denali.c 46.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23
#include <linux/wait.h>
#include <linux/mutex.h>
D
David Miller 已提交
24
#include <linux/slab.h>
25 26 27 28 29 30 31
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

32
/* We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
			" -1 indicates use default timings");
41 42 43 44 45

#define DENALI_NAND_NAME    "denali-nand"

/* We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience. */
46 47 48 49 50 51 52 53 54 55
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP)
56

57
/* indicates whether or not the internal value for the flash bank is
58
 * valid or not */
59
#define CHIP_SELECT_INVALID	-1
60 61 62

#define SUPPORT_8BITECC		1

63
/* This macro divides two integers and rounds fractional values up
64 65 66 67 68 69 70 71 72
 * to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

/* this macro allows us to convert from an MTD structure to our own
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

/* These constants are defined by the driver to enable common driver
73
 * configuration options. */
74 75 76 77 78 79 80 81 82 83 84 85
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

86
/* this is a helper macro that allows us to
87 88 89 90 91
 * format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
92 93 94 95
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
96 97
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

98 99 100 101 102
/* Certain operations for the denali NAND controller use
 * an indexed mode to read/write data. The operation is
 * performed by writing the address value of the command
 * to the device memory followed by the data. This function
 * abstracts this common operation.
103
*/
104 105
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
106
{
107 108
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
109 110 111 112 113 114
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
115
	iowrite32(address, denali->flash_mem);
116 117 118
	*pdata = ioread32(denali->flash_mem + 0x10);
}

119
/* We need to buffer some data for some of the NAND core routines.
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
 * The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
	uint32_t cmd = 0x0;

	/* initialize the data buffer to store status */
	reset_buf(denali);

139 140 141 142 143
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
144 145 146 147 148 149
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status = 0;
150 151
	uint32_t irq_mask = INTR_STATUS__RST_COMP |
			    INTR_STATUS__TIME_OUT;
152 153 154

	clear_interrupts(denali);

155
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
156 157

	irq_status = wait_for_irq(denali, irq_mask);
158

159
	if (irq_status & INTR_STATUS__TIME_OUT)
160
		dev_err(denali->dev, "reset bank failed.\n");
161 162 163
}

/* Reset the flash controller */
164
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
165 166 167
{
	uint32_t i;

168
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
169 170
		       __FILE__, __LINE__, __func__);

171
	for (i = 0 ; i < denali->max_banks; i++)
172 173
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		denali->flash_reg + INTR_STATUS(i));
174

175
	for (i = 0 ; i < denali->max_banks; i++) {
176
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
177
		while (!(ioread32(denali->flash_reg +
178 179
				INTR_STATUS(i)) &
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
180
			cpu_relax();
181 182
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
			INTR_STATUS__TIME_OUT)
183
			dev_dbg(denali->dev,
184 185 186
			"NAND Reset operation timed out on bank %d\n", i);
	}

187
	for (i = 0; i < denali->max_banks; i++)
188 189
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
			denali->flash_reg + INTR_STATUS(i));
190 191 192 193

	return PASS;
}

194 195 196
/* this routine calculates the ONFI timing values for a given mode and
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
197
 */
198
static void nand_onfi_timing_set(struct denali_nand_info *denali,
199
								uint16_t mode)
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

221
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
258
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

286 287 288 289 290 291 292 293
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
294 295 296 297 298 299
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
300 301 302
	/* we needn't to do a reset here because driver has already
	 * reset all the banks before
	 * */
303 304 305 306 307
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
308 309
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
310 311 312
			break;
	}

313
	nand_onfi_timing_set(denali, i);
314 315 316 317 318 319 320 321 322

	/* By now, all the ONFI devices we know support the page cache */
	/* rw feature. So here we enable the pipeline_rw_ahead feature */
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

323 324
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
325
{
326
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
327
		/* Set timing register values according to datasheet */
328 329 330 331 332 333 334
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
335 336 337 338 339 340 341 342 343 344 345
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

	/* Workaround to fix a controller bug which reports a wrong */
	/* spare area size for some kind of Toshiba NAND device */
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
346
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
347 348
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
349
		iowrite32(tmp,
350
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
351
#if SUPPORT_15BITECC
352
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
353
#elif SUPPORT_8BITECC
354
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
355 356 357 358
#endif
	}
}

359 360
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
361 362 363
{
	uint32_t main_size, spare_size;

