nn.py 533.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
37
from ..data_feeder import convert_dtype
Y
Yu Yang 已提交
38 39

__all__ = [
X
Xin Pan 已提交
40
    'fc',
H
HaoRen 已提交
41
    'center_loss',
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
51
    'bpr_loss',
X
Xin Pan 已提交
52 53 54 55 56 57 58 59 60 61
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
62 63
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
64
    'batch_norm',
L
lvmengsi 已提交
65
    'instance_norm',
H
heqiaozhi 已提交
66
    'data_norm',
X
Xin Pan 已提交
67 68 69 70 71 72
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
73
    'sequence_unpad',
X
Xin Pan 已提交
74 75 76 77 78 79
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
80 81
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
82 83
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
84
    'sequence_slice',
X
Xin Pan 已提交
85 86 87 88 89 90 91 92 93 94 95 96
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
97
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
98 99 100 101 102
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
103
    'group_norm',
D
dengkaipeng 已提交
104
    'spectral_norm',
X
Xin Pan 已提交
105 106 107 108 109 110 111 112
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
113
    'lod_append',
X
Xin Pan 已提交
114 115 116 117 118
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
119
    'roi_align',
X
Xin Pan 已提交
120 121 122 123
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
124
    'resize_trilinear',
125
    'resize_nearest',
X
Xin Pan 已提交
126
    'gather',
127
    'gather_nd',
X
Xin Pan 已提交
128
    'scatter',
129 130
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
131 132 133 134
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
135
    'selu',
X
Xin Pan 已提交
136 137
    'log',
    'crop',
138
    'crop_tensor',
X
Xin Pan 已提交
139
    'rank_loss',
M
minqiyang 已提交
140
    'margin_rank_loss',
X
Xin Pan 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
157
    'unique',
158
    'unique_with_counts',
X
Xin Pan 已提交
159 160 161 162 163 164 165 166 167 168
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
169 170
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
171 172 173 174 175 176
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
177
    'strided_slice',
X
Xin Pan 已提交
178
    'shape',
Z
zhoukunsheng 已提交
179
    'rank',
Z
zhoukunsheng 已提交
180
    'size',
X
Xin Pan 已提交
181 182 183 184 185 186 187 188 189 190
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
191
    'space_to_depth',
W
whs 已提交
192
    'affine_grid',
S
sneaxiy 已提交
193
    'sequence_reverse',
194
    'affine_channel',
B
barrierye 已提交
195
    'similarity_focus',
M
minqiyang 已提交
196
    'hash',
D
dengkaipeng 已提交
197
    'grid_sampler',
G
gmcather 已提交
198 199
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
200
    'bilinear_tensor_product',
C
chengduo 已提交
201 202
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
203
    'lstm',
S
shippingwang 已提交
204
    'shuffle_channel',
205
    'temporal_shift',
S
sneaxiy 已提交
206
    'py_func',
207
    'psroi_pool',
208
    'prroi_pool',
H
heqiaozhi 已提交
209
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
210
    'huber_loss',
D
dengkaipeng 已提交
211
    'kldiv_loss',
C
ceci3 已提交
212
    'npair_loss',
R
ruri 已提交
213
    'pixel_shuffle',
214
    'fsp_matrix',
H
heqiaozhi 已提交
215
    'continuous_value_model',
Z
zhoukunsheng 已提交
216
    'where',
Z
zhoukunsheng 已提交
217
    'sign',
218
    'deformable_conv',
219
    'unfold',
C
cjt222 已提交
220
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
221
    'filter_by_instag',
222
    'shard_index',
H
huangjun12 已提交
223
    'hard_swish',
R
ruri 已提交
224
    'mse_loss',
Y
Yu Yang 已提交
225 226
]

J
jerrywgz 已提交
227 228
kIgnoreIndex = -100

Y
Yu Yang 已提交
229 230 231 232 233 234 235

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
236
       name=None):
Y
Yu Yang 已提交
237
    """
238
    **Fully Connected Layer**
Y
Yu Yang 已提交
239

240
    This function creates a fully connected layer in the network. It can take
241
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
242
    Args in detail). It creates a variable called weights for each input tensor,
243 244 245 246
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
247
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
248 249
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
250

251
    When the input is single tensor:
C
caoying03 已提交
252

253 254 255 256 257
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
258 259 260

    .. math::

261
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
262 263 264

    In the above equation:

265 266 267
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
268
    * :math:`b`: The bias parameter created by this layer (if needed).
269
    * :math:`Act`: The activation function.
C
caoying03 已提交
270
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
290
    Args:
R
ranqiu 已提交
291 292 293 294 295 296 297 298 299 300
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
301
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
302 303 304 305
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
306 307
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
308 309
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
310

311
    Returns:
F
fengjiayi 已提交
312
        Variable: The transformation result.
313 314

    Raises:
C
caoying03 已提交
315
        ValueError: If rank of the input tensor is less than 2.
316 317 318 319

    Examples:
        .. code-block:: python

320
          import paddle.fluid as fluid
321
          # when input is single tensor
F
fengjiayi 已提交
322
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
323
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
324 325 326 327 328

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
329
    """
C
caoying03 已提交
330
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
331 332 333 334

    dtype = helper.input_dtype()

    mul_results = []
335 336
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
337 338 339
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
340

Y
Yu Yang 已提交
341
        w = helper.create_parameter(
342
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
343
        tmp = helper.create_variable_for_type_inference(dtype)
344
        helper.append_op(
345 346 347
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
348
            outputs={"Out": tmp},
M
mozga-intel 已提交
349 350
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
351 352 353 354
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
355
    else:
X
Xin Pan 已提交
356
        pre_bias = helper.create_variable_for_type_inference(dtype)
357
        helper.append_op(
358 359 360
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
361
            attrs={"use_mkldnn": False})
362 363 364 365
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
366 367


H
HaoRen 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


454 455 456
def embedding(input,
              size,
              is_sparse=False,
457
              is_distributed=False,
458 459 460
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
461
    """
462 463
    **Embedding Layer**

464
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
465 466
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
467 468 469

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
470 471

    Args:
472
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
473
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
474 475 476 477
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
478
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
479 480 481 482 483 484 485 486
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
487

488 489 490
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
491

492 493
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
494

B
bdzhuxiaoning 已提交
495 496 497
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
498 499 500
    """

    helper = LayerHelper('embedding', **locals())
501
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
502 503
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
504 505
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
506
    tmp = helper.create_variable_for_type_inference(dtype)
507 508
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
509 510 511 512 513
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
514 515 516
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
517
            'remote_prefetch': remote_prefetch,
518 519
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
520 521 522
    return tmp


H
hutuxian 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


W
wopeizl 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
587

W
wopeizl 已提交
588 589 590 591 592 593 594 595 596 597 598
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
599

W
wopeizl 已提交
600 601 602 603
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
604

W
wopeizl 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
641
            
642
            import paddle.fluid as fluid
643 644
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
645
            hidden_dim = 512
646 647 648 649 650 651
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
652
                                           bias_attr=False)
653

W
wopeizl 已提交
654 655 656
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
657
    assert in_dygraph_mode(
658
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
702 703


P
phlrain 已提交
704 705 706 707 708 709
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
710
         dropout_prob=0.0,
P
phlrain 已提交
711 712 713 714 715
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
716
    """
P
phlrain 已提交
717
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
718 719

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
720
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
721 722
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
723
    .. math::
M
minqiyang 已提交
724 725 726 727 728 729 730

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
731
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
732 733 734 735

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
736 737

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
738 739 740 741 742 743
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
744 745 746
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
747
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
748

M
minqiyang 已提交
749
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
750 751 752 753 754
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
755
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
756 757 758 759 760
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
761
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
762 763
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
764 765
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
766 767 768 769 770 771
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
772
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
773

L
liuhongyu 已提交
774 775

    Returns:
M
minqiyang 已提交
776 777
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
778
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
779

H
haowang101779990 已提交
780 781 782 783
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
784
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
785 786
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
787
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
788 789 790 791


    Examples:
        .. code-block:: python
792
            
793 794 795
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

796 797 798 799 800
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
801 802 803 804 805 806
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
807 808 809 810 811
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
812 813 814 815
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
816 817 818
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
878 879 880 881 882 883 884 885 886 887
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
888
                  proj_activation='tanh',
889
                  dtype='float32',
X
xuezhong 已提交
890 891 892 893 894
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
895 896 897
    """
    **Dynamic LSTMP Layer**

898 899 900 901 902 903
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
904 905 906 907 908

    The formula is as follows:

    .. math::

909
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
910

911
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
912

913
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
914

915
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
916

917
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
918

919
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
920

921
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
922

Y
Yibing Liu 已提交
923 924 925 926 927 928
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
929
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
930
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
931
          bias vector).
Y
Yibing Liu 已提交
932 933 934
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
935
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
936
    * :math:`h`: The hidden state.
937
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
938 939
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
940
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
941
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
942
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
943 944
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
945 946 947 948

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
949

Y
Yibing Liu 已提交
950 951 952 953 954 955 956 957 958 959 960 961
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
962
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
963 964
                               hidden-hidden weight and projection weight.

965 966
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
967 968
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
969 970
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
971
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
972 973 974 975 976

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
977
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
978 979 980 981 982 983
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
984
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
985 986 987
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
988
                                - The shape is (1 x 7D).
C
chengduo 已提交
989 990 991 992 993

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
994 995 996 997 998 999 1000 1001 1002
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
1003
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
1004 1005
                              default "tanh".
        proj_activation(str): The activation for projection output.
1006
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
1007
                              default "tanh".
Y
Yibing Liu 已提交
1008
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
1009 1010
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
1022 1023

    Returns:
1024 1025 1026 1027
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
1028 1029

    Examples:
1030

Y
Yibing Liu 已提交
1031 1032
        .. code-block:: python

1033
            import paddle.fluid as fluid
1034 1035 1036 1037
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
1038
            hidden_dim, proj_dim = 512, 256
1039
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
1040
                                     act=None, bias_attr=None)
1041 1042 1043
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
1044 1045 1046 1047
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
1048
    """
1049

L
lujun 已提交
1050
    assert in_dygraph_mode(
1051 1052
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
1053
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
1054
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1055
    size = size // 4
Y
Yibing Liu 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1066 1067 1068 1069 1070 1071
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1087

X
xuezhong 已提交
1088 1089 1090 1091 1092
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1093 1094
    helper.append_op(
        type='lstmp',
1095
        inputs=inputs,
Y
Yibing Liu 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1105 1106
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1116 1117 1118 1119 1120 1121 1122
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1123 1124
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1125
    """
1126
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1127

1128 1129 1130
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1131

G
guosheng 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1141

G
guosheng 已提交
1142
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1143

Q
Qiao Longfei 已提交
1144 1145 1146

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1159
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1160 1161
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1162 1163 1164 1165
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1166
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1167 1168

    Args:
1169 1170
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1171
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1172
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1173 1174
            is the hidden size.
        size(int): The dimension of the gru cell.
1175
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1176 1177
            hidden-hidden weight matrix. Note:

1178
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1179
              :math:`D` is the hidden size.
1180
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1181
              The first part are weights of the update gate and reset gate with
1182
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1183
              candidate hidden state with shape :math:`(D \\times D)`.
1184 1185 1186 1187 1188

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1189
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1190
            the bias in the update gate, reset gate and candidate calculations.
1191 1192 1193
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1194 1195
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1196
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1197 1198 1199
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1200
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1201
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1202 1203 1204 1205
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1206 1207

    Returns:
G
guosheng 已提交
1208
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1209
            and sequence length is the same with the input.
1210

G
guosheng 已提交
1211
    Examples:
1212

G
guosheng 已提交
1213 1214
        .. code-block:: python

1215 1216
            import paddle.fluid as fluid

1217 1218 1219 1220
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1221
            hidden_dim = 512
1222
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1223
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1224 1225
    """

L
lujun 已提交
1226
    assert in_dygraph_mode(
1227 1228
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1229 1230 1231 1232 1233 1234 1235
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1236
    batch_size = input.shape[0]
G
guosheng 已提交
1237
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1238
    if h_0:
G
guosheng 已提交
1239
        assert h_0.shape == (
Y
Yancey 已提交
1240 1241 1242
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1243

X
Xin Pan 已提交
1244 1245 1246 1247
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1261 1262
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1263 1264 1265 1266
        })
    return hidden


Y
Yu Yang 已提交
1267 1268 1269
def gru_unit(input,
             hidden,
             size,
1270 1271
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1272
             activation='tanh',
Q
Qiao Longfei 已提交
1273 1274
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1275
    """
1276 1277 1278
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1279
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1280
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1281

1282 1283
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1284

1285
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1286

1287
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1304 1305

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1306 1307 1308
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1309 1310
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1311 1312
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1313 1314 1315
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1316 1317 1318

    Args:
        input (Variable): The fc transformed input value of current step.
1319
        hidden (Variable): The hidden value of gru unit from previous step.
1320
        size (integer): The input dimension value.
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1335
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1336
            the bias in the update gate, reset gate and candidate calculations.
1337 1338 1339
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1340 1341
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1342 1343 1344 1345
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1346

1347 1348 1349 1350 1351 1352
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1377
    size = size // 3
Y
Yu Yang 已提交
1378 1379

    # create weight
1380 1381
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1382

X
Xin Pan 已提交
1383 1384 1385
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1386
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1387
    # create bias
1388
    if helper.bias_attr:
Y
Yu Yang 已提交
1389 1390 1391
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1392
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1393 1394 1395

    helper.append_op(
        type='gru_unit',
1396
        inputs=inputs,
Y
Yu Yang 已提交
1397 1398 1399 1400 1401 1402
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1403 1404
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1405 1406 1407 1408 1409
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1410
@templatedoc()
1411
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
1412 1413 1414 1415 1416 1417 1418 1419
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
1420
        Length(${length_type}): ${length_comment}
1421
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
1422 1423

    Returns:
D
dzhwinter 已提交
1424 1425 1426
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1427

J
JesseyXujin 已提交
1428 1429 1430
    Examples:
        .. code-block:: python

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data = fluid.layers.data(name='input_data', shape=[10], dtype='float32', lod_level=1)
                label = fluid.layers.data(name='label', shape=[1], dtype='int', lod_level=1)
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data2 = fluid.layers.data(name='input_data2', shape=[10,10], dtype='float32')
                label2 = fluid.layers.data(name='label2', shape=[10,1], dtype='int')
                label_length = fluid.layers.data(name='length', shape=[1], dtype='int')
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
1471
                     name='crfw',
1472 1473 1474 1475 1476 1477
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
1478

1479 1480 1481 1482 1483 1484 1485 1486
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
            ll=np.array([[3,3,4,2]])
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}

            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
1487 1488 1489 1490
            
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
Y
yuyang18 已提交
1491
    """
Y
Yu Yang 已提交
1492 1493 1494 1495 1496 1497
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1498 1499 1500 1501 1502 1503 1504 1505
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
1506 1507 1508 1509 1510 1511 1512
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
        this_inputs['length'] = [length]
Y
Yu Yang 已提交
1513 1514
    helper.append_op(
        type='linear_chain_crf',
1515
        inputs=this_inputs,
Y
Yu Yang 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1526 1527 1528 1529
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1530

W
wopeizl 已提交
1531 1532
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1533

W
wopeizl 已提交
1534
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1535

W
wopeizl 已提交
1536
        label(${label_type}): ${label_comment}
1537

W
wopeizl 已提交
1538 1539
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1540

W
wopeizl 已提交
1541 1542
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1543

1544
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1545 1546 1547 1548 1549 1550 1551
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1552 1553 1554 1555 1556 1557 1558 1559
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1560
                "Transition": transition,
W
wopeizl 已提交
1561 1562
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1563

W
wopeizl 已提交
1564
    return viterbi_path
Y
Yu Yang 已提交
1565 1566


Y
yi.wu 已提交
1567
@templatedoc()
F
fengjiayi 已提交
1568
def cos_sim(X, Y):
Y
Yu Yang 已提交
1569
    """
Y
yi.wu 已提交
1570 1571 1572
    ${comment}

    Args:
1573 1574
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1575

Y
yi.wu 已提交
1576
    Returns:
1577
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1578 1579 1580 1581

    Examples:
        .. code-block:: python

1582
            import paddle.fluid as fluid
L
lvmengsi 已提交
1583 1584 1585
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1586
    """
F
fengjiayi 已提交
1587
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1588 1589 1590
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1601 1602 1603 1604 1605
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1606
            dropout_implementation="downgrade_in_infer"):
1607 1608 1609 1610 1611
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1612
    training. The dropout operator randomly sets (according to the given dropout
1613 1614 1615
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1616 1617
    dropout op can be removed from the program to make the program more efficient.

1618
    Args:
1619 1620
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1621 1622 1623 1624 1625 1626 1627
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1628 1629
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1630
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1631 1632

                                           - train: out = input * mask
C
ceci3 已提交
1633
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1634 1635 1636

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1637
                                        2. upscale_in_train, upscale the outcome at training time
1638

H
haowang101779990 已提交
1639 1640
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1641

H
haowang101779990 已提交
1642 1643
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1644

M
minqiyang 已提交
1645

1646
    Returns:
1647
        Variable: A tensor variable is the shape with `x`.
1648 1649

    Examples:
1650

1651 1652
        .. code-block:: python

1653
            import paddle.fluid as fluid
1654 1655
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1656 1657
    """

F
fengjiayi 已提交
1658
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1659 1660
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1661
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1662 1663 1664 1665

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1666 1667 1668 1669 1670
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1671 1672 1673 1674
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1675
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1676
            'dropout_implementation': dropout_implementation,
1677
        })
1678 1679 1680
    return out


J
jerrywgz 已提交
1681
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1682
    """
Y
Yibing Liu 已提交
1683 1684
    **Cross Entropy Layer**

1685 1686 1687
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1688 1689

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1690
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1691

Y
Yibing Liu 已提交
1692
        .. math::
Y
yangyaming 已提交
1693

Y
Yibing Liu 已提交
1694 1695 1696
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1697 1698
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1699 1700 1701 1702 1703

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1704
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1705 1706 1707
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1708 1709
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1710
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1711

Y
Yibing Liu 已提交
1712
    Args:
Y
yangyaming 已提交
1713
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1714 1715 1716 1717
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1718
        label (Variable|list): the ground truth which is a 2-D tensor. When
1719 1720 1721 1722
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1723
        soft_label (bool): a flag indicating whether to
1724
                                           interpretate the given labels as soft
1725
                                           labels. Default: `False`.
M
minqiyang 已提交
1726 1727
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1728
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1729 1730 1731 1732 1733

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1734 1735 1736
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1737

H
haowang101779990 已提交
1738 1739
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1740

H
haowang101779990 已提交
1741 1742
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1743 1744 1745 1746

    Examples:
        .. code-block:: python

1747
          import paddle.fluid as fluid
L
lvmengsi 已提交
1748 1749 1750 1751
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1752
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1753
    """
S
sneaxiy 已提交
1754 1755
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1756
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1757
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1758 1759 1760 1761 1762
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1763 1764
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1765 1766 1767
    return out


S
sneaxiy 已提交
1768 1769 1770 1771
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1772
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1773 1774 1775 1776 1777
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1778
                 'MatchX': [match_x],
S
sneaxiy 已提交
1779 1780 1781 1782 1783
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1784
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1785
    """
1786
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1787

1788
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1789
    The loss at a given point in one session is defined as:
1790 1791 1792

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1793 1794

    Learn more details by reading paper <session-based recommendations with recurrent
1795
    neural networks>.
F
frankwhzhang 已提交
1796

1797 1798 1799 1800 1801 1802
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1803 1804
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1805 1806 1807
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1808 1809 1810
    Examples:
        .. code-block:: python

1811 1812 1813 1814 1815 1816 1817
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1818
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1819
    """
1820 1821 1822 1823 1824
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1825
                'Label': [label]},
1826 1827 1828 1829
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1830
def square_error_cost(input, label):
Y
Yu Yang 已提交
1831
    """
1832 1833
    **Square error cost layer**

1834 1835
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1850 1851
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1852 1853

    Returns:
G
guosheng 已提交
1854
        Variable: The tensor variable storing the element-wise squared error \
1855
                  difference of input and label.
1856 1857 1858 1859

    Examples:
        .. code-block:: python

1860
          import paddle.fluid as fluid
R
ruri 已提交
1861 1862 1863
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1864

Y
Yu Yang 已提交
1865
    """
F
fengjiayi 已提交
1866
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1867
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1868 1869 1870 1871 1872 1873
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1874
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1875
    helper.append_op(
F
fengjiayi 已提交
1876 1877
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1878 1879 1880
    return square_out


Y
yi.wu 已提交
1881
@templatedoc()
Y
Yu Yang 已提交
1882 1883 1884 1885
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1886 1887
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1888
    """
Y
yi.wu 已提交
1889
    **Chunk Evaluator**
Y
yi.wu 已提交
1890

Y
yangyaming 已提交
1891
    This function computes and outputs the precision, recall and
1892
    F1-score of chunk detection.
Y
yi.wu 已提交
1893

M
minqiyang 已提交
1894
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1895
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1896 1897 1898 1899 1900 1901

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1902

Y
yi.wu 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1928

Y
yi.wu 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1953
    Args:
1954 1955 1956 1957 1958
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1959
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1960

Y
yi.wu 已提交
1961
    Returns:
Y
update  
yi.wu 已提交
1962 1963 1964
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1965

Y
yi.wu 已提交
1966 1967 1968
    Examples:
        .. code-block:: python

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1980
            crf = fluid.layers.linear_chain_crf(
1981
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1982
            crf_decode = fluid.layers.crf_decoding(
1983
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1984 1985 1986 1987 1988
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1989
    """
F
fengjiayi 已提交
1990
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1991 1992

    # prepare output
X
Xin Pan 已提交
1993 1994 1995 1996 1997 1998 1999
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
2000

2001 2002 2003 2004 2005
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
2006 2007
    helper.append_op(
        type="chunk_eval",
2008
        inputs=this_input,
Y
Yu Yang 已提交
2009 2010 2011
        outputs={
            "Precision": [precision],
            "Recall": [recall],
2012 2013 2014 2015
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
2016 2017 2018
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
2019 2020
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
2021
        })
2022 2023
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
2024 2025


2026
@templatedoc()
Y
Yu Yang 已提交
2027 2028 2029 2030
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
2031 2032
                  padding=True,
                  padding_start=None,
Y
Yu Yang 已提交
2033 2034
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
2035 2036
                  act=None,
                  name=None):
Y
Yu Yang 已提交
2037
    """
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
    The sequence_conv receives input sequences with variable length and other convolutional
    configuration parameters for the filter and stride to apply the convolution operation.
    It fills all-zero padding data on both sides of the sequence by default to ensure that
    the output is the same length as the input. You can customize the padding behavior by
    configuring the parameter :attr:`padding\_start`.
    
