nn.py 405.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
165
    'rank',
X
Xin Pan 已提交
166 167 168 169 170 171 172 173 174 175
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
176
    'space_to_depth',
W
whs 已提交
177
    'affine_grid',
S
sneaxiy 已提交
178
    'sequence_reverse',
179
    'affine_channel',
B
barrierye 已提交
180
    'similarity_focus',
M
minqiyang 已提交
181
    'hash',
D
dengkaipeng 已提交
182
    'grid_sampler',
G
gmcather 已提交
183 184
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
185
    'bilinear_tensor_product',
C
chengduo 已提交
186 187
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
188
    'lstm',
S
shippingwang 已提交
189
    'shuffle_channel',
190
    'temporal_shift',
S
sneaxiy 已提交
191
    'py_func',
192
    'psroi_pool',
H
heqiaozhi 已提交
193
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
194
    'huber_loss',
D
dengkaipeng 已提交
195
    'kldiv_loss',
Z
zhaozhehao 已提交
196
    'tree_conv',
C
ceci3 已提交
197
    'npair_loss',
R
ruri 已提交
198
    'pixel_shuffle',
199
    'fsp_matrix',
H
heqiaozhi 已提交
200
    'continuous_value_model',
Y
Yu Yang 已提交
201 202
]

J
jerrywgz 已提交
203 204
kIgnoreIndex = -100

Y
Yu Yang 已提交
205 206 207 208 209 210 211

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
212
       is_test=False,
213
       name=None):
Y
Yu Yang 已提交
214
    """
215
    **Fully Connected Layer**
Y
Yu Yang 已提交
216

217
    This function creates a fully connected layer in the network. It can take
218
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
219
    Args in detail). It creates a variable called weights for each input tensor,
220 221 222 223
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
224
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
225 226
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
227

228
    When the input is single tensor:
C
caoying03 已提交
229

230 231 232 233 234
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
235 236 237

    .. math::

238
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
239 240 241

    In the above equation:

242 243 244
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
245
    * :math:`b`: The bias parameter created by this layer (if needed).
246
    * :math:`Act`: The activation function.
C
caoying03 已提交
247
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
267
    Args:
R
ranqiu 已提交
268 269 270 271 272 273 274 275 276 277
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
278
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
279 280 281 282
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
283 284
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
285
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
286
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
287
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
288

289
    Returns:
F
fengjiayi 已提交
290
        Variable: The transformation result.
291 292

    Raises:
C
caoying03 已提交
293
        ValueError: If rank of the input tensor is less than 2.
294 295 296 297

    Examples:
        .. code-block:: python

298
          # when input is single tensor
F
fengjiayi 已提交
299
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
300
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
301 302 303 304 305

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
306
    """
C
caoying03 已提交
307
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
308 309 310 311

    dtype = helper.input_dtype()

    mul_results = []
312 313
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
314 315 316
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
317

Y
Yu Yang 已提交
318
        w = helper.create_parameter(
319
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
320
        tmp = helper.create_variable_for_type_inference(dtype)
321
        helper.append_op(
322 323 324
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
325
            outputs={"Out": tmp},
M
mozga-intel 已提交
326 327
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
328 329 330 331
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
332
    else:
X
Xin Pan 已提交
333
        pre_bias = helper.create_variable_for_type_inference(dtype)
334
        helper.append_op(
335 336 337
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
338
            attrs={"use_mkldnn": False})
339 340 341 342
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
343 344


345 346 347
def embedding(input,
              size,
              is_sparse=False,
348
              is_distributed=False,
349 350 351
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
352
    """
353 354
    **Embedding Layer**

355
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
356 357
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
358 359 360

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
361 362

    Args:
363 364 365 366 367
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
368
        is_distributed(bool): Whether to run lookup table from remote parameter server.
369 370
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
371
            with zeros whenever lookup encounters it in :attr:`input`. If
372
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
373 374
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
375
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
376

377 378 379
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
380

381 382
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
383

C
chengduoZH 已提交
384
          dict_size = len(dataset.ids)
385
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
386
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
387 388 389
    """

    helper = LayerHelper('embedding', **locals())
390
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
391 392
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
393 394
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
395
    tmp = helper.create_variable_for_type_inference(dtype)
396 397
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
398 399 400 401 402
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
403 404 405
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
406
            'remote_prefetch': remote_prefetch,
407 408
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
409 410 411
    return tmp