364
	switch (device_id) {
365 366
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
367 368 369
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
370 371 372 373
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
374
		iowrite32(main_size,
375
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
376
		iowrite32(spare_size,
377
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
378
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
379
#if SUPPORT_15BITECC
380
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
381
#elif SUPPORT_8BITECC
382
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
383 384 385
#endif
		break;
	default:
386
		dev_warn(denali->dev,
387 388
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
389
			device_id);
390 391 392 393
	}
}

/* determines how many NAND chips are connected to the controller. Note for
394
 * Intel CE4100 devices we don't support more than one device.
395 396 397
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
398
	uint32_t id[denali->max_banks];
399 400 401
	int i;

	denali->total_used_banks = 1;
402
	for (i = 0; i < denali->max_banks; i++) {
403 404
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
405 406
		index_addr_read_data(denali,
				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
407

408
		dev_dbg(denali->dev,
409 410 411 412 413 414 415 416 417 418 419 420 421
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

422
	if (denali->platform == INTEL_CE4100) {
423 424
		/* Platform limitations of the CE4100 device limit
		 * users to a single chip solution for NAND.
425 426
		 * Multichip support is not enabled.
		 */
427
		if (denali->total_used_banks != 1) {
428
			dev_err(denali->dev,
429
					"Sorry, Intel CE4100 only supports "
430 431 432 433
					"a single NAND device.\n");
			BUG();
		}
	}
434
	dev_dbg(denali->dev,
435 436 437
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

438 439 440 441 442 443 444 445 446 447 448
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);

	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}

449 450
static void detect_partition_feature(struct denali_nand_info *denali)
{
451 452 453 454 455 456
	/* For MRST platform, denali->fwblks represent the
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
	 * */
457
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
458 459
		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
460
			denali->fwblks =
461 462
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
			      MIN_MAX_BANK__MIN_VALUE) *
463
			     denali->blksperchip)
464
			    +
465 466
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
			    MIN_BLK_ADDR__VALUE);
467 468 469 470
		} else
			denali->fwblks = SPECTRA_START_BLOCK;
	} else
		denali->fwblks = SPECTRA_START_BLOCK;
471 472
}

473
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
474 475
{
	uint16_t status = PASS;
476
	uint32_t id_bytes[8], addr;
477
	uint8_t i, maf_id, device_id;
478

479
	dev_dbg(denali->dev,
480 481
			"%s, Line %d, Function: %s\n",
			__FILE__, __LINE__, __func__);
482

483 484 485 486 487 488 489 490
	/* Use read id method to get device ID and other
	 * params. For some NAND chips, controller can't
	 * report the correct device ID by reading from
	 * DEVICE_ID register
	 * */
	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, (uint32_t)addr | 0, 0x90);
	index_addr(denali, (uint32_t)addr | 1, 0);
491
	for (i = 0; i < 8; i++)
492 493 494
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
495 496 497 498 499

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
500
	} else if (maf_id == 0xEC) { /* Samsung NAND */
501
		get_samsung_nand_para(denali, device_id);
502
	} else if (maf_id == 0x98) { /* Toshiba NAND */
503
		get_toshiba_nand_para(denali);
504 505
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
506 507
	}

508
	dev_info(denali->dev,
509 510 511
			"Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
512 513 514
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
515
			ioread32(denali->flash_reg + RE_2_RE),
516 517 518 519 520 521 522 523 524 525 526
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

	/* If the user specified to override the default timings
527
	 * with a specific ONFI mode, we apply those changes here.
528 529
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
530
		nand_onfi_timing_set(denali, onfi_timing_mode);
531 532 533 534

	return status;
}

535
static void denali_set_intr_modes(struct denali_nand_info *denali,
536 537
					uint16_t INT_ENABLE)
{
538
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
539 540 541
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
542
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
543
	else
544
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
545 546 547
}

/* validation function to verify that the controlling software is making
548
 * a valid request
549 550 551
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
552
	return (flash_bank >= 0 && flash_bank < 4);
553 554 555 556 557
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask = 0;
558
	int i;
559 560

	/* Disable global interrupts */
561
	denali_set_intr_modes(denali, false);
562 563 564 565

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
566
	for (i = 0; i < denali->max_banks; ++i)
567
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
568 569 570 571 572 573

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
574
	denali_set_intr_modes(denali, false);
575 576 577
	free_irq(irqnum, denali);
}

578 579
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
580
{
581 582
	int i;

