_area = NULL;
1813
#ifdef CONFIG_ALTIVEC
1814 1815
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1816
	current->thread.vr_save_area = NULL;
1817 1818
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
1819
	current->thread.load_vec = 0;
1820 1821 1822 1823 1824 1825 1826
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1827 1828 1829 1830
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
1831
	current->thread.load_tm = 0;
1832
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1833 1834

	thread_pkey_regs_init(&current->thread);
1835
}
1836
EXPORT_SYMBOL(start_thread);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1851
		if (cpu_has_feature(CPU_FTR_SPE)) {
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1865 1866 1867 1868 1869 1870
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1871 1872 1873 1874
#else
		return -EINVAL;
#endif
	}
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1887 1888 1889 1890 1891 1892 1893 1894 1895
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1910
			val = tsk->thread.fpexc_mode;
1911
		} else
1912
			return -EINVAL;
1913 1914 1915 1916 1917 1918 1919 1920
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

2000
int validate_sp(unsigned long sp, struct task_struct *p,
2001 2002
		       unsigned long nbytes)
{
A
Al Viro 已提交
2003
	unsigned long stack_page = (unsigned long)task_stack_page(p);
2004 2005 2006 2007 2008

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

2009
	return valid_irq_stack(sp, p, nbytes);
2010 2011
}

2012 2013
EXPORT_SYMBOL(validate_sp);

2014 2015 2016 2017 2018 2019 2020 2021 2022
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
2023
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2024 2025 2026 2027
		return 0;

	do {
		sp = *(unsigned long *)sp;
2028 2029
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
		    p->state == TASK_RUNNING)
2030 2031
			return 0;
		if (count > 0) {
2032
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2033 2034 2035 2036 2037 2038
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
2039

2040
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2041 2042 2043 2044 2045 2046

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
2047 2048 2049
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
2050
	unsigned long rth = (unsigned long)return_to_handler;
2051
#endif
2052 2053 2054 2055 2056 2057

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
2058
			sp = current_stack_pointer();
2059 2060 2061 2062 2063 2064 2065
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
2066
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2067 2068 2069 2070
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
2071
		ip = stack[STACK_FRAME_LR_SAVE];
2072
		if (!firstframe || ip != lr) {
2073
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2074
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2075
			if ((ip == rth) && curr_frame >= 0) {
2076
				pr_cont(" (%pS)",
2077 2078 2079 2080
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
2081
			if (firstframe)
2082 2083
				pr_cont(" (unreliable)");
			pr_cont("\n");
2084 2085 2086 2087 2088 2089 2090
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
2091 2092
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2093 2094 2095
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
2096
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2097
			       regs->trap, (void *)regs->nip, (void *)lr);
2098 2099 2100 2101 2102 2103 2104
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

2105
#ifdef CONFIG_PPC64
2106
/* Called with hard IRQs off */
2107
void notrace __ppc64_runlatch_on(void)
2108
{
2109
	struct thread_info *ti = current_thread_info();
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		/*
		 * Least significant bit (RUN) is the only writable bit of
		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
		 * earliest ISA where this is the case, but it's convenient.
		 */
		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
	} else {
		unsigned long ctrl;

		/*
		 * Some architectures (e.g., Cell) have writable fields other
		 * than RUN, so do the read-modify-write.
		 */
		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2129

2130
	ti->local_flags |= _TLF_RUNLATCH;
2131 2132
}

2133
/* Called with hard IRQs off */
2134
void notrace __ppc64_runlatch_off(void)
2135
{
2136
	struct thread_info *ti = current_thread_info();
2137

2138
	ti->local_flags &= ~_TLF_RUNLATCH;
2139

2140 2141 2142 2143 2144 2145 2146 2147 2148
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		mtspr(SPRN_CTRLT, 0);
	} else {
		unsigned long ctrl;

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
2149
}
2150
#endif /* CONFIG_PPC64 */
2151

2152 2153 2154 2155 2156 2157
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
2158 2159 2160 2161 2162 2163 2164

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
2165
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2166
	else
D
Daniel Cashman 已提交
2167
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2168 2169 2170 2171 2172 2173

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
2174 2175 2176
	unsigned long base = mm->brk;
	unsigned long ret;

2177
#ifdef CONFIG_PPC_BOOK3S_64
2178 2179 2180 2181 2182
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
2183 2184
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2185 2186 2187 2188 2189 2190
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2191 2192 2193 2194 2195 2196

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2197