W
wopeizl 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
428

W
wopeizl 已提交
429 430 431 432 433 434 435 436 437 438 439
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
440

W
wopeizl 已提交
441 442 443 444
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
445

W
wopeizl 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
489
    assert in_dygraph_mode(
490
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
534 535


P
phlrain 已提交
536 537 538 539 540 541
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
542
         dropout_prob=0.0,
P
phlrain 已提交
543 544 545 546 547
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
548
    """
P
phlrain 已提交
549
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
550 551

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
552
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
553 554
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
555
    .. math::
M
minqiyang 已提交
556 557 558 559 560 561 562

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
563
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
564 565 566 567

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
568 569

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
570 571 572 573 574 575
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
576 577 578
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
579
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
580

M
minqiyang 已提交
581
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
582 583 584 585 586
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
587
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
588 589 590 591 592
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
593
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
594 595
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
596 597
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
598 599 600 601 602 603
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
604
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
605

L
liuhongyu 已提交
606 607

    Returns:
M
minqiyang 已提交
608 609
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
610
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
611

H
haowang101779990 已提交
612 613 614 615
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
616
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
617 618
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
619
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
635
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
636 637 638 639 640 641
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
642 643 644
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
704 705 706 707 708 709 710 711 712 713
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
714
                  proj_activation='tanh',
715
                  dtype='float32',
X
xuezhong 已提交
716 717 718 719 720
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
721 722 723
    """
    **Dynamic LSTMP Layer**

724 725 726 727 728 729
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
730 731 732 733 734

    The formula is as follows:

    .. math::

735
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
736

737
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
738

739
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
740

741
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
742

743
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
744

745
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
746

747
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
748

Y
Yibing Liu 已提交
749 750 751 752 753 754
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
755
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
756
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
757
          bias vector).
Y
Yibing Liu 已提交
758 759 760
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
761
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
762
    * :math:`h`: The hidden state.
763
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
764 765
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
766
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
767
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
768
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
769 770
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
771 772 773 774

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
775

Y
Yibing Liu 已提交
776 777 778 779 780 781 782 783 784 785 786 787
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
788
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
789 790
                               hidden-hidden weight and projection weight.

791 792
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
793 794
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
795 796
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
797
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
798 799 800 801 802

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
803
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
804 805 806 807 808 809
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
810
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
811 812 813
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
814
                                - The shape is (1 x 7D).
C
chengduo 已提交
815 816 817 818 819

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
820 821 822 823 824 825 826 827 828
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
829
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
830 831
                              default "tanh".
        proj_activation(str): The activation for projection output.
832
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
833
                              default "tanh".
Y
Yibing Liu 已提交
834
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
835 836
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
837 838 839 840 841 842 843 844 845 846 847
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
848 849

    Returns:
850 851 852 853
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
854 855

    Examples:
856

Y
Yibing Liu 已提交
857 858
        .. code-block:: python

859 860 861 862
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
863
            hidden_dim, proj_dim = 512, 256
864
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
865
                                     act=None, bias_attr=None)
866 867 868
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
869 870 871 872
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
873
    """
874

L
lujun 已提交
875
    assert in_dygraph_mode(
876 877
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
878
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
879
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
880
    size = size // 4
Y
Yibing Liu 已提交
881 882 883 884 885 886 887 888 889 890
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
891 892 893 894 895 896
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
912

X
xuezhong 已提交
913 914 915 916 917
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
918 919
    helper.append_op(
        type='lstmp',
920
        inputs=inputs,
Y
Yibing Liu 已提交
921 922 923 924 925 926 927 928 929
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
930 931
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
932 933 934 935 936 937 938 939 940
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
941 942 943 944 945 946 947
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
948 949
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
950
    """
951
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
952

953 954 955
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
956

G
guosheng 已提交
957 958 959 960 961 962 963 964 965
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
966

G
guosheng 已提交
967
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
968

Q
Qiao Longfei 已提交
969 970 971

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
972 973 974 975 976 977 978 979 980 981 982 983
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
984
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
985 986
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
987 988 989 990
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
991
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
992 993

    Args:
994 995
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
996
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
997
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
998 999
            is the hidden size.
        size(int): The dimension of the gru cell.
1000
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1001 1002
            hidden-hidden weight matrix. Note:

1003
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1004
              :math:`D` is the hidden size.
1005
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1006
              The first part are weights of the update gate and reset gate with
1007
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1008
              candidate hidden state with shape :math:`(D \\times D)`.
1009 1010 1011 1012 1013

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1014
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1015
            the bias in the update gate, reset gate and candidate calculations.
1016 1017 1018
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1019 1020
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1021
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1022 1023 1024
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1025
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1026
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1027 1028 1029 1030
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1031 1032

    Returns:
G
guosheng 已提交
1033
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1034
            and sequence length is the same with the input.
1035

G
guosheng 已提交
1036
    Examples:
1037

G
guosheng 已提交
1038 1039
        .. code-block:: python

1040 1041 1042 1043
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1044
            hidden_dim = 512
1045
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1046
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1047 1048
    """

L
lujun 已提交
1049
    assert in_dygraph_mode(
1050 1051
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1052 1053 1054 1055 1056 1057 1058
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1059
    batch_size = input.shape[0]
G
guosheng 已提交
1060
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1061
    if h_0:
G
guosheng 已提交
1062
        assert h_0.shape == (
Y
Yancey 已提交
1063 1064 1065
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1066

X
Xin Pan 已提交
1067 1068 1069 1070
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1084 1085
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1086 1087 1088 1089
        })
    return hidden


Y
Yu Yang 已提交
1090 1091 1092
def gru_unit(input,
             hidden,
             size,
1093 1094
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1095
             activation='tanh',
Q
Qiao Longfei 已提交
1096 1097
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1098
    """
1099 1100 1101
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1102
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1103
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1104

1105 1106
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1107

1108
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1109

1110
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1127 1128

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1129 1130 1131
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1132 1133
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1134 1135
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1136 1137 1138
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1139 1140 1141

    Args:
        input (Variable): The fc transformed input value of current step.
1142
        hidden (Variable): The hidden value of gru unit from previous step.
1143
        size (integer): The input dimension value.
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1158
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1159
            the bias in the update gate, reset gate and candidate calculations.
1160 1161 1162
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1163 1164
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1165 1166 1167 1168
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1169

1170 1171 1172 1173 1174 1175
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1176

1177
             # assuming we have x_t_data and prev_hidden of size=10
1178
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1179 1180
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1193
    size = size // 3
Y
Yu Yang 已提交
1194 1195

    # create weight
1196 1197
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1198

X
Xin Pan 已提交
1199 1200 1201
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1202
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1203
    # create bias
1204
    if helper.bias_attr:
Y
Yu Yang 已提交
1205 1206 1207
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1208
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1209 1210 1211

    helper.append_op(
        type='gru_unit',
1212
        inputs=inputs,
Y
Yu Yang 已提交
1213 1214 1215 1216 1217 1218
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1219 1220
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1221 1222 1223 1224 1225
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1226
@templatedoc()
1227
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1228 1229 1230 1231 1232 1233 1234
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1235
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1236 1237 1238 1239
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1240 1241 1242
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1243 1244

    """
Y
Yu Yang 已提交
1245 1246 1247 1248 1249 1250
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1251 1252 1253 1254 1255 1256 1257 1258
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1274 1275 1276 1277
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1278

W
wopeizl 已提交
1279 1280
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1281

W
wopeizl 已提交
1282
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1283

W
wopeizl 已提交
1284
        label(${label_type}): ${label_comment}
1285

W
wopeizl 已提交
1286 1287
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1288

W
wopeizl 已提交
1289 1290
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1291

Y
Yibing Liu 已提交
1292 1293 1294 1295 1296 1297 1298
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1299 1300 1301 1302 1303 1304 1305 1306
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1307
                "Transition": transition,
W
wopeizl 已提交
1308 1309
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1310

W
wopeizl 已提交
1311
    return viterbi_path
Y
Yu Yang 已提交
1312 1313


Y
yi.wu 已提交
1314
@templatedoc()
F
fengjiayi 已提交
1315
def cos_sim(X, Y):
Y
Yu Yang 已提交
1316
    """
Y
yi.wu 已提交
1317 1318 1319
    ${comment}

    Args:
1320 1321
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1322

Y
yi.wu 已提交
1323
    Returns:
1324
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1325 1326 1327 1328 1329 1330 1331

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1332
    """
F
fengjiayi 已提交
1333
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1334 1335 1336
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1347 1348 1349 1350 1351
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1352
            dropout_implementation="downgrade_in_infer"):
1353 1354 1355 1356 1357
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1358
    training. The dropout operator randomly sets (according to the given dropout
1359 1360 1361
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1362 1363
    dropout op can be removed from the program to make the program more efficient.