583
	for (i = 0; i < denali->max_banks; ++i)
584
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
585 586 587
}

/* This function only returns when an interrupt that this driver cares about
588
 * occurs. This is to reduce the overhead of servicing interrupts
589 590 591
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
592
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
593 594 595
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
596 597
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
598 599 600
{
	uint32_t intr_status_reg = 0;

601
	intr_status_reg = INTR_STATUS(denali->flash_bank);
602

603
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
604 605 606 607 608 609 610 611
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status = 0x0;
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
612
	clear_interrupt(denali, status);
613 614 615 616 617 618 619 620 621

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg = 0;

622
	intr_status_reg = INTR_STATUS(denali->flash_bank);
623 624 625 626

	return ioread32(denali->flash_reg + intr_status_reg);
}

627 628 629
/* This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared
 * interrupt.
630 631 632 633 634 635 636 637 638
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
	uint32_t irq_status = 0x0;
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

639 640
	/* check to see if a valid NAND chip has
	 * been selected.
641
	 */
642
	if (is_flash_bank_valid(denali->flash_bank)) {
643
		/* check to see if controller generated
644
		 * the interrupt, since this is a shared interrupt */
645 646
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
			/* store the status in the device context for someone
			   to read */
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long comp_res = 0;
	uint32_t intr_status = 0;
	bool retry = false;
	unsigned long timeout = msecs_to_jiffies(1000);

671
	do {
672 673
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
674 675 676
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

677
		if (intr_status & irq_mask) {
678 679 680 681
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
682
		} else {
683 684
			/* these are not the interrupts you are looking for -
			 * need to wait again */
685 686 687 688 689
			spin_unlock_irq(&denali->irq_lock);
			retry = true;
		}
	} while (comp_res != 0);

690
	if (comp_res == 0) {
691
		/* timeout */
692
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
693
				intr_status, irq_mask);
694 695 696 697 698 699

		intr_status = 0;
	}
	return intr_status;
}

700
/* This helper function setups the registers for ECC and whether or not
L
Lucas De Marchi 已提交
701
 * the spare area will be transferred. */
702
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
703 704
				bool transfer_spare)
{
705
	int ecc_en_flag = 0, transfer_spare_flag = 0;
706 707 708 709 710 711

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
712 713
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	iowrite32(transfer_spare_flag,
714
			denali->flash_reg + TRANSFER_SPARE_REG);
715 716
}

717
/* sends a pipeline command operation to the controller. See the Denali NAND
718
 * controller's user guide for more information (section 4.2.3.6).
719
 */
720 721 722 723 724
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
							bool ecc_en,
							bool transfer_spare,
							int access_type,
							int op)
725 726
{
	int status = PASS;
727
	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
728 729
		 irq_mask = 0;

730
	if (op == DENALI_READ)
731
		irq_mask = INTR_STATUS__LOAD_COMP;
732 733 734 735
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
736 737 738 739

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

	/* clear interrupts */
740
	clear_interrupts(denali);
741 742 743

	addr = BANK(denali->flash_bank) | denali->page;

744
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
745
		cmd = MODE_01 | addr;
746
		iowrite32(cmd, denali->flash_mem);
747
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
748
		/* read spare area */
749
		cmd = MODE_10 | addr;
750 751
		index_addr(denali, (uint32_t)cmd, access_type);

752
		cmd = MODE_01 | addr;
753
		iowrite32(cmd, denali->flash_mem);
754
	} else if (op == DENALI_READ) {
755
		/* setup page read request for access type */
756
		cmd = MODE_10 | addr;
757 758 759
		index_addr(denali, (uint32_t)cmd, access_type);

		/* page 33 of the NAND controller spec indicates we should not
760
		   use the pipeline commands in Spare area only mode. So we
761 762
		   don't.
		 */
763
		if (access_type == SPARE_ACCESS) {
764
			cmd = MODE_01 | addr;
765
			iowrite32(cmd, denali->flash_mem);
766
		} else {
767 768
			index_addr(denali, (uint32_t)cmd,
					0x2000 | op | page_count);
769 770

			/* wait for command to be accepted
771 772
			 * can always use status0 bit as the
			 * mask is identical for each
773 774 775
			 * bank. */
			irq_status = wait_for_irq(denali, irq_mask);