    **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.

    .. code-block:: text

            Here we'll illustrate the details of the padding operation:
            For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
            Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
            Besides, for the sake of simplicity, we assume M=1 and N=2.
            X = [[a1, a2;
                  b1, b2;
                  c1, c2]
                 [d1, d2]]

            This is to say that input (X) has 4 words and the dimension of each word
            representation is 2.

            * Case1:

                If padding_start is -1 and filter_size is 3.
                The length of padding data is calculated as follows:
                up_pad_len = max(0, -padding_start) = 1
                down_pad_len = max(0, filter_size + padding_start - 1) = 1

                The output of the input sequence after padding is:
                data_aftet_padding = [[0,  0,  a1, a2, b1, b2;
                                       a1, a2, b1, b2, c1, c2;
                                       b1, b2, c1, c2, 0,  0 ]
                                      [0,  0,  d1, d2, 0,  0 ]]

                It will be multiplied by the filter weight to get the final output.
2074 2075 2076

    Args:
        input (Variable): ${x_comment}
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
        num_filters (int): the number of filters.
        filter_size (int): the height of filter, the width is hidden size by default.
        filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
        padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
            future. Currently, it will always pad input to make sure the length of the output is
            the same as input whether :attr:`padding` is set true or false. Because the length of
            input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
            result to not be computed correctly. These padding data will not be trainable or updated
            while trainnig. 
        padding_start (int|None): It is used to indicate the start index for padding the input
            sequence, which can be negative. The negative number means to pad
            :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
            The positive number means to skip :attr:`padding_start` time-steps of each instance,
            and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
            at the end of the sequence to ensure that the output is the same length as the input.
            If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
            on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
            is padded at the end of each input sequence.
C
chengduo 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
2108

2109 2110
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
2111 2112

    Examples:
2113

B
bdzhuxiaoning 已提交
2114 2115 2116
        .. code-block:: python

             import paddle.fluid as fluid
2117

B
bdzhuxiaoning 已提交
2118
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
2119
             x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
Y
Yu Yang 已提交
2120 2121
    """

L
lujun 已提交
2122
    assert not in_dygraph_mode(), (
2123
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
2124 2125 2126 2127 2128
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
2129
    pre_bias = helper.create_variable_for_type_inference(dtype)
2130 2131
    if padding_start is None:
        padding_start = -int(filter_size // 2)
Y
Yu Yang 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
2142 2143
            'contextStart': padding_start,
            'contextLength': filter_size,
Y
Yu Yang 已提交
2144 2145 2146 2147 2148
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
2149
def sequence_softmax(input, use_cudnn=False, name=None):
2150 2151 2152
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
2153
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2170 2171 2172
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2173

2174 2175 2176 2177 2178 2179 2180
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2181
             import paddle.fluid as fluid
2182 2183 2184 2185
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2186
    assert not in_dygraph_mode(), (
2187
        "sequence layer is not supported in dygraph mode yet.")
2188 2189
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2190
    softmax_out = helper.create_variable_for_type_inference(dtype)
2191 2192 2193 2194 2195 2196 2197 2198
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2199
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2200
    """
2201
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2202
    has the same shape as the input.
Q
qiaolongfei 已提交
2203

D
dengkaipeng 已提交
2204
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2205
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2206
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2207 2208 2209
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2210
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2211
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2212 2213 2214 2215 2216 2217 2218

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2219
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2220 2221 2222 2223 2224 2225 2226 2227

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2228 2229
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2230 2231
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2232 2233 2234
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2235 2236 2237 2238 2239 2240 2241 2242

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2243 2244
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2245
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2246
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2247
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2248 2249
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2250 2251

    """
2252
    helper = LayerHelper('softmax', **locals())
2253 2254 2255 2256 2257 2258 2259 2260 2261
    if not isinstance(input, Variable):
        raise TypeError(
            "The type of 'input' in softmax must be Variable, but received %s" %
            (type(input)))
    if convert_dtype(input.dtype) not in ['float32', 'float64']:
        raise TypeError(
            "The data type of 'input' in softmax must be float32 or float64, but received %s."
            % (convert_dtype(input.dtype)))

2262
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2263
    softmax_out = helper.create_variable_for_type_inference(dtype)
2264 2265 2266 2267
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2268 2269
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2270 2271 2272
    return softmax_out


Y
Yu Yang 已提交
2273 2274 2275
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2276 2277
           stride=1,
           padding=0,
2278
           dilation=1,
Y
Yu Yang 已提交
2279 2280 2281
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2282
           use_cudnn=True,
2283 2284
           act=None,
           name=None):
Y
Yu Yang 已提交
2285
    """
C
chengduoZH 已提交
2286
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2287 2288
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2289
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2290 2291 2292 2293 2294 2295
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
2296
    for more details.
2297 2298 2299
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2300

2301
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2302

C
chengduoZH 已提交
2303 2304
    .. math::

C
refine  
chengduoZH 已提交
2305
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2306

T
tensor-tang 已提交
2307
    Where:
C
chengduoZH 已提交
2308

2309 2310 2311 2312 2313
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2314
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2315 2316 2317

    Example:

2318 2319
        - Input:

W
weixing02 已提交
2320
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2321

W
weixing02 已提交
2322
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2323

2324
        - Output:
T
tensor-tang 已提交
2325

W
weixing02 已提交
2326
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2327

C
chengduoZH 已提交
2328
        Where
2329 2330

        .. math::
C
chengduoZH 已提交
2331

W
weixing02 已提交
2332 2333
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2334

2335 2336 2337
    Note:
        padding mode is 'SAME' and 'VALID' can reference this link<https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/PaddleGAN/network/base_network.py#L181>`_

C
chengduoZH 已提交
2338
    Args:
2339
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2340
        num_filters(int): The number of filter. It is as same as the output
2341
            image channel.
2342 2343 2344 2345
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
            filter_size_width). Otherwise, filter_size_height = filter_\
            size_width = filter_size.
2346
        stride (int|tuple): The stride size. If stride is a tuple, it must
2347 2348
            contain two integers, (stride_height, stride_width). Otherwise,
            stride_height = stride_width = stride. Default: stride = 1.
2349
        padding (int|tuple): The padding size. If padding is a tuple, it must
2350 2351
            contain two integers, (padding_height, padding_width). Otherwise,
            padding_height = padding_width =  padding. Default: padding = 0.
2352
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2353 2354
            contain two integers, (dilation_height, dilation_width). Otherwise,
            dilation_height = dilation_width = dilation. Default: dilation = 1.
2355 2356 2357 2358
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2359 2360 2361 2362 2363
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2364
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2365 2366 2367 2368 2369
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2370 2371
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2372 2373
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2374
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2375
            will be named automatically. Default: None
C
chengduoZH 已提交
2376 2377

    Returns:
G
guosheng 已提交
2378
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2379 2380
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2381
    Raises:
2382 2383
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2384

C
chengduoZH 已提交
2385 2386 2387
    Examples:
        .. code-block:: python

2388
          import paddle.fluid as fluid
2389 2390
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2391 2392 2393
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2394
    assert param_attr is not False, "param_attr should not be False here."
2395
    l_type = 'conv2d'
X
xzl 已提交
2396 2397
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2398
        l_type = 'depthwise_conv2d'
2399 2400 2401 2402

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2403 2404 2405 2406 2407
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2408
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2409

C
chengduoZH 已提交
2410 2411 2412
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2413
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2414

C
chengduoZH 已提交
2415 2416
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2417 2418

    input_shape = input.shape
M
minqiyang 已提交
2419
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2420 2421

    def _get_default_param_initializer():
C
chengduo 已提交
2422 2423
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2424 2425 2426 2427 2428 2429 2430 2431
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2432
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2433 2434

    helper.append_op(
2435
        type=l_type,
Y
Yu Yang 已提交
2436 2437 2438 2439 2440
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2441 2442 2443
        attrs={
            'strides': stride,
            'paddings': padding,
2444
            'dilations': dilation,
C
chengduoZH 已提交
2445
            'groups': groups,
2446
            'use_cudnn': use_cudnn,
2447
            'use_mkldnn': False,
2448
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2449
        })
Y
Yu Yang 已提交
2450 2451 2452 2453 2454 2455

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2473 2474 2475 2476 2477 2478
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2479 2480 2481 2482 2483 2484 2485 2486 2487

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2488 2489
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2490 2491 2492
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2493
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2516
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2517
            image channel.
2518 2519 2520 2521
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
C
chengduoZH 已提交
2522
        stride (int|tuple): The stride size. If stride is a tuple, it must
2523 2524
            contain three integers, (stride_depth, stride_height, stride_width). Otherwise,
            stride_depth = stride_height = stride_width = stride. Default: stride = 1.
C
chengduoZH 已提交
2525
        padding (int|tuple): The padding size. If padding is a tuple, it must
2526 2527
            contain three integers, (padding_depth, padding_height, padding_width). Otherwise,
            padding_depth = padding_height = padding_width = padding. Default: padding = 0.
C
chengduoZH 已提交
2528
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2529 2530
            contain three integers, (dilation_depth, dilation_height, dilation_width). Otherwise,
            dilation_depth = dilation_height = dilation_width = dilation. Default: dilation = 1.
C
chengduoZH 已提交
2531 2532 2533 2534 2535
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2546 2547
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2548 2549
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2550
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2551
            will be named automatically. Default: None.
C
chengduoZH 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2564
          import paddle.fluid as fluid
2565 2566
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2567 2568 2569
    """

    l_type = 'conv3d'
C
chengduo 已提交
2570
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2581
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2595 2596 2597
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2598 2599 2600 2601 2602 2603 2604 2605
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2606
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2621
            'use_mkldnn': False
C
chengduoZH 已提交
2622 2623
        })

2624
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2625 2626 2627 2628

    return helper.append_activation(pre_act)


2629
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2630
    """
Y
yangyaming 已提交
2631 2632 2633
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2644 2645
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2646 2647 2648 2649
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2650
         out.dim = [4, 1]
2651
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2652 2653

       for different pool_type:
2654 2655 2656
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2657
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2658 2659 2660 2661 2662
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2663

L
Luo Tao 已提交
2664
    Args:
2665
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2666
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2667
            It supports average, sum, sqrt and max.
2668 2669
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2670 2671 2672 2673 2674 2675 2676

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2677

2678 2679
             import paddle.fluid as fluid

Y
yangyaming 已提交
2680
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2681 2682 2683 2684 2685
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2686 2687
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2688
    """
L
lujun 已提交
2689
    assert not in_dygraph_mode(), (
2690
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2691
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2692
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2693 2694
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2695 2696 2697 2698 2699 2700

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2701 2702 2703 2704 2705
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2706

Y
yangyaming 已提交
2707 2708 2709 2710 2711
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2712 2713 2714
    return pool_out


C
add doc  
chengduoZH 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2731 2732 2733 2734
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2735
    """
L
lujun 已提交
2736
    assert not in_dygraph_mode(), (
2737
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2738
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2739
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2740 2741 2742 2743 2744
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2745
def sequence_first_step(input):
L
Luo Tao 已提交
2746
    """
L
Luo Tao 已提交
2747
    This function gets the first step of sequence.
L
Luo Tao 已提交
2748 2749 2750 2751

    .. code-block:: text

       x is a 1-level LoDTensor:
2752
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2753 2754 2755 2756 2757
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2758
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2759
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2760

L
Luo Tao 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2770

2771
             import paddle.fluid as fluid
Y
yangyaming 已提交
2772
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2773 2774 2775
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2776 2777 2778
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2779
def sequence_last_step(input):
L
Luo Tao 已提交
2780
    """
L
Luo Tao 已提交
2781
    This function gets the last step of sequence.
L
Luo Tao 已提交
2782 2783 2784 2785

    .. code-block:: text

       x is a 1-level LoDTensor:
2786
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2787 2788 2789 2790 2791
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2792
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2793
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2794

L
Luo Tao 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2804

2805
             import paddle.fluid as fluid
Y
yangyaming 已提交
2806
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2807 2808 2809
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2810 2811 2812
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2813 2814 2815 2816
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2817
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2818 2819 2820 2821 2822
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2823

H
haowang101779990 已提交
2824
              - Case:
Y
Yibing Liu 已提交
2825

2826
            Given the input Variable **input**:
2827

2828 2829 2830
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2831

2832
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2833

2834
            the output Variable will be
2835

2836 2837 2838
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2839

M
minqiyang 已提交
2840
    Note:
H
haowang101779990 已提交
2841
          The first dimension size of **input**, **offset** and **length**
2842
          should be equal. The **offset** should start from 0.
2843

Y
Yibing Liu 已提交
2844
    Args:
2845
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2846
                         sequences.
Y
Yibing Liu 已提交
2847 2848 2849 2850 2851 2852
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2853
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2854 2855 2856 2857 2858

    Examples:

        .. code-block:: python

2859
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2860 2861 2862 2863 2864
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2865
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2866 2867
                                                   length=length)
    """
L
lujun 已提交
2868
    assert not in_dygraph_mode(), (
2869
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2870 2871
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2872
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2887
@templatedoc()
Y
Yu Yang 已提交
2888
def pool2d(input,
C
chengduoZH 已提交
2889 2890
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2891 2892
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2893
           global_pooling=False,
C
chengduoZH 已提交
2894
           use_cudnn=True,
2895
           ceil_mode=False,
2896 2897
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2898
    """
F
fengjiayi 已提交
2899
    ${comment}
2900 2901

    Args:
2902 2903 2904
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2905
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2906
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2907 2908
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2909
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2910 2911 2912 2913 2914 2915
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2916 2917 2918
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2919
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2920
                        layer will be named automatically.
2921
        exclusive (bool): Whether to exclude padding points in average pooling
2922
                          mode, default is true
F
fengjiayi 已提交
2923

2924
    Returns:
F
fengjiayi 已提交
2925
        Variable: The pooling result.
F
fengjiayi 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2936
          import paddle.fluid as fluid
F
fengjiayi 已提交
2937 2938
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2939
          pool2d = fluid.layers.pool2d(
2940 2941 2942 2943
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2944
                            global_pooling=False)
Y
Yu Yang 已提交
2945 2946 2947 2948 2949
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2950

C
chengduoZH 已提交
2951 2952 2953 2954 2955
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2956 2957 2958 2959
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2960 2961
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2962

C
Add doc  
chengduoZH 已提交
2963
    l_type = 'pool2d'
2964 2965

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2966
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2967
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2968 2969

    helper.append_op(
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2981 2982
            "use_mkldnn": False,
            "exclusive": exclusive,
2983 2984 2985 2986 2987
        })

    return pool_out


D
dengkaipeng 已提交
2988
@templatedoc()
2989 2990 2991 2992 2993 2994 2995 2996
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2997 2998
           name=None,
           exclusive=True):
2999
    """
3000
    ${comment}
3001 3002

    Args:
D
dengkaipeng 已提交
3003 3004 3005 3006 3007
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
3008 3009 3010 3011 3012
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
3013 3014 3015 3016 3017 3018 3019
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
3020
        exclusive (bool): Whether to exclude padding points in average pooling
3021
                          mode, default is true
3022

3023
    Returns:
3024
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
3025 3026 3027 3028 3029

    Examples:

        .. code-block:: python

3030
          import paddle.fluid as fluid
D
dengkaipeng 已提交
3031 3032 3033 3034 3035 3036 3037 3038
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
3039 3040 3041 3042 3043
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
3044

C
chengduoZH 已提交
3045 3046 3047 3048 3049
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

3050 3051 3052
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
3053

C
chengduoZH 已提交
3054 3055
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
3056

3057 3058
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3059
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3060
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
3061 3062

    helper.append_op(
3063
        type=l_type,
Y
Yu Yang 已提交
3064 3065 3066 3067 3068 3069 3070
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
3071
            "paddings": pool_padding,
3072
            "use_cudnn": use_cudnn,
3073
            "ceil_mode": ceil_mode,
3074 3075
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
3076 3077 3078 3079 3080
        })

    return pool_out


3081 3082 3083 3084 3085 3086 3087
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3088 3089 3090 3091 3092 3093 3094
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
3095

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
3109 3110 3111 3112 3113 3114 3115 3116 3117

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3118 3119
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
3134
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
3135
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
3136
          # of input data into m * n grids averagely and performs poolings in each
3137 3138
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3139
          #
3140 3141 3142 3143 3144 3145 3146 3147
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
3148
          import paddle.fluid as fluid
3149 3150
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
3151
          pool_out = fluid.layers.adaptive_pool2d(
3152 3153
                            input=data,
                            pool_size=[3, 3],
3154
                            pool_type='avg')
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3165
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3191
    return (pool_out, mask) if require_index else pool_out
3192 3193 3194 3195 3196 3197 3198 3199 3200


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3201 3202 3203 3204 3205 3206 3207
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3208

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3226 3227 3228

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3229 3230 3231
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3232
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3233
            it must contain three integers, (Depth, Height, Width).
3234
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3235 3236
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3251 3252
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3253
          # of input data into l * m * n grids averagely and performs poolings in each
3254 3255
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3256
          #
3257 3258 3259 3260 3261 3262 3263 3264 3265
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3266
          #                 output[:, :, i, j, k] =
3267 3268
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3269 3270 3271

          import paddle.fluid as fluid

3272
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3273 3274
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3275
                            input=data,
D
dengkaipeng 已提交
3276
                            pool_size=[3, 3, 3],
3277
                            pool_type='avg')
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3288
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3314
    return (pool_out, mask) if require_index else pool_out
3315 3316


Y
Yu Yang 已提交
3317 3318 3319 3320 3321 3322 3323
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3324
               data_layout='NCHW',
Y
Yang Yang 已提交
3325
               in_place=False,
3326 3327
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3328
               moving_variance_name=None,
3329
               do_model_average_for_mean_and_var=False,
3330 3331
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3332
    """
Q
qiaolongfei 已提交
3333 3334 3335 3336
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3337

Q
qiaolongfei 已提交
3338
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3339

Q
qiaolongfei 已提交
3340 3341
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3342 3343 3344
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3357

3358 3359 3360 3361
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum)
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum)
        moving_mean and moving_var is global mean and global variance.