1364
    Args:
1365 1366
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1367 1368 1369 1370 1371 1372 1373
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1374 1375
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1376
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1377 1378

                                           - train: out = input * mask
C
ceci3 已提交
1379
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1380 1381 1382

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1383
                                        2. upscale_in_train, upscale the outcome at training time
1384

H
haowang101779990 已提交
1385 1386
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1387

H
haowang101779990 已提交
1388 1389
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1390

M
minqiyang 已提交
1391

1392
    Returns:
1393
        Variable: A tensor variable is the shape with `x`.
1394 1395

    Examples:
1396

1397 1398
        .. code-block:: python

1399 1400
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1401 1402
    """

F
fengjiayi 已提交
1403
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1404 1405
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1406
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1407 1408 1409 1410

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1411 1412 1413 1414 1415
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1416 1417 1418 1419
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1420 1421
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1422
        })
1423 1424 1425
    return out


J
jerrywgz 已提交
1426
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1427
    """
Y
Yibing Liu 已提交
1428 1429
    **Cross Entropy Layer**

1430 1431 1432
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1433 1434

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1435
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1436

Y
Yibing Liu 已提交
1437
        .. math::
Y
yangyaming 已提交
1438

Y
Yibing Liu 已提交
1439 1440 1441
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1442 1443
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1444 1445 1446 1447 1448

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1449
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1450 1451 1452
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1453 1454
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1455
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1456

Y
Yibing Liu 已提交
1457
    Args:
Y
yangyaming 已提交
1458
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1459 1460 1461 1462
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1463
        label (Variable|list): the ground truth which is a 2-D tensor. When
1464 1465 1466 1467
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1468
        soft_label (bool): a flag indicating whether to
1469
                                           interpretate the given labels as soft
1470
                                           labels. Default: `False`.
M
minqiyang 已提交
1471 1472
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1473
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1474 1475 1476 1477 1478

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1479 1480 1481
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1482

H
haowang101779990 已提交
1483 1484
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1485

H
haowang101779990 已提交
1486 1487
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1488 1489 1490 1491

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1492 1493 1494 1495
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1496
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1497
    """
S
sneaxiy 已提交
1498 1499
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1500
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1501
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1502 1503 1504 1505 1506
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1507 1508
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1509 1510 1511
    return out


S
sneaxiy 已提交
1512 1513 1514 1515
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1516
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1517 1518 1519 1520 1521
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1522
                 'MatchX': [match_x],
S
sneaxiy 已提交
1523 1524 1525 1526 1527
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1528
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1529 1530 1531
    """
    Bayesian Personalized Ranking Loss Operator.

1532
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1533 1534 1535 1536 1537 1538
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1539 1540 1541 1542 1543 1544
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1545 1546
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1547 1548 1549
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1550 1551 1552
    Examples:
        .. code-block:: python

1553
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1554
    """
1555 1556 1557 1558 1559 1560

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1561
                'Label': [label]},
1562 1563 1564 1565
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1566
def square_error_cost(input, label):
Y
Yu Yang 已提交
1567
    """
1568 1569
    **Square error cost layer**

1570 1571
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1586 1587
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1588 1589

    Returns:
G
guosheng 已提交
1590
        Variable: The tensor variable storing the element-wise squared error \
1591
                  difference of input and label.
1592 1593 1594 1595

    Examples:
        .. code-block:: python

R
ruri 已提交
1596 1597 1598
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1599

Y
Yu Yang 已提交
1600
    """
F
fengjiayi 已提交
1601
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1602
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1603 1604 1605 1606 1607 1608
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1609
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1610
    helper.append_op(
F
fengjiayi 已提交
1611 1612
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1613 1614 1615
    return square_out


Y
yi.wu 已提交
1616
@templatedoc()
Y
Yu Yang 已提交
1617 1618 1619 1620
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1621
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1622
    """
Y
yi.wu 已提交
1623
    **Chunk Evaluator**
Y
yi.wu 已提交
1624

Y
yangyaming 已提交
1625
    This function computes and outputs the precision, recall and
1626
    F1-score of chunk detection.
Y
yi.wu 已提交
1627

M
minqiyang 已提交
1628
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1629
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1630 1631 1632 1633 1634 1635