776
			if (irq_status == 0) {
777
				dev_err(denali->dev,
778 779 780
						"cmd, page, addr on timeout "
						"(0x%x, 0x%x, 0x%x)\n",
						cmd, denali->page, addr);
781
				status = FAIL;
782
			} else {
783
				cmd = MODE_01 | addr;
784
				iowrite32(cmd, denali->flash_mem);
785 786 787 788 789 790 791
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
792 793 794
static int write_data_to_flash_mem(struct denali_nand_info *denali,
							const uint8_t *buf,
							int len)
795 796 797
{
	uint32_t i = 0, *buf32;

798 799
	/* verify that the len is a multiple of 4. see comment in
	 * read_data_from_flash_mem() */
800 801 802 803 804
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
805
		iowrite32(*buf32++, denali->flash_mem + 0x10);
806
	return i*4; /* intent is to return the number of bytes read */
807 808 809
}

/* helper function that simply reads a buffer from the flash */
810 811 812
static int read_data_from_flash_mem(struct denali_nand_info *denali,
								uint8_t *buf,
								int len)
813 814 815 816 817
{
	uint32_t i = 0, *buf32;

	/* we assume that len will be a multiple of 4, if not
	 * it would be nice to know about it ASAP rather than
818 819 820
	 * have random failures...
	 * This assumption is based on the fact that this
	 * function is designed to be used to read flash pages,
821 822 823 824 825 826 827 828 829
	 * which are typically multiples of 4...
	 */

	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
830
	return i*4; /* intent is to return the number of bytes read */
831 832 833 834 835 836 837
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status = 0;
838 839
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
840 841 842 843
	int status = 0;

	denali->page = page;

844
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
845
							DENALI_WRITE) == PASS) {
846 847 848 849 850
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

851
		if (irq_status == 0) {
852
			dev_err(denali->dev, "OOB write failed\n");
853 854
			status = -EIO;
		}
855
	} else {
856
		dev_err(denali->dev, "unable to send pipeline command\n");
857
		status = -EIO;
858 859 860 861 862 863 864 865
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
866
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
867
			 irq_status = 0, addr = 0x0, cmd = 0x0;
868 869 870

	denali->page = page;

871
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
872
							DENALI_READ) == PASS) {
873
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
874

875
		/* wait for command to be accepted
876 877 878 879 880
		 * can always use status0 bit as the mask is identical for each
		 * bank. */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
881
			dev_err(denali->dev, "page on OOB timeout %d\n",
882
					denali->page);
883 884 885 886 887

		/* We set the device back to MAIN_ACCESS here as I observed
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
888
		 * if you are in MAIN_ACCESS.
889 890
		 */
		addr = BANK(denali->flash_bank) | denali->page;
891
		cmd = MODE_10 | addr;
892 893 894 895
		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
	}
}

896
/* this function examines buffers to see if they contain data that
897 898
 * indicate that the buffer is part of an erased region of flash.
 */
899
static bool is_erased(uint8_t *buf, int len)
900 901 902 903 904 905 906 907 908 909 910 911
{
	int i = 0;
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
912 913
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
914 915
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

916
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
917
		       uint32_t irq_status, unsigned int *max_bitflips)
918 919
{
	bool check_erased_page = false;
920
	unsigned int bitflips = 0;
921

922
	if (irq_status & INTR_STATUS__ECC_ERR) {
923 924 925 926
		/* read the ECC errors. we'll ignore them for now */
		uint32_t err_address = 0, err_correction_info = 0;
		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
		uint32_t err_correction_value = 0;
927
		denali_set_intr_modes(denali, false);
928

929
		do {
930
			err_address = ioread32(denali->flash_reg +
931 932 933 934
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

935
			err_correction_info = ioread32(denali->flash_reg +
936
						ERR_CORRECTION_INFO);
937
			err_correction_value =
938 939 940
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

941
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
942
				/* If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
943
				 * means error happened in OOB, so we ignore
944 945 946 947 948 949 950 951 952 953 954 955
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
				 * */
				if (err_byte < ECC_SECTOR_SIZE) {
					int offset;
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
956 957 958
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
959
					bitflips++;
960
				}
961
			} else {
962
				/* if the error is not correctable, need to
963 964 965
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
				 * */
966 967 968
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
969 970 971 972 973
		/* Once handle all ecc errors, controller will triger
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
		 * */
		while (!(read_interrupt_status(denali) &
974
				INTR_STATUS__ECC_TRANSACTION_DONE))
975 976 977
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
978
	}
979
	*max_bitflips = bitflips;
980 981 982 983
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
984
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
985 986 987
{
	uint32_t reg_val = 0x0;