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
3375 3376 3377 3378
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

3379
    Args:
Q
qingqing01 已提交
3380
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3381
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3382 3383 3384 3385 3386 3387 3388 3389 3390
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3391 3392
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3393 3394 3395
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3396 3397
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3398 3399 3400
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3401
        data_layout(string, default NCHW): NCHW|NHWC
3402
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3403 3404
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3405 3406 3407
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3408
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3409 3410
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3411
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3412
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3413 3414 3415 3416 3417
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3418 3419

    Returns:
Q
qiaolongfei 已提交
3420
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3421 3422 3423 3424 3425

    Examples:

        .. code-block:: python

3426
            import paddle.fluid as fluid
L
lvmengsi 已提交
3427
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3428 3429
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3430
    """
C
chengduo 已提交
3431
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3432 3433 3434
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3435 3436 3437 3438
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3457
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3458

3459 3460
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3461 3462 3463
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3464
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3465
        shape=param_shape,
W
Wu Yi 已提交
3466
        dtype=dtype)
3467 3468 3469 3470 3471 3472
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3473
            trainable=False,
W
wanghaoshuang 已提交
3474
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3475
        shape=param_shape,
W
Wu Yi 已提交
3476
        dtype=dtype)
3477
    variance.stop_gradient = True
Y
Yu Yang 已提交
3478 3479 3480 3481 3482 3483

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3484 3485 3486 3487
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3488

X
Xin Pan 已提交
3489 3490
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3508 3509 3510 3511
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3512
            "data_layout": data_layout,
X
Xin Pan 已提交
3513
            "use_mkldnn": False,
3514 3515
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3516
        })
Y
Yu Yang 已提交
3517 3518 3519 3520

    return helper.append_activation(batch_norm_out)


L
lvmengsi 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean of one  feature map in mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance of one feature map in mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

    Args:
        input(variable): The rank of input variable can be 2, 3, 4, 5.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: A tensor variable which is the result after applying instance normalization on the input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3685 3686
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3687

3688 3689
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3755
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3756 3757 3758 3759

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3760
@templatedoc()
G
guosheng 已提交
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3771
    ${comment}
G
guosheng 已提交
3772 3773 3774

    The formula is as follows:

Y
yuyang18 已提交
3775
    ..  math::
G
guosheng 已提交
3776 3777 3778 3779 3780 3781 3782

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3783 3784 3785 3786 3787 3788 3789 3790
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3791

G
guosheng 已提交
3792 3793
    Args:
        input(Variable): The input tensor variable.
3794
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3795
            normalization. Default True.
3796
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3797 3798
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3799
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3800
            Default 1.
3801
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3802
            division by zero. Default 1e-05.
G
guosheng 已提交
3803
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3804 3805
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3806 3807
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3808
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3809 3810
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3811
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3812
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3813
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3814 3815 3816
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3817 3818

    Returns:
Y
yuyang18 已提交
3819
        ${y_comment}
G
guosheng 已提交
3820 3821 3822

    Examples:

3823
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3824 3825 3826
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3827
    """
L
lujun 已提交
3828
    assert in_dygraph_mode(
L
lujun 已提交
3829
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3844
    if shift:
G
guosheng 已提交
3845 3846 3847 3848 3849 3850
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3851 3852 3853 3854 3855
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3883
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
3897
        data_layout(string, default NCHW): NCHW(num_batch, channels, h, w) or NHWC(num_batch, h, w, channels).
D
Dun 已提交
3898 3899 3900 3901 3902 3903 3904
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3905
        >>> import paddle.fluid as fluid
D
Dun 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3916 3917 3918 3919 3920 3921
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3935 3936
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3947 3948 3949 3950 3951
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3952 3953 3954 3955 3956

    return helper.append_activation(group_norm_out)


@templatedoc()
3957
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3958 3959 3960
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3961
    This layer calculates the spectral normalization value of weight parameters of
3962
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3963
    Parameters. Calculations are showed as follows.
3964

D
dengkaipeng 已提交
3965 3966 3967
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3968
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3981
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3982 3983 3984 3985

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3986

D
dengkaipeng 已提交
3987
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3988 3989
                

D
dengkaipeng 已提交
3990 3991 3992 3993
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3994 3995 3996
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3997 3998 3999
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
4000
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
4001 4002

    Examples:
K
Kaipeng Deng 已提交
4003
       .. code-block:: python
D
dengkaipeng 已提交
4004

K
Kaipeng Deng 已提交
4005 4006 4007 4008 4009
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
4010 4011
    """
    helper = LayerHelper('spectral_norm', **locals())
4012
    dtype = weight.dtype
D
dengkaipeng 已提交
4013 4014 4015

    # create intput and parameters
    inputs = {'Weight': weight}
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
4034 4035

    # create output
4036
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
4037 4038

    helper.append_op(
4039
        type="spectral_norm",
D
Dun 已提交
4040
        inputs=inputs,
4041 4042 4043 4044 4045 4046
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
4047

4048
    return out
D
Dun 已提交
4049 4050


Y
Yu Yang 已提交
4051 4052 4053 4054
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4055 4056 4057
                     padding=0,
                     stride=1,
                     dilation=1,
4058
                     groups=None,
C
caoying03 已提交
4059
                     param_attr=None,
4060
                     bias_attr=None,
C
chengduoZH 已提交
4061
                     use_cudnn=True,
4062
                     act=None,
C
caoying03 已提交
4063
                     name=None):
Y
Yu Yang 已提交
4064
    """
4065 4066 4067 4068 4069 4070 4071 4072
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
4073
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
4074
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4075 4076 4077
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4078 4079 4080 4081 4082

    For each input :math:`X`, the equation is:

    .. math::

4083
        Out = \sigma (W \\ast X + b)
4084

4085
    Where:
4086 4087 4088

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
4089 4090 4091 4092
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4093

4094 4095 4096 4097
    Example:

        - Input:

4098
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
4099

4100
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
4101 4102 4103

        - Output:

4104
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
4105 4106

        Where
Y
Yu Yang 已提交
4107

4108 4109
        .. math::

4110 4111
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
4121 4122

    Args:
4123 4124 4125 4126
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4127
            tuple, it must contain two integers, (image_height, image_width). None if use
4128 4129 4130
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
4131
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4132 4133 4134
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
            use output size to calculate filter_size.
4135
        padding(int|tuple): The padding size. If padding is a tuple, it must
4136 4137
            contain two integers, (padding_height, padding_width). Otherwise, 
            padding_height = padding_width = padding. Default: padding = 0.
4138
        stride(int|tuple): The stride size. If stride is a tuple, it must
4139 4140
            contain two integers, (stride_height, stride_width). Otherwise,
            stride_height = stride_width = stride. Default: stride = 1.
4141
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4142 4143
            contain two integers, (dilation_height, dilation_width). Otherwise, 
            dilation_height = dilation_width = dilation. Default: dilation = 1.
4144 4145 4146 4147 4148
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4159
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
4160 4161 4162
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4163
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
4164
            will be named automatically. Default: True.
Y
Yu Yang 已提交
4165 4166

    Returns:
4167
        Variable: The tensor variable storing the convolution transpose result.
4168 4169

    Raises:
4170 4171
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4172 4173 4174 4175

    Examples:
       .. code-block:: python

4176
          import paddle.fluid as fluid
4177 4178
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4179
    """
C
chengduo 已提交
4180
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
4181 4182 4183 4184 4185 4186 4187 4188
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
4189 4190 4191
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
4192 4193 4194
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
4195

C
chengduoZH 已提交
4196 4197
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
4198

Y
Yu Yang 已提交
4199 4200 4201 4202 4203
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
4204

Y
Yu Yang 已提交
4205 4206
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
4207

C
chengduoZH 已提交
4208
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4209
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
4210
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4211
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
4212
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
4213 4214 4215
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
4216

4217 4218 4219 4220 4221 4222 4223
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
4224
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4225
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
4226

Y
Yu Yang 已提交
4227 4228 4229
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4230
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4231
    helper.append_op(
4232
        type=op_type,
Y
Yu Yang 已提交
4233 4234
        inputs={'Input': [input],
                'Filter': [img_filter]},
4235
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4236
        attrs={
4237
            'output_size': output_size,
4238 4239 4240 4241 4242
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
4243 4244
        })

4245 4246 4247
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
4248 4249


4250
def conv3d_transpose(input,
Y
Yu Yang 已提交
4251 4252 4253
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4254 4255 4256
                     padding=0,
                     stride=1,
                     dilation=1,
4257
                     groups=None,
C
caoying03 已提交
4258
                     param_attr=None,
4259
                     bias_attr=None,
C
chengduoZH 已提交
4260
                     use_cudnn=True,
4261
                     act=None,
C
caoying03 已提交
4262
                     name=None):
Y
Yu Yang 已提交
4263
    """
4264
    **Convlution3D transpose layer**
4265

4266
    The convolution3D transpose layer calculates the output based on the input,
4267
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
4268 4269 4270 4271 4272
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
4273
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4274 4275 4276
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4277 4278 4279 4280 4281

    For each input :math:`X`, the equation is:

    .. math::

4282
        Out = \sigma (W \\ast X + b)
4283 4284 4285

    In the above equation:

4286 4287
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
4288 4289 4290 4291
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4292

4293 4294 4295 4296
    Example:

        - Input:

4297
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4298

4299
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4300 4301 4302

        - Output:

4303
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4304 4305

        Where
Y
Yu Yang 已提交
4306

4307 4308
        .. math::

4309 4310 4311
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4312 4313

    Args:
4314
        input(Variable): The input image with [N, C, D, H, W] format.
4315 4316 4317
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4318
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4319 4320
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4321 4322 4323
            it must contain three integers, (filter_size_depth, filter_size_height, \
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
4324 4325
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4326 4327
            contain three integers, (padding_depth, padding_height, padding_width). Otherwise,
            padding_depth = padding_height = padding_width = padding. Default: padding = 0.
4328
        stride(int|tuple): The stride size. If stride is a tuple, it must
4329 4330
            contain three integers, (stride_depth, stride_height, stride_width). Otherwise,
            stride_depth = stride_height = stride_width = stride. Default: stride = 1.
4331
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4332 4333
            contain three integers, (dilation_depth, dilation_height, dilation_width). Otherwise,
            dilation_depth = dilation_height = dilation_width = dilation. Default: dilation = 1.
4334
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4335 4336 4337 4338 4339
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4340 4341 4342 4343 4344 4345 4346 4347 4348
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4349 4350
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4351 4352
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4353 4354
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4355 4356

    Returns:
4357
        Variable: The tensor variable storing the convolution transpose result.
4358 4359

    Raises:
4360 4361
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4362 4363 4364 4365

    Examples:
       .. code-block:: python

4366
          import paddle.fluid as fluid
4367 4368
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4369
    """
C
chengduo 已提交
4370
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4371 4372
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4373
    if not isinstance(input, Variable):
4374
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4375 4376
    input_channel = input.shape[1]

4377 4378 4379
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4380

C
chengduoZH 已提交
4381 4382 4383
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4384 4385 4386 4387 4388 4389
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4390 4391 4392
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4393

4394
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4395
                         padding[0] - 1) // dilation[0] + 1
4396
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4397
                         padding[1] - 1) // dilation[1] + 1
4398
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4399
                         padding[2] - 1) // dilation[2] + 1
4400
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4401
    else:
4402 4403
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4404

4405
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4406
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4407 4408 4409
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4410
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4411
    helper.append_op(
4412
        type=l_type,
Y
Yu Yang 已提交
4413 4414
        inputs={'Input': [input],
                'Filter': [img_filter]},
4415
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4416 4417 4418 4419
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4420
            'groups': groups,
C
chengduoZH 已提交
4421 4422
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4423

4424 4425
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4426
    return out
Y
yangyaming 已提交
4427 4428


Y
yangyaming 已提交
4429
def sequence_expand(x, y, ref_level=-1, name=None):
4430
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4431 4432 4433 4434
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4435 4436 4437 4438 4439

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4440
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4441
                x.data = [[a], [b], [c], [d]]
4442 4443 4444
                x.dims = [4, 1]

            y is a LoDTensor:
4445 4446
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4447

Y
yangyaming 已提交
4448
            ref_level: 0
4449

Y
yangyaming 已提交
4450
            then output is a 1-level LoDTensor:
4451
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4452
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4453 4454 4455 4456
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4457
                x.data = [[a], [b], [c]]
4458 4459 4460
                x.dims = [3, 1]

            y is a LoDTensor:
4461
                y.lod = [[2, 0, 3]]
4462

Y
yangyaming 已提交
4463
            ref_level: -1
4464

Y
yangyaming 已提交
4465 4466 4467
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4468 4469 4470
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4471 4472
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4473
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4474
                        will be named automatically.
4475 4476 4477 4478 4479 4480

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4481
	
4482
            import paddle.fluid as fluid
4483
            import paddle.fluid.layers as layers
4484 4485 4486
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4487
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4488
    """
L
lujun 已提交
4489
    assert not in_dygraph_mode(), (
4490
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4491
    helper = LayerHelper('sequence_expand', input=x, **locals())
4492
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4493
    tmp = helper.create_variable_for_type_inference(dtype)
4494
    helper.append_op(
Y
yangyaming 已提交
4495 4496 4497 4498 4499
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4500
    return tmp
4501 4502


C
chengduo 已提交
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4551 4552
            
            import paddle.fluid as fluid
4553
            import paddle.fluid.layers as layers
C
chengduo 已提交
4554 4555 4556 4557 4558 4559

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4560
    assert not in_dygraph_mode(), (
4561
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4562 4563
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4564
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4565 4566 4567 4568 4569 4570 4571 4572
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4573
@templatedoc()
4574
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4575 4576 4577 4578 4579
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4580 4581 4582
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4583
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4584 4585 4586 4587
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4588 4589 4590
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4591

F
fengjiayi 已提交
4592
    Returns:
M
minqiyang 已提交
4593
        Variable: The padded sequence batch and the original lengths before
4594
                  padding. All sequences has the same length.
M
minqiyang 已提交
4595

F
fengjiayi 已提交
4596 4597 4598
    Examples:
        .. code-block:: python

4599
            import paddle.fluid as fluid
F
fengjiayi 已提交
4600 4601
            import numpy

4602
            x = fluid.layers.data(name='x', shape=[10, 5],
F
fengjiayi 已提交
4603
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4604
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4605
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4606 4607 4608
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4609
    assert not in_dygraph_mode(), (
4610
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4611 4612
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4613 4614
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4615 4616 4617 4618

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4619 4620 4621 4622 4623 4624
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4625 4626
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4627
        attrs={'padded_length': maxlen})
4628
    return out, length
F
fengjiayi 已提交
4629 4630


4631
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4632
    """
4633
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4634

4635 4636
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4637 4638 4639 4640 4641 4642 4643 4644 4645
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4646 4647 4648
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4649
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4650

4651
	    length.data = [2, 3, 4],
Y
Yibing Liu 已提交
4652 4653 4654 4655

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4656
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4657 4658 4659 4660 4661 4662

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4663 4664
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4665 4666 4667 4668 4669 4670 4671

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4672
            import paddle.fluid as fluid
4673 4674 4675 4676 4677 4678 4679 4680 4681
            import numpy

            # pad data
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0.0], dtype=numpy.float32))
            pad_data, len = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
            
            # upad data
            unpad_data = fluid.layers.sequence_unpad(x=pad_data, length=len)
Y
Yibing Liu 已提交
4682 4683
    """

L
lujun 已提交
4684
    assert not in_dygraph_mode(), (
4685
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4686 4687
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4688
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4700 4701 4702 4703 4704 4705 4706
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4707
                is_accumulated=True,
4708 4709
                name=None,
                return_parent_idx=False):
4710
    """
4711 4712
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4713 4714 4715

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4716 4717

    This layer does the search in beams for one time step. Specifically, it
4718 4719 4720
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4732 4733 4734 4735

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4736

4737
    Args:
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4761 4762
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4763 4764
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4765 4766 4767 4768
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4769

4770
    Returns:
4771 4772 4773 4774
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4775 4776 4777 4778

    Examples:
        .. code-block:: python

4779 4780
            import paddle.fluid as fluid

4781 4782 4783
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4796
                axis=0)
4797
            selected_ids, selected_scores = fluid.layers.beam_search(
4798 4799 4800 4801 4802 4803 4804
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4805
    helper = LayerHelper('beam_search', **locals())
4806 4807 4808 4809 4810 4811
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4812

X
Xin Pan 已提交
4813 4814 4815
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4816 4817 4818 4819 4820
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4821 4822 4823

    helper.append_op(
        type='beam_search',
4824
        inputs=inputs,
Q
Qiao Longfei 已提交
4825 4826 4827
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4828
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4829 4830 4831 4832 4833 4834
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4835
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4836
        })
4837 4838 4839 4840
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4841 4842


4843 4844 4845 4846 4847 4848 4849
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4850

4851 4852 4853 4854 4855 4856 4857 4858 4859
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4860

4861 4862 4863 4864 4865 4866
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4867

4868 4869
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4870

4871 4872
            import paddle.fluid as fluid

4873 4874
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4875 4876 4877
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4878 4879 4880
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4881 4882
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4898 4899 4900 4901
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4902
              param_attr=None,
C
caoying03 已提交
4903 4904
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4905 4906 4907 4908
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4909
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4910

4911
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4912

4913
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4914

4915
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4916 4917 4918

            h_t & = o_t tanh(c_t)

4919 4920 4921 4922 4923 4924
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4925 4926 4927

        .. math::

4928
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4929 4930 4931 4932 4933 4934 4935 4936

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4937
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4938 4939

    Args:
Y
yangyaming 已提交
4940 4941 4942 4943 4944 4945
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4946
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4959 4960
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4961 4962

    Returns:
Y
yangyaming 已提交
4963
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4964 4965

    Raises:
4966 4967 4968 4969
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4970 4971 4972 4973 4974

    Examples:

        .. code-block:: python

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
5002
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
5003 5004 5005 5006
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
5007 5008
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
5009 5010 5011
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
5012
    size = cell_t_prev.shape[1]
5013
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
5014 5015
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
5016
                param_attr=param_attr,
5017
                bias_attr=bias_attr)
Y
yangyaming 已提交
5018
    dtype = x_t.dtype
X
Xin Pan 已提交
5019 5020
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
5021 5022 5023 5024 5025 5026 5027 5028 5029

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
5030
    return h, c
G
guosheng 已提交
5031 5032


C
caoying03 已提交
5033
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
5034
    """
Y
yangyaming 已提交
5035
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
5036 5037 5038

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5039
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
5040 5041
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5042 5043
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5044
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
5045
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
5046
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5047 5048
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5049 5050 5051

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
5052

G
guosheng 已提交
5053 5054 5055
    Examples:
        .. code-block:: python

5056
            import paddle.fluid as fluid
G
guosheng 已提交
5057 5058 5059
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
5060
            # Each example is followed by the corresponding output tensor.
5061
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
5062 5063 5064 5065
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
5066

5067
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5068 5069
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
5070
            # Each example is followed by the corresponding output tensor.
5071 5072 5073
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
5074

G
guosheng 已提交
5075 5076
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
5077
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5078 5079
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
5080 5081 5082 5083 5084
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5085
            'dim': dim if dim != None else [0],
G
guosheng 已提交
5086 5087 5088 5089
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5090 5091


C
caoying03 已提交
5092
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
5093
    """
Y
Yibing Liu 已提交
5094
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
5095 5096 5097

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
5098 5099 5100
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
5101
            must be in the range :math:`[-rank(input), rank(input))`. If
5102
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
5103
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
5104 5105
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
5106
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
5107
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
5108
                       will be named automatically.
G
guosheng 已提交
5109 5110

    Returns:
Y
Yibing Liu 已提交
5111
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
5112

G
guosheng 已提交
5113 5114 5115
    Examples:
        .. code-block:: python

5116
            import paddle.fluid as fluid
G
guosheng 已提交
5117 5118 5119 5120
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5121
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
5122 5123 5124
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
5125
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
5126

5127
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5128 5129 5130
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5131 5132 5133
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
5134 5135
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
5136
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5137 5138
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
5139 5140 5141 5142 5143
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5144
            'dim': dim if dim != None else [0],
G
guosheng 已提交
5145 5146 5147 5148
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
5149 5150


C
caoying03 已提交
5151
def reduce_max(input, dim=None, keep_dim=False, name=None):
5152
    """
Y
yangyaming 已提交
5153
    Computes the maximum of tensor elements over the given dimension.
5154 5155 5156

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5157
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
5158 5159 5160
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5161
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5162 5163
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5164
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5165 5166
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5167 5168 5169