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1636

Y
yi.wu 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1662

Y
yi.wu 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1687
    Args:
1688 1689 1690 1691 1692
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1693

Y
yi.wu 已提交
1694
    Returns:
Y
update  
yi.wu 已提交
1695 1696 1697
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1698

Y
yi.wu 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1711
    """
F
fengjiayi 已提交
1712
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1713 1714

    # prepare output
X
Xin Pan 已提交
1715 1716 1717 1718 1719 1720 1721
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1722 1723 1724 1725 1726 1727 1728 1729

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1730 1731 1732 1733
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1734 1735 1736
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1737 1738
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1739
        })
1740 1741
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1742 1743


1744
@templatedoc()
Y
Yu Yang 已提交
1745 1746 1747 1748 1749 1750 1751
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1752 1753
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1754 1755 1756 1757
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1758 1759 1760 1761 1762 1763 1764

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1778

1779 1780
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1781 1782
    """

L
lujun 已提交
1783
    assert not in_dygraph_mode(), (
1784
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1785 1786 1787 1788 1789
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1790
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1801
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1802 1803 1804 1805 1806 1807
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1808
def sequence_softmax(input, use_cudnn=False, name=None):
1809 1810 1811
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1812
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1829 1830 1831
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1844
    assert not in_dygraph_mode(), (
1845
        "sequence layer is not supported in dygraph mode yet.")
1846 1847
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1848
    softmax_out = helper.create_variable_for_type_inference(dtype)
1849 1850 1851 1852 1853 1854 1855 1856
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1857
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1858
    """
1859
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1860
    has the same shape as the input.
Q
qiaolongfei 已提交
1861

D
dengkaipeng 已提交
1862
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1863
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1864
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1865 1866 1867
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1868
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1869
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1870 1871 1872 1873 1874 1875 1876

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1877
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1878 1879 1880 1881 1882 1883 1884 1885

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1886 1887
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1888 1889
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1890 1891 1892
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1902
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1903
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1904 1905
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1906 1907

    """
1908 1909
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1910
    softmax_out = helper.create_variable_for_type_inference(dtype)
1911 1912 1913 1914
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1915 1916
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1917 1918 1919
    return softmax_out


Y
Yu Yang 已提交
1920 1921 1922
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1923 1924
           stride=1,
           padding=0,
1925
           dilation=1,
Y
Yu Yang 已提交
1926 1927 1928
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1929
           use_cudnn=True,
1930 1931
           act=None,
           name=None):
Y
Yu Yang 已提交
1932
    """
C
chengduoZH 已提交
1933
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1934 1935
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1936
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1937 1938 1939 1940 1941 1942 1943
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1944 1945 1946
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1947

1948
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1949

C
chengduoZH 已提交
1950 1951
    .. math::

C
refine  
chengduoZH 已提交
1952
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1953

T
tensor-tang 已提交
1954
    Where:
C
chengduoZH 已提交
1955

1956 1957 1958 1959 1960
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1961
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1962 1963 1964

    Example:

1965 1966
        - Input:

W
weixing02 已提交
1967
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1968

W
weixing02 已提交
1969
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1970

1971
        - Output:
T
tensor-tang 已提交
1972

W
weixing02 已提交
1973
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1974

C
chengduoZH 已提交
1975
        Where
1976 1977

        .. math::
C
chengduoZH 已提交
1978

W
weixing02 已提交
1979 1980
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1981 1982

    Args:
1983
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1984
        num_filters(int): The number of filter. It is as same as the output
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2002 2003 2004 2005 2006
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2007
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2008 2009 2010 2011 2012
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2013 2014
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2015 2016
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2017
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2018
            will be named automatically. Default: None
C
chengduoZH 已提交
2019 2020

    Returns:
G
guosheng 已提交
2021
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2022 2023
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2024
    Raises:
2025 2026
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2027

C
chengduoZH 已提交
2028 2029 2030
    Examples:
        .. code-block:: python

2031 2032
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2033 2034 2035
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2036
    assert param_attr is not False, "param_attr should not be False here."
2037
    l_type = 'conv2d'
X
xzl 已提交
2038 2039
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2040
        l_type = 'depthwise_conv2d'
2041 2042 2043 2044

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2045 2046 2047 2048 2049
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2050
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2051

C
chengduoZH 已提交
2052 2053 2054
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2055
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2056