988 989
	if (en)
		reg_val = DMA_ENABLE__FLAG;
990

991
	iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
992 993 994 995
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
996
static void denali_setup_dma(struct denali_nand_info *denali, int op)
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
{
	uint32_t mode = 0x0;
	const int page_count = 1;
	dma_addr_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);

	/* 4.  interrupt when complete, burst len = 64 bytes*/
	index_addr(denali, mode | 0x14000, 0x2400);
}

1019
/* writes a page. user specifies type, and this function handles the
1020
 * configuration details. */
1021
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1022 1023 1024 1025 1026 1027 1028 1029
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1030 1031
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
						INTR_STATUS__PROGRAM_FAIL;
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	/* if it is a raw xfer, we want to disable ecc, and send
	 * the spare area.
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1043
	if (raw_xfer) {
1044
		/* transfer the data to the spare area */
1045 1046 1047
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1048 1049
	}

1050
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1051 1052

	clear_interrupts(denali);
1053
	denali_enable_dma(denali, true);
1054

1055
	denali_setup_dma(denali, DENALI_WRITE);
1056 1057 1058 1059

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1060
	if (irq_status == 0) {
1061
		dev_err(denali->dev,
1062 1063
				"timeout on write_page (type = %d)\n",
				raw_xfer);
1064
		denali->status =
1065
			(irq_status & INTR_STATUS__PROGRAM_FAIL) ?
1066
			NAND_STATUS_FAIL : PASS;
1067 1068
	}

1069
	denali_enable_dma(denali, false);
1070
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1071 1072

	return 0;
1073 1074 1075 1076
}

/* NAND core entry points */

1077
/* this is the callback that the NAND core calls to write a page. Since
1078 1079 1080
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
 * */
1081
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1082
				const uint8_t *buf, int oob_required)
1083 1084
{
	/* for regular page writes, we let HW handle all the ECC
1085
	 * data written to the device. */
1086
	return write_page(mtd, chip, buf, false);
1087 1088
}

1089
/* This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1090
 * raw access is similar to ECC page writes, so all the work is done in the
1091
 * write_page() function above.
1092
 */
1093
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1094
					const uint8_t *buf, int oob_required)
1095
{
1096
	/* for raw page writes, we want to disable ECC and simply write
1097
	   whatever data is in the buffer. */
1098
	return write_page(mtd, chip, buf, true);
1099 1100
}

1101
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1102 1103
			    int page)
{
1104
	return write_oob_data(mtd, chip->oob_poi, page);
1105 1106
}

1107
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1108
			   int page)
1109 1110 1111
{
	read_oob_data(mtd, chip->oob_poi, page);

1112
	return 0;
1113 1114 1115
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1116
			    uint8_t *buf, int oob_required, int page)
1117
{
1118
	unsigned int max_bitflips;
1119 1120 1121 1122 1123 1124
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1125 1126
	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
			    INTR_STATUS__ECC_ERR;
1127 1128
	bool check_erased_page = false;

1129
	if (page != denali->page) {
1130
		dev_err(denali->dev, "IN %s: page %d is not"
1131 1132 1133 1134 1135
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1136 1137
	setup_ecc_for_xfer(denali, true, false);

1138
	denali_enable_dma(denali, true);
1139
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1140 1141

	clear_interrupts(denali);
1142
	denali_setup_dma(denali, DENALI_READ);
1143 1144 1145 1146

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1147
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1148 1149

	memcpy(buf, denali->buf.buf, mtd->writesize);
1150

1151
	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1152
	denali_enable_dma(denali, false);
1153

1154
	if (check_erased_page) {
1155 1156 1157
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1158
		if (check_erased_page) {
1159 1160 1161 1162
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1163
		}
1164
	}
1165
	return max_bitflips;
1166 1167 1168
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1169
				uint8_t *buf, int oob_required, int page)
1170 1171 1172 1173 1174 1175 1176
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1177
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1178

1179
	if (page != denali->page) {
1180
		dev_err(denali->dev, "IN %s: page %d is not"
1181 1182 1183 1184 1185
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1186
	setup_ecc_for_xfer(denali, false, true);
1187
	denali_enable_dma(denali, true);
1188