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5170

5171 5172 5173
    Examples:
        .. code-block:: python

5174
            import paddle.fluid as fluid
5175 5176 5177 5178
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5179
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5180 5181 5182 5183
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
5184

5185
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5186 5187 5188
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5189 5190 5191
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
5192 5193
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
5194
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5195 5196
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5197 5198 5199 5200 5201
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5202
            'dim': dim if dim != None else [0],
5203 5204 5205 5206 5207 5208
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5209
def reduce_min(input, dim=None, keep_dim=False, name=None):
5210
    """
Y
yangyaming 已提交
5211
    Computes the minimum of tensor elements over the given dimension.
5212 5213 5214

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5215
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
5216 5217 5218
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5219
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5220 5221
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5222
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5223 5224
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5225 5226 5227

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5228

5229 5230 5231
    Examples:
        .. code-block:: python

5232
            import paddle.fluid as fluid
5233 5234 5235 5236
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5237
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5238 5239 5240 5241
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
5242

5243
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5244 5245 5246
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5247 5248 5249
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
5250 5251
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
5252
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5253 5254
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5255 5256 5257 5258 5259
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5260
            'dim': dim if dim != None else [0],
5261 5262 5263 5264
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5265 5266


5267 5268 5269 5270 5271 5272
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5273
        dim (list|int|None): The dimensions along which the product is performed. If
5274 5275
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5276 5277
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5278 5279 5280
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
5281
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
5282
            layer will be named automatically.
5283 5284 5285 5286 5287 5288 5289

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

5290
            import paddle.fluid as fluid
5291 5292 5293 5294
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5295
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5296 5297 5298
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5299
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5300
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5301

5302
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5303 5304 5305
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5306 5307 5308
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5309 5310
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5311
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5312 5313
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5314 5315 5316 5317 5318
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5319
            'dim': dim if dim != None else [0],
5320 5321 5322 5323 5324 5325
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5326 5327
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5328
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5348
        
5349
            import paddle.fluid as fluid
5350 5351 5352
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5353 5354 5355
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5356 5357 5358 5359 5360 5361 5362
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5383
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5403

5404
            import paddle.fluid as fluid
5405 5406 5407
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5408 5409 5410
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5411 5412 5413 5414 5415 5416 5417
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5432 5433 5434 5435 5436
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5437
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5438
    """
C
caoying03 已提交
5439
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5440 5441 5442

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5443 5444 5445 5446 5447
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5448
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5449
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5450
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5451 5452
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5453 5454

    Returns:
D
dzhwinter 已提交
5455
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5456 5457 5458 5459

    Examples:
        .. code-block:: python

5460 5461 5462 5463 5464 5465
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5466
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5467 5468 5469 5470 5471 5472 5473 5474
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5475 5476 5477 5478 5479 5480 5481 5482
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5483
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5484 5485 5486
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5487
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5501 5502 5503 5504 5505 5506 5507 5508 5509


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5510
    .. math::
5511 5512

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5513 5514 5515 5516 5517

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5518
        x(Variable|list): The input tensor to l2_normalize layer.
5519
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5520 5521
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5522
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5523
            the default value is 1e-12.
5524
        name(str|None): A name for this layer(optional). If set None, the layer \
5525
            will be named automatically.
C
caoying03 已提交
5526 5527

    Returns:
5528
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5529 5530

    Examples:
5531

C
caoying03 已提交
5532 5533
        .. code-block:: python

5534
            import paddle.fluid as fluid
5535 5536 5537 5538
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5539 5540
    """

F
fengjiayi 已提交
5541 5542
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5543 5544
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5545 5546
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5547
    helper.append_op(
5548 5549 5550 5551
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5552
        attrs={
5553 5554
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5555 5556
        })
    return out
5557 5558


S
sneaxiy 已提交
5559
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5560
    """
Y
ying 已提交
5561 5562 5563 5564
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5565

C
chengduoZH 已提交
5566
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5567
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5568

5569 5570 5571 5572 5573
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5574
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5575

C
chengduoZH 已提交
5576
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5577
      performs in the following way.
G
guosheng 已提交
5578

5579
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5580
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5581
        last two dimensions and a batched matrix multiply supporting broadcast
5582
        applies on the two tensors.
G
guosheng 已提交
5583

Y
ying 已提交
5584 5585
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5586
    removed after matrix multiplication.
G
guosheng 已提交
5587 5588 5589

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5590 5591 5592
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5593
        alpha (float): The scale of output. Default 1.0.
5594
        name(str|None): A name for this layer(optional). If set None, the layer
5595
            will be named automatically.
G
guosheng 已提交
5596 5597

    Returns:
石晓伟 已提交
5598
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5599

G
guosheng 已提交
5600 5601 5602
    Examples:
        .. code-block:: python

5603
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5604
            # x: [B, ..., M, K], y: [B, ..., K, N]
5605
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5606

5607
            # x: [B, M, K], y: [B, K, N]
5608
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5609

5610
            # x: [B, M, K], y: [K, N]
5611
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5612

5613
            # x: [M, K], y: [K, N]
5614
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5615 5616

            # x: [B, M, K], y: [K]
5617
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5618

5619
            # x: [K], y: [K]
5620
            # fluid.layers.matmul(x, y)  # out: [1]
5621

Y
ying 已提交
5622
            # x: [M], y: [N]
5623 5624
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5625
            import paddle.fluid as fluid
5626 5627 5628
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5629
    """
Y
ying 已提交
5630 5631 5632 5633 5634 5635 5636

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5637
            y_shape = y_shape + [1]
Y
ying 已提交
5638 5639 5640 5641 5642 5643 5644

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5645 5646
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5647

C
chengduo 已提交
5648
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5649
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5650 5651 5652
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5653
                if dim_x != y_shape[i]:
C
chengduo 已提交
5654 5655
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5656 5657 5658

    __check_input(x, y)

5659
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5660
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5661
    helper.append_op(
5662 5663 5664 5665
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5666 5667 5668
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5669
            'alpha': float(alpha),
S
sneaxiy 已提交
5670
        })
5671
    return out
5672 5673


5674
def topk(input, k, name=None):
Q
qingqing01 已提交
5675 5676 5677 5678
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5679
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5680 5681 5682 5683 5684 5685
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5707 5708 5709
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5710
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5711
                 of input.
5712
        name(str|None): A name for this layer(optional). If set None, the layer
5713
                       will be named automatically.
F
fengjiayi 已提交
5714
                       Default: None
Q
qingqing01 已提交
5715 5716

    Returns:
5717 5718 5719
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5720
        within the last dimension of input.
Q
qingqing01 已提交
5721

F
fengjiayi 已提交
5722 5723
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5724 5725 5726 5727

    Examples:
        .. code-block:: python

5728
            import paddle.fluid as fluid
5729 5730
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5731 5732 5733
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5734 5735
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5736 5737 5738 5739 5740 5741
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5742 5743
    helper.append_op(
        type="top_k",
W
whs 已提交
5744
        inputs=inputs,
Q
qingqing01 已提交
5745 5746
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5747
        attrs=attrs)
Q
qingqing01 已提交
5748 5749 5750 5751 5752
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5753 5754 5755 5756 5757 5758
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5759
    """
R
ruri 已提交
5760
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5761 5762 5763 5764 5765 5766 5767 5768
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5769

Y
ying 已提交
5770
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5771

5772
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5773
    the total number denoted by `batch_size`, and the separation is specified
5774 5775
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5776

5777
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5778 5779
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5780

5781
    Args:
5782 5783
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5784
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5785
                          the length of reference string.
5786
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5787
                                     calculating edit distance.
5788 5789
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5790

W
wanghaoshuang 已提交
5791
    Returns:
5792 5793 5794
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5795 5796 5797

    Examples:
        .. code-block:: python
5798
            
R
ruri 已提交
5799 5800
            import paddle.fluid as fluid

5801 5802 5803 5804
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5805

5806 5807 5808 5809 5810 5811 5812 5813
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5814

5815
    """
5816
    helper = LayerHelper("edit_distance", **locals())
5817

5818
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5819
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5820 5821
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5822 5823 5824 5825 5826

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5827
            attrs={"tokens": ignored_tokens})
5828 5829 5830 5831 5832
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5833
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5834
            attrs={"tokens": ignored_tokens})
5835 5836
        label = erased_label

5837 5838 5839 5840 5841
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5842
    # edit distance op
X
Xin Pan 已提交
5843 5844
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5845 5846
    helper.append_op(
        type="edit_distance",
5847
        inputs=this_inputs,
5848 5849
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5850 5851
        attrs={"normalized": normalized})

5852
    return edit_distance_out, sequence_num
5853 5854


5855 5856 5857 5858 5859
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
5860 5861
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5862

Y
ying 已提交
5863 5864 5865 5866
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5867 5868 5869 5870 5871 5872

    A simple example as below:

    .. code-block:: text

        Given:
5873
        for lod mode:
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5885
        input.lod = [[4, 4]]
M
minqiyang 已提交
5886

W
whs 已提交
5887
        Computation:
5888

W
whs 已提交
5889 5890 5891 5892 5893 5894
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5895 5896 5897 5898 5899

        output.data = [[2],
                       [1],
                       [3]]

5900
        output.lod = [[2, 1]]
5901

5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
        for padding mode:

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]



W
whs 已提交
5930

5931 5932
    Args:

Y
ying 已提交
5933
        input(Variable): (LoDTensor<float>), the probabilities of
5934 5935
                         variable-length sequences. When in lod mode, it is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
5936
                         where Lp is the sum of all input sequences' length and
5937 5938 5939
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
                         (not including the blank label).
Y
ying 已提交
5940 5941 5942
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5943 5944 5945 5946
        input_length(Variable, optional): (LoDTensor<int>), shape is [batch_size, 1], when in lod mode, input_length
                                 is None.
        padding_value(int): padding value.
        name (str, optional): The name of this layer. It is optional.
5947 5948

    Returns:
5949
        output(Variable): For lod mode, CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
H
haowang101779990 已提交
5950 5951
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
5952 5953 5954 5955
                  LoD [[]] and dims [1, 1]. For padding mode, CTC greedy decode result is a 2-D tensor \
                  with shape [batch_size, N], output length's shape is [batch_size, 1] which is length \
                  of every sequence in output.
        output_length(Variable, optional): length of each sequence of output for padding mode.
5956 5957 5958 5959

    Examples:
        .. code-block:: python

5960
            # for lod mode
S
SunGaofeng 已提交
5961
            import paddle.fluid as fluid
5962 5963
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
5964 5965 5966 5967 5968 5969 5970

            # for padding mode
            x_pad = fluid.layers.data(name='x_pad', shape=[4,8], dtype='float32')
            x_pad_len = fluid.layers.data(name='x_pad_len', shape=[1], dtype='int64')
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
5971
    """
5972
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5973
    _, topk_indices = topk(input, k=1)
5974 5975

    # ctc align op
X
Xin Pan 已提交
5976
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
6002 6003


6004 6005 6006 6007 6008 6009
def warpctc(input,
            label,
            blank=0,
            norm_by_times=False,
            input_length=None,
            label_length=None):
W
wanghaoshuang 已提交
6010
    """
6011 6012
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
6013
    to compute Connectionist Temporal Classification (CTC) loss.
6014 6015
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
6016 6017 6018
    input tensor.

    Args:
6019
       input (Variable): The unscaled probabilities of variable-length sequences,
6020 6021 6022
         which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
         information. When it is a 2-D LodTensor, it's shape is 
         [Lp, num_classes + 1], where Lp is the sum of all input
W
wanghaoshuang 已提交
6023
         sequences' length and num_classes is the true number of classes.
6024 6025 6026 6027
         (not including the blank label). When it is a 3-D Tensor, it's shape 
         is [max_logit_length, batch_size, num_classes + 1],
         where max_logit_length is the length of the longest
         input logit sequence.
6028
       label (Variable): The ground truth of variable-length sequence,
6029 6030 6031
         which is a 2-D Tensor with LoD information or a 2-D Tensor without
         LoD information. When it is a 2-D LoDTensor or 2-D Tensor, 
         it is of the shape [Lg, 1], where Lg is th sum of all labels' length.
6032
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
6033 6034
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
6035 6036 6037
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
6038
         follewed by a mean_op.
6039 6040 6041 6042
       input_length(Variable): The length for each input sequence if it is 
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
       label_length(Variable): The length for each label sequence if it is
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
W
wanghaoshuang 已提交
6043 6044

    Returns:
6045 6046
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
6047 6048 6049

    Examples:
        .. code-block:: python
6050

6051
            # using LoDTensor
B
Bai Yifan 已提交
6052
            import paddle.fluid as fluid
6053 6054 6055
            import numpy as np
            
            label = fluid.layers.data(name='label', shape=[12, 1],
B
Bai Yifan 已提交
6056
                                      dtype='float32', lod_level=1)
6057 6058 6059
            predict = fluid.layers.data(name='predict', 
                                        shape=[11, 8],
                                        dtype='float32',lod_level=1)
6060
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
6061

6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
            # using Tensor
            input_length = fluid.layers.data(name='logits_length', shape=[11],
                                         dtype='int64')
            label_length = fluid.layers.data(name='labels_length', shape=[12],
                                         dtype='int64')
            target = fluid.layers.data(name='target', shape=[12, 1],
                                       dtype='int32')
            # length of the longest logit sequence
            max_seq_length = 4
            # number of logit sequences
            batch_size = 4
            output = fluid.layers.data(name='output', 
                                       shape=[max_seq_length, batch_size, 8],
                                       dtype='float32')
            loss = fluid.layers.warpctc(input=output,label=target,
                                        input_length=input_length,
                                        label_length=label_length)

W
wanghaoshuang 已提交
6080
    """
F
fengjiayi 已提交
6081
    helper = LayerHelper('warpctc', **locals())
6082 6083 6084 6085 6086
    this_inputs = {'Logits': [input], 'Label': [label]}
    if input_length and label_length:
        this_inputs['LogitsLength'] = [input_length]
        this_inputs['LabelLength'] = [label_length]

X
Xin Pan 已提交
6087 6088
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
6089

W
wanghaoshuang 已提交
6090 6091
    helper.append_op(
        type='warpctc',
6092
        inputs=this_inputs,
W
wanghaoshuang 已提交
6093 6094
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
6095 6096 6097 6098
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
        })
W
wanghaoshuang 已提交
6099
    return loss_out
6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
6115 6116 6117
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
6118 6119 6120 6121 6122
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
6123

6124
            out.lod  = [[0, 1, 3]]
6125 6126 6127 6128

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
6129 6130 6131 6132 6133 6134 6135
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
6136 6137 6138

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
6139 6140

    Returns:
6141

6142 6143 6144 6145 6146
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
6147 6148 6149
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
6150
    """
L
lujun 已提交
6151
    assert not in_dygraph_mode(), (
6152
        "sequence layer is not supported in dygraph mode yet.")
6153
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
6154
    out = helper.create_variable_for_type_inference(helper.input_dtype())
6155 6156 6157 6158 6159 6160
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
6161 6162


6163 6164 6165 6166
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
6167 6168 6169 6170 6171 6172
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
6173
        num_neg_samples=None,
6174 6175 6176
        name=None,
        sampler="uniform",
        custom_dist=None,
6177 6178
        seed=0,
        is_sparse=False):
6179 6180 6181 6182 6183 6184 6185
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
6186 6187
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
6188
            sample is 1.0.
C
chengduo 已提交
6189 6190 6191 6192 6193 6194 6195 6196 6197
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
6198
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
6199 6200
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
6201 6202 6203
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
6204
        custom_dist (float[]): A float[] with size=num_total_classes.
6205 6206 6207 6208
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
6209
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
6210

6211
    Returns:
Y
Yibing Liu 已提交
6212 6213 6214 6215 6216 6217
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
6252
    """
Y
Yang Yu 已提交
6253 6254 6255
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
6256 6257

    dim = input.shape[1]
Y
Yang Yu 已提交
6258 6259 6260 6261 6262 6263
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
6264
    inputs = {}
C
chengduo 已提交
6265 6266 6267 6268 6269 6270 6271
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
6272 6273 6274
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
6275

6276 6277 6278 6279
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
6280 6281 6282 6283 6284 6285 6286

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
6287 6288
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
6289
        custom_dist_len = num_total_classes
6290 6291 6292 6293 6294 6295
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
6296
            if normal_prob - 1.0 > 0:
6297
                bigs.append((i, normal_prob))
6298
            elif 1.0 - normal_prob > 0:
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
6314
            if big_left - 1.0 > 0:
6315
                bigs.append((big_idx, big_left))
6316
            elif 1.0 - big_left > 0:
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
6346 6347 6348 6349
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

6350 6351 6352 6353 6354
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

6355 6356 6357 6358
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6359

Y
Yang Yu 已提交
6360 6361
    attrs = {
        'num_total_classes': int(num_total_classes),
6362 6363
        'num_neg_samples': num_neg_samples,
        'seed': seed,
6364
        'sampler': sampler,
6365 6366
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
6367
    }
Y
Yang Yu 已提交
6368 6369 6370

    helper.append_op(
        type='nce',
C
chengduo 已提交
6371
        inputs=inputs,
Y
Yang Yu 已提交
6372 6373 6374 6375 6376 6377
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
6378
    return cost / (num_neg_samples + 1)
6379 6380


C
chengduo 已提交
6381 6382
def hsigmoid(input,
             label,
6383
             num_classes,
C
chengduo 已提交
6384 6385
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
6386
             name=None,
6387 6388 6389
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
6390
             is_sparse=False):
W
weixing02 已提交
6391 6392
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
6393
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
6394
    complete binary tree, or you can use is_custom to pass your own tree to
6395
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
6396 6397 6398 6399 6400 6401
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6402
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6403
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6404

6405 6406
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6407 6408 6409 6410
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6411
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6412
       related to the same batch of inputs.
6413

W
weixing02 已提交
6414
    Args:
M
minqiyang 已提交
6415
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6416 6417 6418 6419
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6420 6421
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6422
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6434
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6435
            it should be in leaf -> root order
M
minqiyang 已提交
6436 6437 6438
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6439
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6440
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6441
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6442
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6443
             of W and input will be sparse.
W
weixing02 已提交
6444 6445

    Returns:
J
JiabinYang 已提交
6446
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6447 6448 6449 6450 6451

    Examples:

        .. code-block:: python

6452
            import paddle.fluid as fluid
G
guosheng 已提交
6453 6454 6455
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6456 6457 6458 6459
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6460 6461
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6462
    dim = input.shape[1]
6463
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6464 6465 6466
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6467 6468 6469 6470 6471 6472 6473 6474 6475
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6476
    if (is_custom) and (path_code is None):
6477
        raise ValueError("path_code should not be None with custom tree")
6478
    elif (is_custom) and (path_table is None):
6479
        raise ValueError("path_table should not be None with custom tree")
6480
    elif (is_custom) and (num_classes is None):
6481
        raise ValueError("num_classes should not be None with custom tree")
6482 6483 6484
    else:
        pass

J
JiabinYang 已提交
6485
    weights = None
6486 6487 6488 6489
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6490
    if not is_custom:
J
JiabinYang 已提交
6491 6492 6493 6494 6495 6496 6497 6498
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6499
            shape=[num_classes, dim],
J
JiabinYang 已提交
6500 6501
            is_bias=False,
            dtype=input.dtype)
6502 6503 6504
    inputs = {
        "X": input,
        "W": weights,
6505
        "PathTable": path_table,
6506
        "PathCode": path_code,
6507 6508
        "Label": label
    }
W
weixing02 已提交
6509
    if helper.bias_attr:
6510
        if not is_custom:
J
JiabinYang 已提交
6511 6512
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6513
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6514 6515 6516 6517 6518 6519
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6520
                shape=[num_classes, 1],
J
JiabinYang 已提交
6521 6522 6523
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6524 6525
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6526
        inputs=inputs,
W
weixing02 已提交
6527
        outputs={"Out": out,
6528 6529 6530 6531 6532 6533 6534
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6535 6536 6537
    return out


Y
fix ci.  
ying 已提交
6538
def transpose(x, perm, name=None):
Y
ying 已提交
6539 6540 6541 6542 6543 6544 6545
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6546 6547 6548
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6549 6550 6551 6552 6553 6554 6555

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6556
            # use append_batch_size=False to avoid prepending extra
6557
            # batch size in shape
6558
            import paddle.fluid as fluid
6559
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6560
                            dtype='float32', append_batch_size=False)
6561
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6562 6563
    """