C
chengduoZH 已提交
2057 2058
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2059 2060

    input_shape = input.shape
M
minqiyang 已提交
2061
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2062 2063

    def _get_default_param_initializer():
C
chengduo 已提交
2064 2065
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2066 2067 2068 2069 2070 2071 2072 2073
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2074
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2075

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2090
    helper.append_op(
2091
        type=l_type,
Y
Yu Yang 已提交
2092 2093 2094 2095 2096
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2097 2098 2099
        attrs={
            'strides': stride,
            'paddings': padding,
2100
            'dilations': dilation,
C
chengduoZH 已提交
2101
            'groups': groups,
2102
            'use_cudnn': use_cudnn,
2103
            'use_mkldnn': False,
2104
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2105
        })
Y
Yu Yang 已提交
2106 2107 2108 2109 2110 2111

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2129 2130 2131 2132 2133 2134
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2144 2145
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2146 2147 2148
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2149
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2175
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2176 2177
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2178
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2179 2180
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2181
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2182 2183
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2184
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2185 2186 2187 2188 2189 2190
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2201 2202
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2203 2204
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2205
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2206
            will be named automatically. Default: None.
C
chengduoZH 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2219 2220
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2221 2222 2223
    """

    l_type = 'conv3d'
C
chengduo 已提交
2224
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2235
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2249 2250 2251
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2252 2253 2254 2255 2256 2257 2258 2259
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2260
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2275
            'use_mkldnn': False
C
chengduoZH 已提交
2276 2277
        })

2278
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2279 2280 2281 2282

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2283
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2284
    """
Y
yangyaming 已提交
2285 2286 2287
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2299
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2300 2301 2302 2303 2304
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2305
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2306 2307 2308 2309 2310 2311 2312

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2313 2314
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2315

L
Luo Tao 已提交
2316 2317
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2318
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2319
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2320
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2321 2322 2323 2324 2325 2326 2327

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2328

Y
yangyaming 已提交
2329
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2330 2331 2332 2333 2334
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2335 2336
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2337
    """
L
lujun 已提交
2338
    assert not in_dygraph_mode(), (
2339
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2340
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2341
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2342 2343
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2344 2345 2346 2347 2348 2349

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2350 2351
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2352

Y
yangyaming 已提交
2353 2354 2355 2356 2357
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2358 2359 2360
    return pool_out


C
add doc  
chengduoZH 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2379
    assert not in_dygraph_mode(), (
2380
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2381
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2382
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2383 2384 2385 2386 2387
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2388
def sequence_first_step(input):
L
Luo Tao 已提交
2389
    """
L
Luo Tao 已提交
2390
    This function gets the first step of sequence.
L
Luo Tao 已提交
2391 2392 2393 2394

    .. code-block:: text

       x is a 1-level LoDTensor:
2395
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2396 2397 2398 2399 2400
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2401
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2402
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2403

L
Luo Tao 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2413

Y
yangyaming 已提交
2414
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2415 2416 2417
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2418 2419 2420
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2421
def sequence_last_step(input):
L
Luo Tao 已提交
2422
    """
L
Luo Tao 已提交
2423
    This function gets the last step of sequence.
L
Luo Tao 已提交
2424 2425 2426 2427

    .. code-block:: text

       x is a 1-level LoDTensor:
2428
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2429 2430 2431 2432 2433
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2434
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2435
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2436

L
Luo Tao 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2446

Y
yangyaming 已提交
2447
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2448 2449 2450
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2451 2452 2453
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2454 2455 2456 2457
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2458
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2459 2460 2461 2462 2463
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2464

H
haowang101779990 已提交
2465
              - Case:
Y
Yibing Liu 已提交
2466

2467
            Given the input Variable **input**:
2468

2469 2470 2471
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2472

2473
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2474

2475
            the output Variable will be
2476

2477 2478 2479
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2480

M
minqiyang 已提交
2481
    Note:
H
haowang101779990 已提交
2482
          The first dimension size of **input**, **offset** and **length**
2483
          should be equal. The **offset** should start from 0.
2484