1189
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1190 1191

	clear_interrupts(denali);
1192
	denali_setup_dma(denali, DENALI_READ);
1193 1194 1195 1196

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1197
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1198

1199
	denali_enable_dma(denali, false);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

	return status;
}

1236
static int denali_erase(struct mtd_info *mtd, int page)
1237 1238 1239 1240 1241 1242
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t cmd = 0x0, irq_status = 0;

	/* clear interrupts */
1243
	clear_interrupts(denali);
1244 1245 1246 1247 1248 1249

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, (uint32_t)cmd, 0x1);

	/* wait for erase to complete or failure to occur */
1250 1251
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);
1252

1253
	return (irq_status & INTR_STATUS__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS;
1254 1255
}

1256
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1257 1258 1259
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1260 1261
	uint32_t addr, id;
	int i;
1262

1263
	switch (cmd) {
1264 1265 1266 1267 1268 1269
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1270
	case NAND_CMD_PARAM:
1271
		reset_buf(denali);
1272 1273 1274 1275 1276 1277 1278
		/*sometimes ManufactureId read from register is not right
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
		 * */
		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, (uint32_t)addr | 0, 0x90);
		index_addr(denali, (uint32_t)addr | 1, 0);
1279
		for (i = 0; i < 8; i++) {
1280 1281 1282 1283
			index_addr_read_data(denali,
						(uint32_t)addr | 2,
						&id);
			write_byte_to_buf(denali, id);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1297
		pr_err(": unsupported command received 0x%x\n", cmd);
1298
		break;
1299 1300 1301 1302
	}
}

/* stubs for ECC functions not used by the NAND core */
1303
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1304 1305
				uint8_t *ecc_code)
{
1306
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1307
	dev_err(denali->dev,
1308
			"denali_ecc_calculate called unexpectedly\n");
1309 1310 1311 1312
	BUG();
	return -EIO;
}

1313
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1314 1315
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
1316
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1317
	dev_err(denali->dev,
1318
			"denali_ecc_correct called unexpectedly\n");
1319 1320 1321 1322 1323 1324
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
1325
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1326
	dev_err(denali->dev,
1327
			"denali_ecc_hwctl called unexpectedly\n");
1328 1329 1330 1331 1332 1333 1334
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1335 1336 1337 1338 1339 1340 1341
	/* tell driver how many bit controller will skip before
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
	 * */
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1342
	detect_max_banks(denali);
1343
	denali_nand_reset(denali);
1344 1345
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1346
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1347

1348
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1349 1350

	/* Should set value for these registers when init */
1351 1352
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1353 1354
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1355 1356
}

1357 1358 1359 1360 1361 1362 1363
/* Althogh controller spec said SLC ECC is forceb to be 4bit,
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
 * */
#define ECC_8BITS	14
static struct nand_ecclayout nand_8bit_oob = {
	.eccbytes = 14,
1364 1365
};

1366 1367 1368
#define ECC_15BITS	26
static struct nand_ecclayout nand_15bit_oob = {
	.eccbytes = 26,
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1394
/* initialize driver data structures */
1395
static void denali_drv_init(struct denali_nand_info *denali)
1396 1397 1398 1399
{
	denali->idx = 0;

	/* setup interrupt handler */
1400
	/* the completion object will be used to notify
1401 1402 1403 1404
	 * the callee that the interrupt is done */
	init_completion(&denali->complete);

	/* the spinlock will be used to synchronize the ISR
1405
	 * with any element that might be access shared
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	 * data (interrupt status) */
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1416
int denali_init(struct denali_nand_info *denali)
1417
{
1418
	int ret;
1419

1420
	if (denali->platform == INTEL_CE4100) {
1421 1422 1423
		/* Due to a silicon limitation, we can only support
		 * ONFI timing mode 1 and below.
		 */
1424
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1425 1426
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1427 1428 1429
		}
	}

1430 1431 1432 1433 1434
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1435

1436
	denali->mtd.dev.parent = denali->dev;
1437 1438 1439
	denali_hw_init(denali);
	denali_drv_init(denali);

1440 1441
	/* denali_isr register is done after all the hardware
	 * initilization is finished*/
1442
	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1443
			DENALI_NAND_NAME, denali)) {
1444 1445
		pr_err("Spectra: Unable to allocate IRQ\n");
		return -ENODEV;
1446 1447 1448
	}