Y
fix ci.  
ying 已提交
6564
    if len(perm) != len(x.shape):
Y
ying 已提交
6565 6566
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6567
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6568 6569 6570 6571 6572 6573
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6574 6575

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6576 6577
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6578
    helper.append_op(
6579
        type='transpose2',
Y
fix ci.  
ying 已提交
6580
        inputs={'X': [x]},
6581 6582
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6583 6584
        attrs={'axis': perm})
    return out
6585 6586


6587 6588 6589 6590 6591 6592 6593
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6594
    """
6595 6596 6597 6598 6599 6600 6601
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6630 6631 6632 6633 6634 6635 6636 6637 6638
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6639 6640 6641
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6642 6643 6644 6645 6646
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6674 6675 6676
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6689
            output.dims = {8, 8}
6690

6691
            output.lod = [[4, 4]]
6692

T
Tink_Y 已提交
6693
    Examples:
6694 6695 6696

        .. code-block:: python

B
Bai Yifan 已提交
6697 6698 6699
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6700
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6701 6702
                input=data, stride=[1, 1], filter_size=[2, 2])

6703 6704

    """
L
lujun 已提交
6705
    assert not in_dygraph_mode(), (
6706
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6717
    inputs = {"X": input}
6718
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6719 6720 6721 6722 6723
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6724
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6725
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6726
    helper.append_op(
6727
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6728
    return out
6729 6730


Y
yuyang18 已提交
6731
@templatedoc()
6732
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6733 6734
    """
    ${comment}
6735 6736

    Args:
Y
yuyang18 已提交
6737
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6738 6739
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6740 6741 6742 6743 6744
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6745
        ${out_comment}.
6746 6747

    Examples:
Y
yuyang18 已提交
6748 6749 6750 6751
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6752 6753 6754 6755 6756 6757
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6758
    out = helper.create_variable_for_type_inference(dtype)
6759 6760 6761 6762 6763
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6764
    return helper.append_activation(out)
6765 6766


Y
yuyang18 已提交
6767
@templatedoc()
6768 6769
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6770 6771
    ${comment}

L
lujun 已提交
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6815 6816

    Args:
Y
yuyang18 已提交
6817 6818
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6819 6820

    Returns:
Y
yuyang18 已提交
6821
        ${out_comment}.
6822 6823
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6824 6825 6826 6827 6828

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6829
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6830 6831 6832 6833 6834 6835
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6836 6837


6838 6839 6840
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6841
                               ignore_index=kIgnoreIndex,
6842
                               numeric_stable_mode=True,
6843 6844
                               return_softmax=False,
                               axis=-1):
6845 6846
    """
    **Softmax With Cross Entropy Operator.**
6847

6848
    Cross entropy loss with softmax is used as the output layer extensively. This
6849 6850 6851
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6852

6853 6854 6855
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6856

6857 6858 6859 6860
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6861

6862
    The equation is as follows:
6863

6864
    1) Hard label (one-hot label, so every sample has exactly one class)
6865

6866 6867 6868 6869
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6870

6871 6872 6873
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6874

6875 6876 6877 6878
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6879 6880
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6881 6882

    .. math::
6883

H
haowang101779990 已提交
6884
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6885

H
haowang101779990 已提交
6886
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6887

H
haowang101779990 已提交
6888
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6889 6890 6891

    and then cross entropy loss is calculated by softmax and label.

6892
    Args:
6893 6894 6895 6896 6897 6898
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6899
        soft_label (bool): A flag to indicate whether to interpretate the given
6900
            labels as soft labels. Default False.
M
minqiyang 已提交
6901 6902
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6903 6904
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6905 6906
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6907 6908 6909 6910
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6911
                                    Note that the speed may be slower when use
6912
                                    stable algorithm. Default: True
6913
        return_softmax (bool): A flag indicating whether to return the softmax
6914
                               along with the cross entropy loss. Default: False
6915 6916 6917
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6918

6919
    Returns:
H
haowang101779990 已提交
6920 6921
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6922 6923 6924 6925
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6926 6927 6928 6929

    Examples:
        .. code-block:: python

6930 6931
            import paddle.fluid as fluid

6932 6933 6934
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6935 6936
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6937 6938
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6939 6940
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6941 6942 6943 6944 6945 6946
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6947 6948 6949
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6950 6951
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6952
        })
6953 6954 6955 6956

    if return_softmax:
        return loss, softmax

6957 6958 6959
    return loss


6960 6961 6962
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6963
                                       num_true=1,
6964
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6965 6966 6967
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6968
                                       seed=0):
X
xuezhong 已提交
6969 6970 6971 6972 6973
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6974
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6975 6976 6977 6978 6979 6980 6981 6982
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6983
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6984 6985 6986 6987 6988 6989 6990 6991
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6992
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
7004
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
7005 7006 7007 7008 7009
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
7010
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
7011
            logits.
X
xuezhong 已提交
7012 7013 7014 7015 7016
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
7017 7018 7019
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
7020 7021 7022 7023 7024 7025 7026
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

7027 7028 7029
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
7030
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
7031
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
7032
            out = fluid.layers.sampled_softmax_with_cross_entropy(
7033
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
7034 7035 7036 7037 7038 7039 7040 7041
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
7042 7043
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
7044 7045
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
7046 7047 7048 7049 7050

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
7051
            'Labels': label,
X
xuezhong 已提交
7052 7053
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
7054 7055 7056 7057
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
7058
            'SampledLabels': sampled_label,
7059 7060 7061
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
7062 7063
        },
        attrs={
X
xuezhong 已提交
7064
            'use_customized_samples': use_customized_samples,
7065
            'uniq': True,
X
xuezhong 已提交
7066 7067 7068 7069
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
7070 7071
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
7072 7073 7074 7075 7076 7077
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

7078 7079
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
7080
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
7081
                'Label': sampled_softlabel},
X
xuezhong 已提交
7082 7083 7084
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
7085
            'soft_label': True,
X
xuezhong 已提交
7086 7087 7088
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
7089
    return loss / num_true
X
xuezhong 已提交
7090 7091


7092 7093
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
7094 7095
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
7096
    For each instance, it computes the smooth L1 loss element by element first
7097
    and then sums all the losses. So the shape of ouput Variable is
7098
    [batch_size, 1].
7099

7100 7101
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
7102
            L1 loss op with shape [batch_size, dim1, ..., dimN].
7103
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
7104
            L1 loss op with same shape as :attr:`x`.
7105
        inside_weight (Variable|None):  A tensor with rank at least 2. This
7106 7107
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
7108
            by this tensor element by element.
7109
        outside_weight (Variable|None): A tensor with rank at least 2. This
7110 7111
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
7112
            element by element.
7113
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
7114 7115
           scalar with default value 1.0.

7116
    Returns:
7117
        Variable: The output smooth L1 loss with shape [batch_size, 1].
7118 7119 7120 7121

    Examples:
        .. code-block:: python

7122
            import paddle.fluid as fluid
7123
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
7124 7125
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
7126
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
7127
            out = fluid.layers.smooth_l1(x=fc, y=label)
7128
    """
7129

7130
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
7131 7132
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
7143
        attrs={'sigma': sigma if sigma is not None else 1.0})
7144
    return loss
7145 7146


7147
def one_hot(input, depth, allow_out_of_range=False):
7148
    """
Y
Yibing Liu 已提交
7149
    This layer creates the one-hot representations for input indices.
7150 7151

    Args:
Y
Yibing Liu 已提交
7152 7153
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
7154 7155 7156 7157
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
7158 7159

    Returns:
Y
Yibing Liu 已提交
7160
        Variable: The one-hot representations of input.
7161 7162

    Examples:
C
caoying03 已提交
7163
        .. code-block:: python
7164

7165
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7166 7167
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
7168 7169
    """
    helper = LayerHelper("one_hot", **locals())
7170

X
Xin Pan 已提交
7171
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
7172 7173 7174 7175 7176 7177 7178 7179 7180 7181

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
7182
            depth.stop_gradient = True
7183 7184
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
7185 7186
    helper.append_op(
        type="one_hot",
7187 7188
        inputs=inputs,
        attrs=attrs,
7189 7190
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
7191
    return one_hot_out
Y
Yu Yang 已提交
7192 7193


Y
Yu Yang 已提交
7194
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
7195
    """
Y
yi.wu 已提交
7196 7197 7198
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
7199 7200 7201 7202 7203 7204

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

7205 7206
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
7207 7208 7209 7210

    Examples:
        .. code-block:: python

7211
           import paddle.fluid as fluid
Y
yi.wu 已提交
7212
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
7213
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
7214 7215
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
7216 7217
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
7218 7219 7220 7221 7222
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
7223
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
7224
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
7225 7226
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
7227
            outputs={'Out': [counter]},
7228
            attrs={'step': float(step)})
Y
Yu Yang 已提交
7229 7230 7231
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
7232 7233


7234
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
7235
    """
C
caoying03 已提交
7236 7237
    Gives a new shape to the input Tensor without changing its data.

7238
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
7239
    :attr:`shape` is a list of integer or tensor variable while :attr:`actual_shape` is a tensor
7240
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
7241
    if it is provided and it only contains integer, while :attr:`shape` still should be set correctly to
7242
    gurantee shape inference in compile-time.
C
caoying03 已提交
7243

7244
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
7245

7246 7247 7248 7249
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

7250
    2. 0 means the actual dimension value is going to be copied from the
7251 7252 7253 7254
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
7255 7256

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
7257
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
7258
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
7259

7260
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7261 7262
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
7263 7264
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
7265
    dimensions.
C
caoying03 已提交
7266

7267
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7268 7269 7270 7271
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
7272

7273 7274
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the future and only use :attr:`shape` instead.

C
caoying03 已提交
7275
    Args:
7276
        x(variable): The input tensor.
7277 7278 7279 7280
        shape(list|tuple|Variable): The new shape. At most one dimension of the new shape can
                     be -1. If :attr:`shape` is a list or tuple, it can contain Variable or not and
                     the shape of Variable must be [1].

7281 7282 7283 7284
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
7285 7286 7287 7288
                                than :attr:`shape(list|tuple)` but not :attr:`shape(Variable)`. \
                                This argument :attr:`actual_shape` will be removed in a future version. \
                                Instructions for updating: :attr:`actual_shape` is deprecated,
                                only use :attr:`shape` instead.
7289 7290
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
7291 7292 7293
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
7294
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
7295
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
7296

7297
    Returns:
G
guosheng 已提交
7298 7299 7300 7301
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
7302

X
Xin Pan 已提交
7303 7304 7305
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
7306 7307
    Examples:
        .. code-block:: python
G
guosheng 已提交
7308

7309
            import paddle.fluid as fluid
7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            data_1 = fluid.layers.data(
                name='data_1', shape=[2, 4, 6], dtype='float32')
            reshaped_1 = fluid.layers.reshape(
                x=data_1, shape=[-1, 0, 3, 2], inplace=True)

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
C
caoying03 已提交
7323 7324
    """

7325 7326 7327
    if not isinstance(shape, (list, tuple, Variable)):
        raise TypeError(
            "Input shape must be an Variable or python list or tuple.")
7328

7329 7330
    if not isinstance(actual_shape, Variable) and (actual_shape is not None):
        raise TypeError("actual_shape should either be Variable or None.")
7331

7332
    helper = LayerHelper("reshape2", **locals())
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
    inputs = {"X": x}
    attrs = {}

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension in shape can be unknown.")
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The indice of 0s in shape can not exceed Rank(X).")
                else:
                    assert dim_size > 0, (
                        "Each dimension size given in shape must not be negtive "
                        "except one unknown dimension.")
        return attrs_shape

7376 7377 7378 7379
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
            if contain_var(shape):
                inputs['ShapeTensor'] = get_new_shape_tensor(shape)
            elif isinstance(actual_shape, Variable):
                actual_shape.stop_gradient = True
                inputs["Shape"] = actual_shape
7392

7393 7394
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
7395
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
7396
    helper.append_op(
7397
        type="reshape2",
X
Xin Pan 已提交
7398
        inputs=inputs,
7399
        attrs=attrs,
7400 7401
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
7402

D
dzhwinter 已提交
7403
    return helper.append_activation(out)
7404

7405

7406
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
7407
    """
M
minqiyang 已提交
7408 7409 7410
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
7411
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
7412

H
haowang101779990 已提交
7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7434

Y
Yibing Liu 已提交
7435
    Args:
7436
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7437
        axes (list): List of integers, indicating the dimensions to be squeezed.
7438
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7439 7440 7441 7442 7443 7444 7445

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7446
            import paddle.fluid as fluid
7447
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7448
            x = layers.data(name='x', shape=[5, 1, 10])
7449
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7450
    """
L
lujun 已提交
7451
    assert not in_dygraph_mode(), (
L
lujun 已提交
7452
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7453
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7454 7455
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7456
    helper.append_op(
7457
        type="squeeze2",
7458
        inputs={"X": input},
Y
Yibing Liu 已提交
7459
        attrs={"axes": axes},
7460 7461
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7462

7463 7464 7465
    return out


7466
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7467
    """
M
minqiyang 已提交
7468 7469 7470
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7471

M
minqiyang 已提交
7472
    For example:
H
haowang101779990 已提交
7473 7474 7475

    .. code-block:: text

M
minqiyang 已提交
7476
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7477
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7478

Y
Yibing Liu 已提交
7479
    Args:
7480
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7481
        axes (list): List of integers, indicating the dimensions to be inserted.
7482
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7483 7484 7485 7486 7487 7488 7489

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7490 7491 7492
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7493 7494
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7495 7496
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7497
    helper.append_op(
7498
        type="unsqueeze2",
7499
        inputs={"X": input},
Y
Yibing Liu 已提交
7500
        attrs={"axes": axes},
7501 7502
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7503

7504 7505
    return out

7506

Y
yangyaming 已提交
7507
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7508
    """
Y
Yibing Liu 已提交
7509
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7510 7511 7512 7513
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7514
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7515 7516 7517 7518 7519 7520

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7521
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7522 7523 7524
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7525
            target_lod: [4, 2]
Y
yangyaming 已提交
7526 7527

            then we get a 1-level LoDTensor:
7528
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7529 7530 7531 7532 7533 7534
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7535
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7536 7537 7538 7539
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7540
                y.data = [[2, 4]]
Y
yangyaming 已提交
7541 7542 7543
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7544
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7545 7546 7547 7548 7549 7550
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7551
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7552 7553 7554 7555
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7556
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7557 7558 7559 7560
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7561
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7562 7563 7564 7565
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7566
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7567
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7568
                           from :attr:`y`.
Y
yangyaming 已提交
7569
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7570
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7571 7572

    Returns:
Y
Yibing Liu 已提交
7573
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7574 7575

    Raises:
Y
Yibing Liu 已提交
7576
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7577 7578 7579 7580

    Examples:
        .. code-block:: python

7581
            import paddle.fluid as fluid
7582 7583 7584
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7585 7586
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7587
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7625
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7626 7627 7628 7629 7630 7631

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7632

7633 7634 7635 7636 7637 7638 7639 7640 7641 7642
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7643 7644 7645
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7646 7647
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7648 7649 7650 7651 7652 7653 7654 7655

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7656
    helper.append_op(
7657
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7658
    return out
D
dragonwarrior 已提交
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7670
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7699
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7700 7701
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7714 7715 7716
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7730 7731 7732 7733


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7734
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7735
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7736

G
guosheng 已提交
7737
    Specifically, the number of values padded before the contents of :attr:`x`
7738
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7739
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7740
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7763
                         The length of :attr:paddings must be
G
guosheng 已提交
7764 7765 7766 7767 7768 7769 7770 7771 7772 7773
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7774

G
guosheng 已提交
7775
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7776 7777
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7778 7779 7780 7781 7782
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7783
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7784 7785 7786 7787 7788 7789 7790
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7791 7792


C
chengduo 已提交
7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7824 7825
		And
            pad_value = -1,
C
chengduo 已提交
7826

T
Tink_Y 已提交
7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7857 7858 7859
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7860 7861 7862 7863 7864
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7865
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7866 7867 7868 7869 7870 7871 7872 7873 7874
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7875 7876 7877 7878 7879 7880 7881
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7882 7883
    called label-smoothing regularization (LSR).

7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7907
                              be :math:`(1, class\_num)`.
7908 7909
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7910
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7911 7912 7913 7914 7915 7916 7917 7918 7919
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7920
            
7921
            import paddle.fluid as fluid
7922
            import paddle.fluid.layers as layers
7923 7924 7925 7926 7927 7928 7929 7930 7931 7932

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7933
    smooth_label = helper.create_variable_for_type_inference(dtype)
7934 7935 7936 7937 7938 7939 7940
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7941 7942


W
wopeizl 已提交
7943 7944 7945 7946 7947 7948 7949
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7950 7951 7952 7953 7954
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7955 7956 7957 7958 7959 7960 7961 7962 7963 7964
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7995 7996


J
jerrywgz 已提交
7997 7998 7999 8000 8001 8002
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
8003 8004
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
8005 8006 8007 8008 8009
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
8010 8011 8012 8013 8014
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
8015 8016 8017 8018 8019 8020 8021 8022 8023 8024
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

8025
            import paddle.fluid as fluid
J
jerrywgz 已提交
8026 8027 8028 8029
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
8030 8031 8032
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
8033 8034 8035 8036 8037 8038
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8039
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
8080 8081
        .. code-block:: python

S
SunGaofeng 已提交
8082 8083 8084
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
8085
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
8086
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
8087 8088
    """
    label = one_hot(label, depth=input.shape[-1])
8089
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
8090 8091 8092 8093 8094 8095
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
8096 8097


8098 8099 8100 8101
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
8102
                 resample='BILINEAR',
8103 8104
                 actual_shape=None,
                 align_corners=True,
8105 8106
                 align_mode=1,
                 data_format='NCHW'):
8107
    """
Q
qiaolongfei 已提交
8108
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
8109

8110 8111 8112 8113
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
    and the resizing only applies on the three dimensions(depth, hight and width).
8114

8115
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
8116 8117
    future and only use :attr:`out_shape` instead.

8118
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
8119

8120
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
8121

K
Kaipeng Deng 已提交
8122 8123
        'TRILINEAR' : Trilinear interpolation

8124
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
8125

8126 8127 8128 8129 8130 8131 8132 8133 8134 8135
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
8136 8137 8138 8139 8140
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
8141
    Align_corners and align_mode are optinal parameters,the calculation method 
8142 8143 8144 8145
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8146
    .. code-block:: text
8147

T
Tink_Y 已提交
8148
        For scale:
8149
          
T
Tink_Y 已提交
8150
            if align_corners = True && out_size > 1 :
8151

T
Tink_Y 已提交
8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
8163

T
Tink_Y 已提交
8164 8165
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8166

T
Tink_Y 已提交
8167 8168
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
8169

T
Tink_Y 已提交
8170 8171
          else:
              align_corners = True
8172

T
Tink_Y 已提交
8173 8174
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8175

T
Tink_Y 已提交
8176 8177
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8178

T
Tink_Y 已提交
8179 8180 8181 8182 8183 8184 8185 8186 8187 8188
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8189

T
Tink_Y 已提交
8190 8191 8192 8193
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8194

T
Tink_Y 已提交
8195 8196
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8197

K
Kaipeng Deng 已提交
8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
8220 8221 8222 8223 8224 8225
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
8226 8227 8228
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

8229 8230


8231
    Args:
8232 8233
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
8234
        out_shape(list|tuple|Variable|None): Output shape of image resize
8235 8236 8237 8238
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
8239 8240 8241
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
8242
             Default: None.
8243 8244
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
8245 8246
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
8247 8248 8249
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8250
                                :attr:`out_shape` and :attr:`scale` specifying
8251 8252
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8253 8254 8255 8256 8257 8258
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8259
                                Default: None
8260 8261 8262 8263
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
8264
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
8265
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
8266 8267 8268 8269 8270 8271
                            src_idx = scale*dst_index.
        data_format(str, optional): NCHW(num_batches, channels, height, width) or 
                                    NHWC(num_batches, height, width, channels) for 4-D Tensor,
                                    NCDHW(num_batches, channels, depth, height, width) or 
                                    NDHWC(num_batches, depth, height, width, channels) for 5-D Tensor.
                                    Default: 'NCHW'.
8272 8273

    Returns:
8274 8275
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
8276

8277 8278 8279
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
8280 8281 8282 8283
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
8284
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
8285 8286
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
8287
        ValueError: scale should be greater than zero.
8288 8289
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
8290
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
8291

8292 8293 8294
    Examples:
        .. code-block:: python

8295
            import paddle.fluid as fluid
8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.image_resize(input, out_shape=[12, dim1], resample="NEAREST")
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.image_resize(input, out_shape=shape_tensor, resample="NEAREST")
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.image_resize(input, out_shape=[4, 4], resample="NEAREST", actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.image_resize(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]

8322
    """
8323 8324
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
8325
        'TRILINEAR': 'trilinear',
8326 8327
        'NEAREST': 'nearest',
    }
8328 8329
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
8330 8331
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
8332
    resample_type = resample_methods[resample]
8333

K
Kaipeng Deng 已提交
8334 8335 8336 8337 8338
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

8339 8340 8341 8342 8343
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

8344
    if out_shape is None and scale is None:
8345
        raise ValueError("One of out_shape and scale must not be None.")
8346
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
8347
    dtype = helper.input_dtype()
8348

8349 8350 8351 8352 8353 8354 8355 8356 8357
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

8358 8359 8360
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

8361 8362 8363 8364 8365
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

8366
    inputs = {"X": input}
D
dengkaipeng 已提交
8367
    attrs = {
8368 8369 8370
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
8371 8372
        "interp_method": resample_type,
        "align_corners": align_corners,
8373 8374
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
8375 8376
    }

8377
    if out_shape is not None:
8378
        if isinstance(out_shape, Variable):
8379
            out_shape.stop_gradient = True
8380
            inputs['OutSize'] = out_shape
8381 8382
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
8383 8384
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
8413 8414 8415 8416
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
8417 8418 8419 8420 8421 8422 8423
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
8424 8425 8426 8427
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
8428 8429 8430 8431 8432 8433 8434 8435 8436
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
8437

8438
    else:
8439 8440 8441 8442 8443 8444 8445
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        if isinstance(scale, float):
            if scale <= 0:
                raise ValueError("scale should be greater than zero.")
            attrs['scale'] = float(scale)
8446

8447
    if isinstance(actual_shape, Variable):
8448 8449 8450 8451 8452
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
8453 8454 8455 8456
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
8457
    out = helper.create_variable_for_type_inference(dtype)
8458
    helper.append_op(
8459
        type='{}_interp'.format(resample_type),
8460
        inputs=inputs,
8461
        outputs={"Out": out},
D
dengkaipeng 已提交
8462
        attrs=attrs)
8463
    return out
F
stash  
fengjiayi 已提交
8464 8465


8466
@templatedoc(op_type="bilinear_interp")
8467 8468 8469 8470
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
8471 8472
                    actual_shape=None,
                    align_corners=True,
8473 8474
                    align_mode=1,
                    data_format='NCHW'):
8475
    """
8476 8477
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
8478 8479
    in priority order.

8480 8481 8482
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

8483 8484 8485 8486
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
8487 8488
    again in the other direction.

8489
    For details of bilinear interpolation, please refer to Wikipedia:
8490
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
8491

T
tink2123 已提交
8492
    Align_corners and align_mode are optinal parameters,the calculation 
8493 8494 8495 8496
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8497
    .. code-block:: text
8498

T
Tink_Y 已提交
8499
        For scale:
8500
          
T
Tink_Y 已提交
8501
            if align_corners = True && out_size > 1 :
8502

T
Tink_Y 已提交
8503 8504 8505 8506
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
8507
              scale_factor = float(in_size/out_size)
8508

T
Tink_Y 已提交
8509 8510 8511 8512 8513 8514 8515 8516 8517 8518
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8519

T
Tink_Y 已提交
8520
          else:
T
tink2123 已提交
8521

T
Tink_Y 已提交
8522 8523 8524 8525
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8526

Y
yuyang18 已提交
8527
    Args:
8528 8529
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
8530
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
8531
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
8532 8533
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
8534
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8535
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8536
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8537
             Default: None.
Y
yuyang18 已提交
8538
        name(str|None): The output variable name.
8539 8540 8541
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8542
                                :attr:`out_shape` and :attr:`scale` specifying
8543 8544
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8545 8546 8547 8548 8549 8550
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8551
                                Default: None
8552 8553
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
8554 8555
        data_format(str, optional): NCHW(num_batches, channels, height, width) or 
                                    NHWC(num_batches, height, width, channels). Default: 'NCHW'.
Y
yuyang18 已提交
8556 8557

    Returns:
8558 8559
        A 4-D Tensor in shape of (num_batches, channels, out_h, out_w) or
        (num_batches, out_h, out_w, channels).
8560 8561 8562 8563

    Examples:
        .. code-block:: python

8564
            import paddle.fluid as fluid
8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_bilinear(input, out_shape=[12, dim1])
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_bilinear(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_bilinear(input, out_shape=[4, 4], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_bilinear(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]
8590 8591
    """

8592
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
8593
                        align_corners, align_mode, data_format)
8594 8595


K
Kaipeng Deng 已提交
8596 8597 8598 8599 8600 8601 8602
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
8603 8604
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
8605 8606 8607 8608 8609
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

8610 8611 8612
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
8641

K
Kaipeng Deng 已提交
8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

    Args:
8661 8662
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
K
Kaipeng Deng 已提交
8663
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
8664
            layer, the shape is (out_d, out_h, out_w). Default: None. If a list, 
8665 8666
            each element can be  an integer or a Tensor Variable with shape: [1]. If 
            a Tensor Variable, its dimension size should be 1.
8667
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
8668 8669 8670 8671 8672 8673 8674 8675 8676 8677
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8678 8679 8680 8681 8682 8683
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
K
Kaipeng Deng 已提交
8684 8685 8686
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
8687 8688 8689
        data_format(str, optional): NCDHW(num_batches, channels, depth, height, width) or 
                                    NDHWC(num_batches, depth, height, width, channels).
                                    Default: 'NCDHW'.
K
Kaipeng Deng 已提交
8690 8691

    Returns:
8692 8693
        A 5-D Tensor in shape of (num_batches, channels, out_d, out_h, out_w) or 
        (num_batches, out_d, out_h, out_w, channels).
K
Kaipeng Deng 已提交
8694 8695 8696 8697 8698

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
            input = fluid.layers.data(name="input", shape=[3, 6, 9, 11], dtype="float32")
            # input.shape = [-1, 3, 6, 9, 11], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
            # out0.shape = [-1, 3, 12, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_trilinear(input, out_shape=[12, dim1, 4])
            # out1.shape = [-1, 3, 12, -1, 4]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[3], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_trilinear(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[3], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_trilinear(input, out_shape=[4, 4, 8], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4, 8]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_trilinear(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1, -1]
K
Kaipeng Deng 已提交
8724 8725 8726
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
8727
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
8728 8729


8730
@templatedoc(op_type="nearest_interp")
8731 8732 8733 8734
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
8735
                   actual_shape=None,
8736 8737
                   align_corners=True,
                   data_format='NCHW'):
8738
    """
8739
    Resize input by performing nearest neighbor interpolation in both the
8740 8741
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
8742

8743 8744 8745
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

8746 8747
    Example:

T
Tink_Y 已提交
8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
8760
          
T
Tink_Y 已提交
8761 8762
          if:
              align_corners = False
8763

T
Tink_Y 已提交
8764 8765
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8766

T
Tink_Y 已提交
8767 8768
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8769

T
Tink_Y 已提交
8770 8771
          else:
              align_corners = True
8772

T
Tink_Y 已提交
8773 8774
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8775

T
Tink_Y 已提交
8776 8777
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8778 8779


8780
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8781
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8782 8783

    Args:
8784 8785
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
8786
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
8787 8788 8789 8790
            layer, the shape is (out_h, out_w). Default: None. If a list, each 
            element can be integer or a tensor Variable with shape: [1]. If a 
            tensor Variable, its dimension size should be 1.
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8791
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8792
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8793
             Default: None.
Y
yuyang18 已提交
8794
        name(str|None): The output variable name.
8795 8796 8797
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8798
                                :attr:`out_shape` and :attr:`scale` specifying
8799 8800
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8801 8802 8803 8804 8805 8806
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8807
                                Default: None
8808
        align_corners(bool): ${align_corners_comment}
8809 8810 8811
        data_format(str, optional): NCHW(num_batches, channels, height, width) or 
                                    NHWC(num_batches, height, width, channels).
                                    Default: 'NCHW'.
Y
yuyang18 已提交
8812 8813

    Returns:
8814 8815
        A 4-D Tensor in shape of (num_batches, channels, out_h, out_w) or 
        (num_batches, out_h, out_w, channels).
8816 8817 8818 8819

    Examples:
        .. code-block:: python

8820
            import paddle.fluid as fluid
8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_nearest(input, out_shape=[12, 12])
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_nearest(input, out_shape=[12, dim1])
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="resize_shape", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_nearest(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_nearest(input, out_shape=[4, 4], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_nearest(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]
8846 8847
    """

8848 8849 8850 8851 8852 8853 8854 8855 8856 8857
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
8858 8859 8860 8861


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8862 8863 8864
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8865 8866 8867 8868 8869 8870 8871
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8872
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8873

8874
    Returns:
Q
update  
qiaolongfei 已提交
8875
        Variable: The output is a 4-D tensor of the shape
8876
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8877 8878 8879 8880

    Examples:
        .. code-block:: python

8881
            import paddle.fluid as fluid
R
ruri 已提交
8882 8883
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8884 8885 8886 8887 8888 8889 8890 8891 8892 8893
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8894 8895 8896
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8897 8898 8899
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8900
def gather(input, index, overwrite=True):
W
whs 已提交
8901
    """
Q
qiaolongfei 已提交
8902 8903
    **Gather Layer**

8904
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8905 8906 8907 8908
    of X indexed by `index` and concatenate them together.

    .. math::

8909
        Out = X[Index]
W
whs 已提交
8910 8911 8912 8913 8914 8915 8916


    .. code-block:: text


                Given:

8917 8918
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8919 8920 8921 8922 8923 8924 8925 8926 8927 8928
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8929
        input (Variable): The source input with rank>=1.
W
whs 已提交
8930
        index (Variable): The index input with rank=1.
8931 8932 8933 8934 8935 8936
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8937 8938 8939 8940 8941

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8942

W
whs 已提交
8943 8944
        .. code-block:: python

8945
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8946 8947
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8948 8949 8950 8951
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8952
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8953 8954 8955 8956
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8957 8958
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8959 8960 8961
    return out


8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
        input (Variable): The source input
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[2, 2], dtype='int32')
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


9047
def scatter(input, index, updates, name=None, overwrite=True):
9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
9065 9066 9067 9068
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
9069 9070 9071 9072 9073 9074 9075 9076

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

9077 9078 9079 9080 9081
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
9082

9083
            output = fluid.layers.scatter(input, index, updates)
9084 9085 9086
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9087
    out = helper.create_variable_for_type_inference(dtype)
9088 9089 9090 9091 9092
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
9093
        attrs={'overwrite': overwrite},
9094 9095 9096 9097
        outputs={"Out": out})
    return out


9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Variable. :attr:`ref` is a Tensor with rank :math:`R` 
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
        ref (Variable): The ref input.
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same type
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:]
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape and type as ref.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            ref = fluid.layers.data(name='ref', shape=[3, 5, 9, 10], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int32', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter_nd op. 
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Q
Qingsheng Li 已提交
9219 9220 9221 9222 9223 9224 9225 9226 9227
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
9228

Q
Qingsheng Li 已提交
9229
    Given the following input:
H
haowang101779990 已提交
9230

Q
Qingsheng Li 已提交
9231
    .. code-block:: text
H
haowang101779990 已提交
9232

Q
Qingsheng Li 已提交
9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
9245

Q
Qingsheng Li 已提交
9246
    .. code-block:: text
H
haowang101779990 已提交
9247

Q
Qingsheng Li 已提交
9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
9263
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
9264 9265 9266 9267

    Examples:

        .. code-block:: python
9268
	
9269
            import paddle.fluid as fluid
9270
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
9271

9272 9273 9274
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
9275 9276 9277
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
9278
    assert not in_dygraph_mode(), (
9279
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
9280 9281
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9282
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
9283 9284 9285 9286 9287 9288 9289 9290 9291
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
9305

9306
    Examples:
9307
        >>> import paddle.fluid as fluid
9308 9309
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
9310
    """
F
stash  
fengjiayi 已提交
9311
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
9312
    dtype = x.dtype
X
Xin Pan 已提交
9313
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
9314
    if seed is None:
9315
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
9316
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
9317
    if isinstance(seed, int):
F
fengjiayi 已提交
9318 9319 9320 9321 9322
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
9323 9324 9325 9326
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
9327
        inputs={"X": x,
F
stash  
fengjiayi 已提交
9328 9329
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
9330 9331
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
9332
    return out
W
whs 已提交
9333 9334


9335
def log(x, name=None):
W
wanghaoshuang 已提交
9336 9337 9338 9339 9340
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

9341
        Out = \\ln(x)
W
wanghaoshuang 已提交
9342 9343

    Args:
9344
        x (Variable): Input tensor.
9345 9346
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
9347 9348 9349 9350 9351 9352 9353 9354

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

9355
            import paddle.fluid as fluid
9356
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
9357
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
9358 9359
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
9360
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9361
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
9362
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
9363 9364 9365
    return out


9366
def relu(x, name=None):
W
wanghaoshuang 已提交
9367 9368
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
9369
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
9370 9371 9372 9373
    the tensor elementwise.

    .. math::

9374
        Out = \\max(0, x)
W
wanghaoshuang 已提交
9375 9376

    Args:
9377
        x (Variable): The input tensor.
9378 9379
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
9380 9381 9382 9383 9384 9385 9386 9387

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

9388
            import paddle.fluid as fluid
9389
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
9390
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
9391 9392
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
9393
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9394
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
9395 9396
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
9397
    return out
9398 9399


C
chengduo 已提交
9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
9424 9425 9426 9427 9428 9429
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
9445 9446 9447
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
9448 9449 9450 9451
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
9452
    .. math::
9453

H
haowang101779990 已提交
9454
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
9455

9456
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
9457 9458 9459 9460 9461
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
9462
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
9463
                           Its shape should be the same as input.
9464
        num_classes (int): The possible number of labels.
W
whs 已提交
9465 9466

    Returns:
M
minqiyang 已提交
9467 9468
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
9469
                     Three variables:
M
minqiyang 已提交
9470

H
haowang101779990 已提交
9471 9472 9473
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
9474 9475 9476 9477

    Examples:

        .. code-block:: python
9478

B
Bai Yifan 已提交
9479
            import paddle.fluid as fluid
9480 9481 9482 9483
            iou_shape = [32, 32]
            num_classes = 5
            predict = fluid.layers.data(name='predict', shape=iou_shape)
            label = fluid.layers.data(name='label', shape=iou_shape)
B
Bai Yifan 已提交
9484
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
9485
                                                          num_classes)
W
whs 已提交
9486 9487 9488
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9489 9490 9491
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
9492 9493
    helper.append_op(
        type="mean_iou",
W
whs 已提交
9494 9495
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
9496
        outputs={
W
whs 已提交
9497 9498 9499
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
9500 9501 9502
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
9503 9504 9505 9506 9507 9508


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

9509 9510 9511 9512 9513
    **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
    Instructions for updating: Use `fluid.layers.crop_tensor
    <https://www.paddlepaddle.org.cn/documentation/docs/en/api/layers/nn.html#crop_tensor>`_
    instead.

9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
9545
            by `shape`, which can be a Variable or a list/tuple of integer.
9546 9547
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
9548
            iteration. If a list/tuple of integer, it's length must be the same
9549
            as the rank of `x`
S
SunGaofeng 已提交
9550
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
9551
            offsets at each dimension. It can be a Variable or a list/tuple
S
SunGaofeng 已提交
9552
            of integers. If a tensor Variable, it's rank must be the same as `x`.
9553
            This way is suitable for the case that the offsets may be changed
9554
            each iteration. If a list/tuple of integer, it's length must be the
9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
9570
            import paddle.fluid as fluid
9571 9572 9573 9574 9575 9576
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
9577
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
9578 9579 9580 9581 9582

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
9583
            isinstance(shape, Variable)):
9584 9585 9586 9587 9588
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
9589
    out = helper.create_variable_for_type_inference(x.dtype)
9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
9607 9608


9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X =  [[[0, 1, 2, 3]
                       [0, 5, 6, 7]
                       [0, 0, 0, 0]],

                      [[0, 3, 4, 5]
                       [0, 6, 7, 8]
                       [0, 0, 0, 0]]].
            and
                shape = [2, 2, 3],
                offsets = [0, 0, 1],
            output is:
                Out = [[[1, 2, 3]
                        [5, 6, 7]],

                        [[3, 4, 5]
                         [6, 7, 8]]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list|tuple of integer): The output shape is specified
            by `shape`. It can be a 1-D tensor Variable or a list/tuple. If a 
            1-D tensor Variable, it's rank must be the same as `x`. If a 
            list/tuple, it's length must be the same as the rank of `x`. Each 
            element of list can be an integer or a tensor Variable of shape: [1].
            If Variable contained, it is suitable for the case that the shape may 
            be changed each iteration. Only the first element of list/tuple can be 
            set to -1, it means that the first dimension of the output is the same 
            as the input.
        offsets (Variable|list|tuple of integer|None): Specifies the cropping
            offsets at each dimension. It can be a 1-D tensor Variable or a list/tuple.
            If a 1-D tensor Variable, it's rank must be the same as `x`. If a list/tuple, 
            it's length must be the same as the rank of `x`. Each element of list can be
            an integer or a tensor Variable of shape: [1]. If Variable contained, it is 
            suitable for the case that the offsets may be changed each iteration. If None, 
            the offsets are 0 at each dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.
        ValueError: If offsets is not None and not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

            # shape is a 1-D tensor variable
            crop_shape = fluid.layers.data(name="crop_shape", shape=[3], dtype="int32", append_batch_size=False)
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3])
            # crop1.shape = [-1, 2, 3]

            # or shape is a list in which each element is a constant or variable
            y = fluid.layers.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            crop2 = fluid.layers.crop_tensor(y, shape=[-1, 3, dim1, 4])
            # crop2.shape = [-1, 3, -1, 4]

            # offsets is a 1-D tensor variable
            crop_offsets = fluid.layers.data(name="crop_offsets", shape=[3], dtype="int32", append_batch_size=False)
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

            # offsets is a list in which each element is a constant or variable
            offsets_var =  fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
            isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    if not (isinstance(offsets, list) or isinstance(offsets, tuple) or \
            isinstance(offsets, Variable)):
        raise ValueError("The offsets should be a list, tuple or Variable.")