	/* now that our ISR is registered, we can enable interrupts */
1449
	denali_set_intr_modes(denali, true);
1450
	denali->mtd.name = "denali-nand";
1451 1452 1453 1454 1455 1456 1457 1458 1459
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1460
	/* scan for NAND devices attached to the controller
1461
	 * this is the first stage in a two step process to register
1462
	 * with the nand subsystem */
1463
	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1464
		ret = -ENXIO;
1465
		goto failed_req_irq;
1466
	}
1467

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
		pr_err("Spectra: no usable DMA configuration\n");
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
		ret = -EIO;
1491
		goto failed_req_irq;
1492 1493
	}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	/* support for multi nand
	 * MTD known nothing about multi nand,
	 * so we should tell it the real pagesize
	 * and anything necessery
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
	denali->mtd.writesize <<= (denali->devnum - 1);
	denali->mtd.oobsize <<= (denali->devnum - 1);
	denali->mtd.erasesize <<= (denali->devnum - 1);
	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
	denali->bbtskipbytes *= denali->devnum;

1513 1514 1515
	/* second stage of the NAND scan
	 * this stage requires information regarding ECC and
	 * bad block management. */
1516 1517 1518 1519 1520 1521

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
1522
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1523
	denali->nand.options |= NAND_SKIP_BBTSCAN;
1524 1525
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1526 1527 1528 1529
	/* Denali Controller only support 15bit and 8bit ECC in MRST,
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1530
	if (!nand_is_slc(&denali->nand) &&
1531 1532 1533 1534
			(denali->mtd.oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
M
Mike Dunn 已提交
1535
		denali->nand.ecc.strength = 15;
1536 1537
		denali->nand.ecc.layout = &nand_15bit_oob;
		denali->nand.ecc.bytes = ECC_15BITS;
1538
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1539 1540 1541
	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE))) {
1542 1543
		pr_err("Your NAND chip OOB is not large enough to \
				contain 8bit ECC correction codes");
1544
		goto failed_req_irq;
1545
	} else {
M
Mike Dunn 已提交
1546
		denali->nand.ecc.strength = 8;
1547 1548
		denali->nand.ecc.layout = &nand_8bit_oob;
		denali->nand.ecc.bytes = ECC_8BITS;
1549
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1550 1551
	}

1552
	denali->nand.ecc.bytes *= denali->devnum;
M
Mike Dunn 已提交
1553
	denali->nand.ecc.strength *= denali->devnum;
1554 1555 1556 1557 1558 1559 1560 1561
	denali->nand.ecc.layout->eccbytes *=
		denali->mtd.writesize / ECC_SECTOR_SIZE;
	denali->nand.ecc.layout->oobfree[0].offset =
		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
	denali->nand.ecc.layout->oobfree[0].length =
		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
		denali->bbtskipbytes;

1562 1563 1564 1565 1566 1567 1568 1569 1570
	/* Let driver know the total blocks number and
	 * how many blocks contained by each nand chip.
	 * blksperchip will help driver to know how many
	 * blocks is taken by FW.
	 * */
	denali->totalblks = denali->mtd.size >>
				denali->nand.phys_erase_shift;
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1571 1572 1573
	/* These functions are required by the NAND core framework, otherwise,
	 * the NAND core will assert. However, we don't need them, so we'll stub
	 * them out. */
1574 1575 1576 1577 1578
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
1579
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1580 1581 1582 1583 1584 1585
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
1586
	denali->nand.erase = denali_erase;
1587

1588
	if (nand_scan_tail(&denali->mtd)) {
1589
		ret = -ENXIO;
1590
		goto failed_req_irq;
1591 1592
	}

1593
	ret = mtd_device_register(&denali->mtd, NULL, 0);
1594
	if (ret) {
1595
		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1596
				ret);
1597
		goto failed_req_irq;
1598 1599 1600
	}
	return 0;

1601
failed_req_irq:
1602 1603
	denali_irq_cleanup(denali->irq, denali);

1604 1605
	return ret;
}
1606
EXPORT_SYMBOL(denali_init);
1607 1608

/* driver exit point */
1609
void denali_remove(struct denali_nand_info *denali)
1610
{
1611
	denali_irq_cleanup(denali->irq, denali);
1612 1613
	dma_unmap_single(denali->dev, denali->buf.dma_buf,
			denali->mtd.writesize + denali->mtd.oobsize,
1614
			DMA_BIDIRECTIONAL);
1615
}
1616
EXPORT_SYMBOL(denali_remove);