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def contain_var(input_list):
        for ele in input_list:
            if isinstance(ele, Variable):
                return True
        return False

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
    elif contain_var(offsets):
        new_offsets_tensor = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                assert dim >= 0, ("offsets should be greater or equal to zero.")
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
        ipts['OffsetsTensor'] = new_offsets_tensor
    else:
        attrs['offsets'] = offsets

    unk_dim_idx = -1
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_idx, dim_size in enumerate(shape):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(-1)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one element in shape can be unknown.")
                    assert dim_idx == 0, (
                        "Only the first element in shape can be -1.")
                    unk_dim_idx = dim_idx
                else:
                    assert dim_size > 0, (
                        "Each dimension size given in shape must be greater than zero."
                    )
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
9808

W
whs 已提交
9809
              out_shape = [2, 3, 5, 5]
9810

W
whs 已提交
9811
          Step 1:
9812

W
whs 已提交
9813 9814 9815
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
9816

W
whs 已提交
9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
9862
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
9863
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
9876

S
SunGaofeng 已提交
9877
            import paddle.fluid as fluid
W
whs 已提交
9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
9889
            isinstance(out_shape, Variable)):
W
whs 已提交
9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


9911 9912
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
9913

9914 9915
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
9916
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
9917 9918 9919
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
9920

9921 9922
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
9923

H
haowang101779990 已提交
9924 9925
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
9926 9927
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
9928

H
haowang101779990 已提交
9929 9930 9931 9932 9933 9934 9935 9936
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
9937 9938 9939

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

9957
            import paddle.fluid as fluid
9958 9959 9960
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
9975
    out = helper.create_variable_for_type_inference("float32")
9976 9977 9978 9979 9980 9981 9982 9983

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
9984 9985


M
minqiyang 已提交
9986 9987
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
9988
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
9989
    which compares left score and right score passed in.
M
minqiyang 已提交
9990
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
9991 9992 9993

    .. math::

H
haowang101779990 已提交
9994
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
9995 9996

    Args:
M
minqiyang 已提交
9997
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
9998 9999
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
10000
       margin (float): Indicates the given margin.
M
minqiyang 已提交
10001 10002
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
10003

M
minqiyang 已提交
10004
    Returns:
M
minqiyang 已提交
10005
       Variable: The ranking loss.
H
haowang101779990 已提交
10006

M
minqiyang 已提交
10007
    Raises:
M
minqiyang 已提交
10008
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
10009

M
minqiyang 已提交
10010
    Examples:
H
haowang101779990 已提交
10011

M
minqiyang 已提交
10012
        .. code-block:: python
H
haowang101779990 已提交
10013

10014
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
10015 10016 10017
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
10018 10019
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
10020
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
10021 10022 10023 10024 10025 10026
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
10027 10028
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
10052
        .. code-block:: text
W
whs 已提交
10053

T
Tink_Y 已提交
10054
	      Given that X is a channel of image from input:
M
minqiyang 已提交
10055

T
Tink_Y 已提交
10056 10057
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
10058

T
Tink_Y 已提交
10059
	      Case 0:
M
minqiyang 已提交
10060

T
Tink_Y 已提交
10061 10062 10063
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
10064

T
Tink_Y 已提交
10065 10066 10067
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
10068

T
Tink_Y 已提交
10069
	      Case 1:
M
minqiyang 已提交
10070

T
Tink_Y 已提交
10071 10072
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
10073

T
Tink_Y 已提交
10074 10075 10076
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
10077

T
Tink_Y 已提交
10078
	      Case 2:
M
minqiyang 已提交
10079

T
Tink_Y 已提交
10080 10081
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
10082

T
Tink_Y 已提交
10083 10084 10085
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
10086 10087


W
whs 已提交
10088 10089
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
10090
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
10108 10109 10110 10111 10112
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
10113 10114 10115
    """

    helper = LayerHelper('pad2d', **locals())
10116 10117 10118 10119

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
10120
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
10121
    out = helper.create_variable_for_type_inference(dtype)
10122 10123 10124 10125 10126 10127 10128 10129 10130
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
10131
    helper.append_op(
10132
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
10133 10134 10135 10136

    return out


10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10149 10150 10151 10152 10153

    Examples:

        .. code-block:: python

10154
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10155 10156
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
10157 10158
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
10159
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10180 10181 10182 10183 10184

    Examples:

        .. code-block:: python

10185
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10186 10187
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
10188 10189
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
10190
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
10205
        factor(float|Variable|1.0): The exponential factor of Pow.
10206 10207 10208 10209 10210
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10211 10212 10213 10214 10215

    Examples:

        .. code-block:: python

10216
            import paddle.fluid as fluid
10217

Z
ZhenWang 已提交
10218
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
10219 10220 10221 10222 10223 10224 10225

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
10226 10227
    """
    helper = LayerHelper('pow', **locals())
10228 10229 10230 10231 10232 10233 10234 10235
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
10236
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10237
    helper.append_op(
10238
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10255 10256 10257 10258 10259

    Examples:

        .. code-block:: python

10260
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10261
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
10262
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
10263 10264
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
10265
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10288 10289 10290 10291 10292

    Examples:

        .. code-block:: python

10293
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10294 10295
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
10296 10297
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
10298
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10320 10321 10322 10323 10324

    Examples:

        .. code-block:: python

10325
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10326 10327
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
10328 10329
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
10330
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10331 10332 10333 10334 10335 10336 10337 10338
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
10339 10340 10341 10342
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
10343 10344
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
10345

J
jerrywgz 已提交
10346 10347 10348 10349 10350 10351 10352 10353
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
10354 10355
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
10356
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
10357
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
10358
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
10359
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
10360
          will be named automatically.
J
jerrywgz 已提交
10361 10362 10363 10364 10365 10366 10367 10368

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
10369 10370 10371
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
10372
            mode = 'channel'
J
jerrywgz 已提交
10373 10374 10375
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
10387
        attr=helper.param_attr,
J
jerrywgz 已提交
10388 10389 10390 10391
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
10392
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
10393 10394 10395 10396 10397 10398 10399 10400 10401
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


10402 10403 10404 10405 10406 10407 10408 10409 10410 10411
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10412
    Returns:
10413
        output(${out_type}): ${out_comment}
10414 10415 10416

    Examples:

10417
    .. code-block:: python
10418

10419
            import paddle.fluid as fluid
H
haowang101779990 已提交
10420 10421
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
10422 10423
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
10424
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10443
    Returns:
10444
        output(${out_type}): ${out_comment}
10445 10446 10447 10448 10449

    Examples:

        .. code-block:: python

10450
            import paddle.fluid as fluid
H
haowang101779990 已提交
10451 10452
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
10453 10454
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
10455
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10473
    Returns:
10474
        output(${out_type}): ${out_comment}
10475 10476 10477

    Examples:

10478 10479 10480 10481 10482
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
10483
            y = fluid.layers.soft_relu(x, threshold=20.0)
10484 10485
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
10486
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10487 10488 10489 10490 10491 10492 10493 10494
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


10495 10496 10497 10498
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
10499

H
haowang101779990 已提交
10500
    For Example:
M
minqiyang 已提交
10501

H
haowang101779990 已提交
10502
    .. code-block:: text
10503

H
haowang101779990 已提交
10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
10525 10526 10527

    Args:
        x (Variable): A tensor of rank >= axis.
10528 10529
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
10530 10531 10532 10533 10534 10535 10536 10537
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
10538 10539 10540
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
10541 10542 10543 10544
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
10545
        ValueError: If axis is not in range [0, rank(x)].
10546 10547 10548 10549 10550

    Examples:

        .. code-block:: python

10551
            import paddle.fluid as fluid
10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
10563 10564
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
10565
    helper.append_op(
10566
        type='flatten2',
10567
        inputs={"X": x},
10568 10569
        outputs={'Out': out,
                 'XShape': x_shape},
10570 10571
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
10572 10573


C
chenweihang 已提交
10574
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
10575
    """
C
chenweihang 已提交
10576
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
10577
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
10578 10579
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
10580

H
haowang101779990 已提交
10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
10598 10599

    Args:
C
chenweihang 已提交
10600 10601 10602
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
10603 10604 10605 10606 10607 10608 10609

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

10610 10611 10612
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
10613 10614
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
10615
    assert not in_dygraph_mode(), (
10616
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
10617
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
10618 10619
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
10620 10621 10622 10623 10624 10625
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
10626
    return out
10627

10628

S
sneaxiy 已提交
10629 10630 10631 10632 10633 10634 10635 10636 10637
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
10638

S
sneaxiy 已提交
10639
    .. math::
10640

S
sneaxiy 已提交
10641 10642 10643
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
10644
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
10645 10646 10647 10648
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
10649 10650 10651
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
10652 10653
    Returns:
        Variable: The output sequence mask.
10654

10655 10656 10657
    Examples:
        .. code-block:: python
	
10658
            import paddle.fluid as fluid
10659 10660 10661 10662 10663
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
10664
    """
Q
qingqing01 已提交
10665
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
10666
    if name is None:
X
Xin Pan 已提交
10667
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
10668
    else:
X
Xin Pan 已提交
10669
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
10670

10671 10672 10673 10674 10675 10676 10677 10678
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
10679
    helper.append_op(
10680 10681 10682
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
10683
    return out
S
sneaxiy 已提交
10684 10685


X
Xin Pan 已提交
10686
def stack(x, axis=0):
S
sneaxiy 已提交
10687 10688 10689 10690
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
10691 10692 10693 10694 10695 10696 10697

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
10698
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
10699
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
10700

C
chengduozh 已提交
10701 10702
    For Example:

C
chengduozh 已提交
10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
10741
    Args:
10742
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
10743
        axis (int|None): The axis along which all inputs are stacked.
10744

S
sneaxiy 已提交
10745 10746
    Returns:
        Variable: The stacked variable.
10747

10748 10749 10750
    Examples:
        .. code-block:: python

10751
            import paddle.fluid as fluid
10752
            import paddle.fluid.layers as layers
10753 10754
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
10755 10756
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
10757 10758
    """

X
Xin Pan 已提交
10759 10760 10761 10762 10763 10764
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
10765
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
10766
    helper.append_op(
S
sneaxiy 已提交
10767 10768
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
10769

X
Xin Pan 已提交
10770
    return out
D
dzhwinter 已提交
10771 10772


J
Jiawei Wang 已提交
10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
10843 10844 10845 10846 10847
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
10848

D
dzhwinter 已提交
10849 10850 10851
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
10852
    raised.
D
dzhwinter 已提交
10853 10854

    Args:
M
minqiyang 已提交
10855
        x (Variable): Input variable.
D
dzhwinter 已提交
10856 10857
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
10858

D
dzhwinter 已提交
10859 10860
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
10861

10862 10863 10864 10865 10866 10867
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
10868 10869 10870 10871 10872 10873 10874 10875 10876 10877
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
10878
    for _ in range(num):
X
Xin Pan 已提交
10879
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
10880 10881 10882 10883 10884 10885 10886 10887

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
10900

W
whs 已提交
10901 10902 10903 10904
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
10905

W
whs 已提交
10906
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
10907

W
whs 已提交
10908
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
10909

W
whs 已提交
10910 10911 10912 10913
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
10914

W
whs 已提交
10915 10916
    Args:
        x (Variable): A tensor with rank in [1, 6].
L
liym27 已提交
10917
        expand_times (list|tuple|Variable): Expand times number for each dimension.
W
whs 已提交
10918 10919 10920 10921 10922 10923 10924

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
L
liym27 已提交
10925

W
wangchaochaohu 已提交
10926
            import paddle.fluid as fluid
L
liym27 已提交
10927 10928 10929 10930 10931 10932 10933 10934 10935

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
W
whs 已提交
10936
    """
L
liym27 已提交
10937 10938 10939 10940 10941

    if not isinstance(expand_times, (list, tuple, Variable)):
        raise ValueError(
            "Input expand_times must be an Variable, python list or tuple.")

W
whs 已提交
10942
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974
    inputs = {"X": x}
    attrs = {}

    def contain_var(expand_times):
        for ele in expand_times:
            if isinstance(ele, Variable):
                return True
        return False

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
                    "Each element given in expand_times must not be negtive.")
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
10975 10976 10977 10978 10979

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:
L
liym27 已提交
10980 10981 10982 10983 10984 10985 10986 10987
        if isinstance(expand_times, Variable):
            expand_times.stop_gradient = True
            inputs['ExpandTimes'] = expand_times
        elif isinstance(expand_times, (list, tuple)):
            attrs['expand_times'] = get_attr_expand_times(expand_times)
            if contain_var(expand_times):
                inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                    expand_times)
10988

L
liym27 已提交
10989 10990
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
10991
    helper.append_op(
10992
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
10993
    return out
S
sneaxiy 已提交
10994 10995


G
fix  
gongweibao 已提交
10996 10997 10998
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
10999
@templatedoc()
G
fix  
gongweibao 已提交
11000 11001 11002 11003 11004 11005 11006 11007 11008
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
11009
    ${comment}
G
fix  
gongweibao 已提交
11010 11011

    Args:
G
gongweibao 已提交
11012 11013 11014
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
11015
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
11016 11017 11018
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
11019 11020
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
11021
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11022

11023 11024 11025
    Examples:
        .. code-block:: python

11026
            import paddle.fluid as fluid
11027 11028
            import paddle.fluid.layers as layers 

11029 11030
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
11031 11032 11033
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
11034
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
11051 11052


G
gongweibao 已提交
11053
@templatedoc()
X
Xin Pan 已提交
11054
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
11055
    """
G
gongweibao 已提交
11056
    ${comment}
G
fix  
gongweibao 已提交
11057 11058

    Args:
G
gongweibao 已提交
11059 11060 11061 11062
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
11063 11064 11065
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
11066
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11067

11068 11069 11070
    Examples:
        .. code-block:: python

11071
            import paddle.fluid as fluid
J
JesseyXujin 已提交
11072
            import paddle.fluid.layers as layers
11073
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
11074 11075 11076
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
11077
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11078 11079 11080 11081 11082 11083 11084 11085 11086 11087
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
11088
            'use_mkldnn': False
G
fix  
gongweibao 已提交
11089 11090 11091 11092 11093
        })

    return out


G
gongweibao 已提交
11094
@templatedoc()
G
fix  
gongweibao 已提交
11095
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
11096
    """
G
gongweibao 已提交
11097
    ${comment}
G
fix  
gongweibao 已提交
11098 11099

    Args:
G
gongweibao 已提交
11100 11101 11102 11103
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
11104
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
11105 11106

    Returns:
G
gongweibao 已提交
11107
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11108

11109 11110 11111
    Examples:
        .. code-block:: python

11112
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11113
            x = fluid.layers.data(
11114 11115 11116 11117 11118
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
11119
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
11120 11121 11122
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
11123
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
11135
@templatedoc()
G
fix  
gongweibao 已提交
11136 11137 11138 11139 11140 11141 11142 11143 11144
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
11145
    ${comment}
G
fix  
gongweibao 已提交
11146 11147

    Args:
G
gongweibao 已提交
11148 11149
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
11150
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
11151 11152 11153 11154
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
11155
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
11156 11157

    Returns:
G
gongweibao 已提交
11158
        out (Variable): ${out_comment}
11159 11160 11161 11162

    Examples:
        .. code-block:: python

11163
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11164
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
11165

Y
Yibing Liu 已提交
11166
            out = fluid.layers.gaussian_random_batch_size_like(
11167
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
11168 11169 11170
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
11171
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
11190
@templatedoc()
X
Xin Pan 已提交
11191
def sum(x):
G
fix  
gongweibao 已提交
11192
    """
G
gongweibao 已提交
11193
    ${comment}
G
fix  
gongweibao 已提交
11194 11195

    Args:
G
gongweibao 已提交
11196
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
11197 11198

    Returns:
G
gongweibao 已提交
11199
        out (Variable): ${out_comment}
11200 11201 11202 11203

    Examples:
        .. code-block:: python

11204
            import paddle.fluid as fluid
11205 11206 11207 11208
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
11209 11210 11211
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
11212 11213
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
11214 11215 11216 11217
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
11218
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
11219 11220 11221 11222

    return out


G
gongweibao 已提交
11223
@templatedoc()
G
fix  
gongweibao 已提交
11224 11225
def slice(input, axes, starts, ends):
    """
11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
11241

11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
11259
    Args:
G
gongweibao 已提交
11260 11261
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
11262 11263
        starts (List|Variable): ${starts_comment}
        ends (List|Variable): ${ends_comment}
G
fix  
gongweibao 已提交
11264 11265

    Returns:
G
gongweibao 已提交
11266
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11267

11268 11269 11270
    Examples:
        .. code-block:: python

11271
            import paddle.fluid as fluid
11272

11273
            input = fluid.layers.data(
11274 11275
                name="input", shape=[3, 4, 5, 6], dtype='float32')

11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
G
fix  
gongweibao 已提交
11287 11288
    """

11289 11290 11291 11292 11293 11294 11295
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
11296
    helper = LayerHelper('slice', **locals())
11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
11367 11368
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
11369
    helper.append_op(
11370
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
11371 11372 11373 11374

    return out


W
wangchaochaohu 已提交
11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
    Strided Slice OP

    The conceptualization that really helped me understand this was 
    that this function emulates the indexing behavior of numpy arrays.
    If you're familiar with numpy arrays, you'll know that you can make 
    slices via input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN]. 
    Basically, a very succinct way of writing for loops to get certain elements of the array.
    strided_slice just allows you to do this fancy indexing without the syntactic sugar. 
    The numpy (#input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN])
    example from above just becomes fluid.strided_slice(input,[0, 1, ..., N], 
    [start1, start2, ..., startN], [end1, end2, ..., endN], [strides1, strides2, ..., stridesN]),
    the axes which controls the dimension you want to slice makes it more flexible.

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
11399
                strides=[1, 1]
W
wangchaochaohu 已提交
11400
            Then:
11401
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
11402 11403 11404 11405 11406
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
11407 11408 11409
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
11410
            Then:
11411 11412 11413 11414 11415 11416 11417 11418 11419 11420
                result = [ [2], ]
    Args:
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List|Variable): ${starts_comment}
        ends (List|Variable): ${ends_comment}

    Returns:
        out (Variable): ${out_comment}

W
wangchaochaohu 已提交
11421 11422 11423 11424 11425 11426 11427 11428
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            input = fluid.layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides=[1, 1, 1]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides)

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides)
W
wangchaochaohu 已提交
11441
    """
11442 11443 11444 11445 11446 11447 11448 11449 11450 11451
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
11452 11453
    helper = LayerHelper('strided_slice', **locals())

11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479
    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
11480 11481 11482
            'axes': axes,
            'starts': starts,
            'ends': ends,
11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if not contain_var(strides):
                attrs['strides'] = strides
            else:
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
11541 11542 11543 11544

    return out


G
fix  
gongweibao 已提交
11545 11546
def shape(input):
    """
C
chengduozh 已提交
11547 11548
    **Shape Layer**

C
fix doc  
chengduozh 已提交
11549
    Get the shape of the input.
G
fix  
gongweibao 已提交
11550 11551

    Args:
C
chengduozh 已提交
11552
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
11553 11554

    Returns:
C
fix doc  
chengduozh 已提交
11555
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
11556

11557 11558 11559
    Examples:
        .. code-block:: python

11560 11561 11562
            import paddle.fluid as fluid

            input = fluid.layers.data(
11563
                name="input", shape=[3, 100, 100], dtype="float32")
11564
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
11565 11566 11567
    """

    helper = LayerHelper('shape', **locals())
11568
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
11569
    helper.append_op(
G
fix  
gongweibao 已提交
11570
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
11571 11572

    return out
G
merge  
gongweibao 已提交
11573 11574


Z
zhoukunsheng 已提交
11575 11576 11577 11578
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
11579
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
11580 11581 11582 11583 11584 11585 11586 11587 11588 11589

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

11590 11591 11592 11593
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
11594 11595 11596 11597 11598 11599 11600 11601
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
11631 11632 11633 11634
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
11635
    if in_dygraph_mode():
X
Xin Pan 已提交
11636 11637 11638
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
11639 11640 11641 11642
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
11643 11644
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
11645
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11646 11647 11648
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
11649

S
sneaxiy 已提交
11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
11661
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
11662 11663 11664 11665 11666 11667 11668 11669
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
11670
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
11671
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
11672 11673 11674

    Returns:
        out(${out_type}): ${out_comment}
11675 11676 11677 11678 11679 11680 11681 11682

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
11683 11684 11685
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
11686
    if name is None:
X
Xin Pan 已提交
11687
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11688 11689 11690
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
11691 11692 11693 11694 11695 11696 11697 11698 11699 11700

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
11701
    return helper.append_activation(out)
S
sneaxiy 已提交
11702 11703


X
Xin Pan 已提交
11704
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11705 11706 11707
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
11708
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11709 11710 11711
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
11712
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11713 11714 11715
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
11716
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11717 11718 11719
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
11720
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11721 11722 11723
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
11724
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11725 11726 11727
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
11728
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11729 11730 11731
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


11732 11733 11734 11735 11736 11737 11738 11739
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
11740
for func in [
11741 11742 11743 11744 11745 11746 11747 11748 11749
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
11750 11751 11752 11753 11754
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
11755 11756
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
11757
        ])
11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11795 11796


11797
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11798 11799
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11800 11801
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11802 11803 11804

    if out is None:
        if name is None:
X
Xin Pan 已提交
11805
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11821
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11833 11834 11835 11836

    Examples:
        .. code-block:: python

11837
            import paddle.fluid as fluid
11838
            left = fluid.layers.data(
石晓伟 已提交
11839
                name='left', shape=[1], dtype='bool')
11840
            right = fluid.layers.data(
石晓伟 已提交
11841
                name='right', shape=[1], dtype='bool')
11842
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
11843 11844 11845 11846 11847 11848 11849
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11850
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11862 11863 11864 11865

    Examples:
        .. code-block:: python

11866
            import paddle.fluid as fluid
11867
            left = fluid.layers.data(
石晓伟 已提交
11868
                name='left', shape=[1], dtype='bool')
11869
            right = fluid.layers.data(
石晓伟 已提交
11870
                name='right', shape=[1], dtype='bool')
11871
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
11872 11873 11874 11875 11876 11877 11878
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11879
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11891 11892 11893 11894

    Examples:
        .. code-block:: python

11895
            import paddle.fluid as fluid
11896
            left = fluid.layers.data(
石晓伟 已提交
11897
                name='left', shape=[1], dtype='bool')
11898
            right = fluid.layers.data(
石晓伟 已提交
11899
                name='right', shape=[1], dtype='bool')
11900
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
11901 11902 11903 11904 11905 11906 11907
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11908
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11909 11910 11911 11912 11913 11914 11915 11916 11917 11918
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11919 11920 11921 11922

    Examples:
        .. code-block:: python

11923
            import paddle.fluid as fluid
11924
            left = fluid.layers.data(
石晓伟 已提交
11925
                name='left', shape=[1], dtype='bool')
11926
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
11927 11928 11929 11930
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11946 11947 11948 11949

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11950
            import paddle.fluid as fluid
11951 11952 11953
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11954 11955 11956 11957 11958
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11959 11960
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11961 11962 11963

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11987 11988 11989 11990

    Examples:
        .. code-block:: python

11991
            import paddle.fluid as fluid
11992 11993 11994
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11995 11996 11997 11998 11999
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
12000 12001
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
12002 12003 12004

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
12005 12006 12007 12008 12009 12010 12011 12012

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
12026 12027 12028 12029

    Examples:
        .. code-block:: python

12030
            import paddle.fluid as fluid
12031 12032 12033
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
12034 12035 12036 12037 12038
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
12039
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
12040 12041 12042 12043 12044 12045 12046 12047 12048 12049
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
12061 12062 12063 12064

    Examples:
        .. code-block:: python

12065
            import paddle.fluid as fluid
12066 12067 12068 12069 12070
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
12109 12110 12111 12112 12113
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
12114
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
12115 12116 12117 12118 12119 12120 12121 12122 12123
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
12124 12125
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
12126 12127 12128 12129 12130 12131
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
12132 12133 12134
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
12135 12136
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
12137 12138 12139 12140 12141 12142
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
12143
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
12144
        name(basestring|None): Name of the output.
12145 12146
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
12147 12148 12149

    Returns:
        out(${out_type}): ${out_comment}
12150 12151 12152 12153

    Examples:
        .. code-block:: python

12154
            import paddle.fluid as fluid
12155 12156 12157 12158 12159 12160 12161 12162 12163 12164
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
12165 12166 12167 12168 12169
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
12170
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
12171 12172 12173 12174 12175 12176 12177 12178
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
12179 12180
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
12197 12198 12199 12200

    Examples:
        .. code-block:: python

12201
            import paddle.fluid as fluid
J
jerrywgz 已提交
12202 12203 12204 12205 12206
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
12207 12208 12209 12210
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
12211
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
12212 12213 12214 12215 12216 12217 12218 12219 12220 12221
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
12222 12223


J
JiabinYang 已提交
12224
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
12225
    """
J
JiabinYang 已提交
12226
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
12227 12228 12229

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
12230
    The attr blocksize indicates the input block size.
12231 12232

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
12233
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
12234 12235

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
12236
    (but keeping all data)
J
JiabinYang 已提交
12237

J
JiabinYang 已提交
12238
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
12239
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
12240 12241 12242 12243 12244
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
12245
    Args:
J
JiabinYang 已提交
12246
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
12247
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
12248 12249

    Returns:
J
JiabinYang 已提交
12250
        Variable: The output LoDtensor.
J
JiabinYang 已提交
12251 12252

    Raises:
J
JiabinYang 已提交
12253
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
12254 12255 12256

    Examples:
        .. code-block:: python
12257 12258 12259
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
12260 12261

            data = fluid.layers.data(
12262
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
12263
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
12264
                x=data, blocksize=2)
12265

12266
            exe = fluid.Executor(fluid.CPUPlace())
12267 12268 12269 12270
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
12271

J
JiabinYang 已提交
12272 12273
    """

J
JiabinYang 已提交
12274
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
12275

J
JiabinYang 已提交
12276 12277
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
12278 12279

    if name is None:
J
JiabinYang 已提交
12280 12281
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
12282 12283 12284 12285 12286
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
12287
        type="space_to_depth",
J
JiabinYang 已提交
12288
        inputs={"X": x},
J
JiabinYang 已提交
12289
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
12290
        outputs={"Out": out})
J
JiabinYang 已提交
12291 12292
    return out

J
JiabinYang 已提交
12293

S
sneaxiy 已提交
12294 12295
@templatedoc()
def sequence_reverse(x, name=None):
12296
    """
S
sneaxiy 已提交
12297 12298 12299 12300 12301 12302 12303 12304
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
12305 12306 12307 12308 12309 12310 12311

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
12312
    """
L
lujun 已提交
12313
    assert not in_dygraph_mode(), (
12314
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
12315 12316
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
12317
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
12318 12319 12320 12321 12322 12323 12324 12325 12326 12327
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
12328 12329


12330 12331 12332 12333 12334 12335
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
12336 12337 12338 12339 12340
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
12341

12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
12354
        act (str, default None): Activation to be applied to the output of this layer.
12355 12356 12357

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

12372 12373 12374 12375
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
12376
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
12388
    return helper.append_activation(out)
12389 12390


B
barrierye 已提交
12391
def similarity_focus(input, axis, indexes, name=None):
12392
    """
B
barrierye 已提交
12393
    SimilarityFocus Operator
B
barrierye 已提交
12394 12395

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
12396

12397 12398 12399
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
12400
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
12401 12402 12403 12404 12405 12406 12407
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
12408
       each index.
B
barrierye 已提交
12409 12410 12411 12412
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
12462
    Args:
12463
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
12464
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
12465
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
12466
            1, 2 or 3.
B
barrierye 已提交
12467
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
12468 12469

    Returns:
H
haowang101779990 已提交
12470 12471
        Variable: A tensor variable with the same shape and same type \
                  as the input.
12472

B
barrierye 已提交
12473 12474
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
12475

12476
            import paddle.fluid as fluid
B
barrierye 已提交
12477
            data = fluid.layers.data(
Y
Yibing Liu 已提交
12478 12479
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
12492 12493 12494 12495 12496
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
12497 12498 12499 12500 12501 12502 12503
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
12504 12505


M
minqiyang 已提交
12506 12507
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
12508 12509
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
12510 12511
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
12512 12513 12514 12515 12516 12517 12518 12519

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
12520
        input.data = 
12521
            [[1, 2],
12522
             [3, 4]]
M
minqiyang 已提交
12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
12536 12537
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
12538 12539 12540 12541
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
12542
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
12543 12544
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
12545
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
12546
        name (str, default None): The name of this layer.
M
minqiyang 已提交
12547 12548

    Returns:
12549
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
12550 12551 12552

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
12553

12554 12555
            import paddle.fluid as fluid

12556 12557 12558 12559
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
12560 12561


12562 12563 12564 12565
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
12566 12567
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
12568 12569
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
12570 12571 12572 12573 12574 12575 12576
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
12577 12578


D
dengkaipeng 已提交
12579
@templatedoc()
12580 12581
def grid_sampler(x, grid, name=None):
    """
12582
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
12583
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
12584 12585 12586 12587
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
12588
    interpolation value of 4 nearest corner points.
12589

H
haowang101779990 已提交
12590
    .. code-block:: text
12591

H
haowang101779990 已提交
12592 12593
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
12594

H
haowang101779990 已提交
12595 12596
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
12597

H
haowang101779990 已提交
12598 12599 12600
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
12601

H
haowang101779990 已提交
12602 12603 12604 12605 12606 12607 12608 12609 12610
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
12611

H
haowang101779990 已提交
12612 12613 12614 12615
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
12616

H
haowang101779990 已提交
12617 12618 12619 12620
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
12621

H
haowang101779990 已提交
12622 12623 12624 12625
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
12626

H
haowang101779990 已提交
12627 12628
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
12629 12630

    Args:
12631 12632 12633
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
12634 12635

    Returns:
H
haowang101779990 已提交
12636
        Variable: Output of shape [N, C, H, W] data samples input X
12637 12638
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
12639 12640 12641 12642
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
12643 12644 12645 12646 12647
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
12648
            out = fluid.layers.grid_sampler(x=x, grid=grid)
12649

D
dengkaipeng 已提交
12650 12651 12652 12653 12654 12655 12656 12657 12658
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

12659
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
12660 12661
    ipts = {'X': x, 'Grid': grid}

12662
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
12663 12664 12665
    return out


G
gmcather 已提交
12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

12693
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12694 12695
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
12734
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
12735 12736 12737 12738 12739 12740 12741
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
12742 12743
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12744

12745 12746 12747 12748 12749
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
12750
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
12751

H
heqiaozhi 已提交
12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
12765 12766 12767 12768
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
12769
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
12770 12771
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
12772
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12773 12774

    .. math::
H
haowang101779990 已提交
12775 12776 12777
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12778 12779

    Where:
H
haowang101779990 已提交
12780 12781
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

12795 12796 12797 12798 12799 12800 12801 12802 12803
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12804

G
gmcather 已提交
12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12821 12822 12823 12824 12825 12826 12827 12828 12829 12830


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
12831
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12832

Q
Qiao Longfei 已提交
12833
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12834 12835 12836
    For example:

    .. math::
H
haowang101779990 已提交
12837
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12838

Q
Qiao Longfei 已提交
12839
    In this formula:
12840 12841
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
12842
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
12843
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12844 12845 12846
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
12847 12848
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
12849 12850 12851
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
12852
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
12853
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
12854
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
12855 12856 12857 12858
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
12859
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
12860 12861 12862 12863

    Examples:
        .. code-block:: python

12864
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12865 12866 12867
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12868 12869
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12870
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12871 12872 12873 12874

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12875
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
12906 12907 12908 12909 12910 12911 12912 12913

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12914 12915 12916 12917 12918 12919 12920 12921 12922 12923
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12924 12925


S
shippingwang 已提交
12926
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12927 12928
    """
    **Shuffle Channel Operator**
12929

S
shippingwang 已提交
12930 12931 12932 12933 12934 12935
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12936
    
S
shippingwang 已提交
12937
    .. code-block:: text
12938

S
shippingwang 已提交
12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12967
    Args: 
S
shippingwang 已提交
12968 12969
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12970 12971

    Returns:
S
shippingwang 已提交
12972 12973
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12974 12975

    Raises:
S
shippingwang 已提交
12976
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12977 12978 12979

    Examples:
        .. code-block:: python
12980

12981
            import paddle.fluid as fluid
12982
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
12983
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12984 12985 12986
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12987
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12988 12989 12990 12991 12992 12993 12994 12995 12996

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12997
    return out
S
Add  
shippingwang 已提交
12998 12999


13000
@templatedoc()
D
dengkaipeng 已提交
13001
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
13002 13003 13004 13005 13006 13007 13008 13009
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
13010
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
13011
        name (str, default None): The name of this layer.
13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

13023
            import paddle.fluid as fluid
13024
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
13025
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
13038 13039
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
13040 13041 13042
    return out


S
sneaxiy 已提交
13043
class PyFuncRegistry(object):
S
sneaxiy 已提交
13044 13045 13046
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
13047
        if func is None or not callable(func):
S
sneaxiy 已提交
13048 13049 13050
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
13051
        # find named args using reflection
S
sneaxiy 已提交
13052 13053 13054 13055 13056 13057 13058
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
13059 13060 13061
        '''
        Why record self here?

M
minqiyang 已提交
13062 13063
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
13064
           to find the registered function corresponding
M
minqiyang 已提交
13065
           to :code:`idx`.
S
sneaxiy 已提交
13066

M
minqiyang 已提交
13067 13068
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
13069
           whose reference count is 1 would cause
M
minqiyang 已提交
13070
           segmentation fault error in C++ side.
S
sneaxiy 已提交
13071 13072
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
13073
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
13088 13089 13090 13091 13092 13093 13094 13095 13096
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
13097

S
sneaxiy 已提交
13098 13099
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
13100 13101

        ret = []
S
sneaxiy 已提交
13102 13103 13104
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
13105 13106
                continue

S
sneaxiy 已提交
13107 13108
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
13109

S
sneaxiy 已提交
13110 13111 13112
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
13113

S
sneaxiy 已提交
13114
        return tuple(ret)
S
sneaxiy 已提交
13115 13116


S
sneaxiy 已提交
13117 13118 13119 13120
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
13121

S
sneaxiy 已提交
13122 13123 13124 13125 13126 13127 13128 13129
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
13130
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
13131

S
sneaxiy 已提交
13132 13133
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
13134 13135 13136 13137
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
13138
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
13139
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
13140 13141
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
13142 13143 13144 13145 13146
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
13147
            should create :code:`out` beforehand.
S
sneaxiy 已提交
13148
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
13149
                                       None means no backward. Default None.
S
sneaxiy 已提交
13150
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
13151
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
13152 13153
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
13154
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
13155 13156 13157

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
13158 13159

    Examples:
M
minqiyang 已提交
13160

S
sneaxiy 已提交
13161 13162 13163 13164 13165
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
13166
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
13167 13168
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
13169
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
13170 13171 13172
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
13173
        >>>
S
sneaxiy 已提交
13174 13175 13176 13177 13178
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
13179
        >>>     print(x)
S
sneaxiy 已提交
13180 13181 13182 13183 13184 13185
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
13186
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
13187 13188
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
13189 13190
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
13191 13192 13193 13194 13195 13196 13197 13198
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
13199
    """
S
sneaxiy 已提交
13200
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
13201 13202 13203
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
13204
        x = [x]
S
sneaxiy 已提交
13205 13206
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
13207

S
sneaxiy 已提交
13208 13209 13210
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
13211
        out_list = [out]
S
sneaxiy 已提交
13212
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
13213
        out_list = out
S
sneaxiy 已提交
13214 13215 13216
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
13217

S
sneaxiy 已提交
13218 13219
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
13220
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
13221 13222

    for each_out in out_list:
S
sneaxiy 已提交
13223 13224
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
13225 13226
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
13227

S
sneaxiy 已提交
13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
13243 13244 13245 13246

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
13247 13248
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
13249 13250 13251
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
13252
        })
S
sneaxiy 已提交
13253
    return out
S
sneaxiy 已提交
13254 13255 13256


# For debug usage
S
sneaxiy 已提交
13257 13258 13259 13260
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
13274 13275 13276 13277 13278
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
13291 13292 13293 13294
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383


@templatedoc()
def prroi_pool(input,
               rois,
               output_channels,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
               name=None):
    """
    The precise roi pooling implementation for paddle?https://arxiv.org/pdf/1807.11590.pdf

    Args:
        input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        output_channels (integer): The output's channel.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
        name (str, default None): The name of this operation.

    Returns:
        Variable(Tensor): The shape of the returned Tensor is (num_rois, output_channels, pooled_h, pooled_w), with value type float32,float16..

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.prroi_pool(x, rois, 10, 1.0, 7, 7)
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='prroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13384

M
minqiyang 已提交
13385

M
minqiyang 已提交
13386
def huber_loss(input, label, delta):
13387
    """
M
minqiyang 已提交
13388 13389 13390
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
13391 13392 13393 13394

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
13395
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
13396 13397 13398 13399

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
13400
        huber\_loss = 0.5 * (label - input) * (label - input)
13401 13402 13403 13404 13405 13406 13407


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
13408
        delta (float): The parameter of huber loss, which controls
13409 13410 13411
                       the range of outliers

    Returns:
M
minqiyang 已提交
13412
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
13413 13414 13415 13416

    Examples:
        .. code-block:: python

13417 13418 13419 13420 13421 13422 13423 13424 13425
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

13426
    """
M
minqiyang 已提交
13427
    helper = LayerHelper('huber_loss', **locals())
13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
13439 13440


D
dengkaipeng 已提交
13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

13458
            import paddle.fluid as fluid
D
dengkaipeng 已提交
13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


C
ceci3 已提交
13474
from .ops import square
C
ceci3 已提交
13475
from .control_flow import equal
C
ceci3 已提交
13476 13477


C
ceci3 已提交
13478 13479 13480
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
13481

C
ceci3 已提交
13482
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
13483 13484

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
13485
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
13486 13487 13488 13489 13490
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
13491 13492
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
13493 13494 13495 13496 13497 13498 13499

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

13500
       import paddle.fluid as fluid
C
ceci3 已提交
13501 13502 13503 13504 13505 13506 13507 13508
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
13509 13510 13511 13512 13513 13514 13515
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
13516
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
13517 13518
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
13519 13520
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
13521 13522 13523 13524
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
13525 13526 13527
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
13528 13529 13530
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
13531 13532


R
ruri 已提交
13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

13562
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
13563 13564 13565 13566 13567 13568 13569 13570 13571

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

13572
            import paddle.fluid as fluid
R
ruri 已提交
13573
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
13624 13625 13626 13627 13628 13629
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
13630 13631 13632 13633 13634 13635 13636 13637
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
13638 13639 13640 13641


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
13642

H
heqiaozhi 已提交
13643
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
13644

H
fix doc  
heqiaozhi 已提交
13645
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
13646 13647 13648
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
13649
    
H
fix doc  
heqiaozhi 已提交
13650
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
13651

H
heqiaozhi 已提交
13652
    Args:
H
fix doc  
heqiaozhi 已提交
13653 13654

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
13655 13656
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
13657
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
13658
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
13659

H
heqiaozhi 已提交
13660
    Returns:
H
fix doc  
heqiaozhi 已提交
13661 13662 13663

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
13664
    Examples:
H
fix doc  
heqiaozhi 已提交
13665

H
heqiaozhi 已提交
13666
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
13667

13668
          import paddle.fluid as fluid
H
heqiaozhi 已提交
13669 13670 13671 13672 13673 13674 13675 13676 13677 13678
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
13679

H
heqiaozhi 已提交
13680 13681 13682 13683 13684 13685 13686 13687 13688
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
13689
    return out
Z
zhoukunsheng 已提交
13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

13708
             import paddle.fluid as fluid
13709 13710 13711
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
13712
             # condition is a tensor [True, False, True]
13713 13714 13715
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
13716 13717

             # condition is a tensor [[True, False], [False, True]]
13718 13719 13720
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
13721 13722

             # condition is a tensor [False, False, False]
13723 13724 13725 13726
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
13727 13728 13729 13730 13731 13732 13733 13734 13735
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

13753 13754 13755
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
13756
          # [1, 0, -1]
13757 13758
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
13771 13772


Z
zhoukunsheng 已提交
13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13877
                    modulated=True,
13878 13879 13880 13881 13882 13883
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13884 13885 13886
   
    
    Deformable Convolution v2: 
13887 13888 13889 13890
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13891 13892

    Deformable Convolution v1:
13893
    
13894 13895 13896 13897 13898 13899 13900
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
    which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
13926
        offset (Variable): The input coordinate offset of deformable convolution layer.
13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13965 13966
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13978 13979
          #deformable conv v2:
         
13980
          import paddle.fluid as fluid
13981 13982 13983 13984
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13985 13986 13987 13988 13989 13990 13991 13992 13993
                                             num_filters=2, filter_size=3, padding=1, modulated=True)

          #deformable conv v1:

          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
                                             num_filters=2, filter_size=3, padding=1, modulated=False)
13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
14071 14072 14073

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

14237
        import paddle.fluid as fluid
C
cjt222 已提交
14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
14299 14300 14301 14302


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
14303 14304 14305 14306 14307 14308
    This function recomputes the `input` indices according to the offset of the
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
14309
        
14310 14311
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
14312

14313 14314
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
14315 14316

    Examples:
14317
    ::
14318
    
14319
        Input:
14320 14321
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
14322 14323 14324
          index_num = 20
          nshards = 2
          ignore_value = -1
14325
        
14326
        if shard_id == 0, we get:
14327 14328 14329
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
14330
        if shard_id == 1, we get:
14331 14332 14333 14334
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
14335 14336 14337 14338 14339
        - **input** (Variable): Input indices, last dimension must be 1.
        - **index_num** (scalar): An interger defining the range of the index.
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
        - **ignore_value** (scalar): An ingeter value out of sharded index range
14340 14341

    Returns:
14342
        Variable: The sharded index of input.
14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
    ${comment}
    Args:
        x(Varaible): Input of HardSwish operator.
        threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
        scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
        offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_swish(x)
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448


def mse_loss(input, label):
    """
    **Mean square error layer**

    This layer accepts input predications and target label and returns the mean square error.

    The loss can be described as:

    .. math::
        
        Out = mean((X - Y)^2)

    In the above equation:

        * :math:`X`: Input predications, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.

    Returns:
        Variable: The tensor variable storing the mean square error difference of input and label.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
            mse = fluid.layers.mse_loss(input=y_predict, label=y)

    """
    return reduce_mean(square_error_cost(input, label))