Y
Yibing Liu 已提交
2485
    Args:
2486
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2487
                         sequences.
Y
Yibing Liu 已提交
2488 2489 2490 2491 2492 2493
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2494
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2505
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2506 2507
                                                   length=length)
    """
L
lujun 已提交
2508
    assert not in_dygraph_mode(), (
2509
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2510 2511
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2512
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2527
@templatedoc()
Y
Yu Yang 已提交
2528
def pool2d(input,
C
chengduoZH 已提交
2529 2530
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2531 2532
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2533
           global_pooling=False,
C
chengduoZH 已提交
2534
           use_cudnn=True,
2535
           ceil_mode=False,
2536 2537
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2538
    """
F
fengjiayi 已提交
2539
    ${comment}
2540 2541

    Args:
2542 2543 2544
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2545
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2546
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2547 2548
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2549
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2550 2551 2552 2553 2554 2555
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2556 2557 2558
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2559
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2560
                        layer will be named automatically.
2561
        exclusive (bool): Whether to exclude padding points in average pooling
2562
                          mode, default is true
F
fengjiayi 已提交
2563

2564
    Returns:
F
fengjiayi 已提交
2565
        Variable: The pooling result.
F
fengjiayi 已提交
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2578
          pool2d = fluid.layers.pool2d(
2579 2580 2581 2582
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2583
                            global_pooling=False)
Y
Yu Yang 已提交
2584 2585 2586 2587 2588
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2589

C
chengduoZH 已提交
2590 2591 2592 2593 2594
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2595 2596 2597 2598
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2599 2600
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2601

C
Add doc  
chengduoZH 已提交
2602
    l_type = 'pool2d'
2603 2604

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2605
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2606
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2607 2608

    helper.append_op(
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2620 2621
            "use_mkldnn": False,
            "exclusive": exclusive,
2622 2623 2624 2625 2626
        })

    return pool_out


D
dengkaipeng 已提交
2627
@templatedoc()
2628 2629 2630 2631 2632 2633 2634 2635
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2636 2637
           name=None,
           exclusive=True):
2638
    """
2639
    ${comment}
2640 2641

    Args:
D
dengkaipeng 已提交
2642 2643 2644 2645 2646
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2647 2648 2649 2650 2651
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2652 2653 2654 2655 2656 2657 2658
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2659
        exclusive (bool): Whether to exclude padding points in average pooling
2660
                          mode, default is true
2661

2662
    Returns:
2663
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2677 2678 2679 2680 2681
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2682

C
chengduoZH 已提交
2683 2684 2685 2686 2687
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2688 2689 2690
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2691

C
chengduoZH 已提交
2692 2693
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2694

2695 2696
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2697
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2698
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2699 2700

    helper.append_op(
2701
        type=l_type,
Y
Yu Yang 已提交
2702 2703 2704 2705 2706 2707 2708
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2709
            "paddings": pool_padding,
2710
            "use_cudnn": use_cudnn,
2711
            "ceil_mode": ceil_mode,
2712 2713
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2714 2715 2716 2717 2718
        })

    return pool_out


2719 2720 2721 2722 2723 2724 2725
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2726 2727 2728 2729 2730 2731 2732
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2733

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2747 2748 2749 2750 2751 2752 2753 2754 2755

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2756 2757
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2772
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2773
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2774
          # of input data into m * n grids averagely and performs poolings in each
2775 2776
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2777
          #
2778 2779 2780 2781 2782 2783 2784 2785
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2786 2787
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2788
          pool_out = fluid.layers.adaptive_pool2d(
2789 2790
                            input=data,
                            pool_size=[3, 3],
2791
                            pool_type='avg')
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2802
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2828
    return (pool_out, mask) if require_index else pool_out
2829 2830 2831 2832 2833 2834 2835 2836 2837


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2838 2839 2840 2841 2842 2843 2844
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2845

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2863 2864 2865

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2866 2867 2868
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2869
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2870
            it must contain three integers, (Depth, Height, Width).
2871
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2872 2873
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2888 2889
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2890
          # of input data into l * m * n grids averagely and performs poolings in each
2891 2892
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2893
          #
2894 2895 2896 2897 2898 2899 2900 2901 2902
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2903
          #                 output[:, :, i, j, k] =
2904 2905
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2906 2907
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2908
          pool_out, mask = fluid.layers.adaptive_pool3d(
2909
                            input=data,
D
dengkaipeng 已提交
2910
                            pool_size=[3, 3, 3],
2911
                            pool_type='avg')
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2922
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2948
    return (pool_out, mask) if require_index else pool_out
2949 2950


Y
Yu Yang 已提交
2951 2952 2953 2954 2955 2956 2957
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2958
               data_layout='NCHW',
Y
Yang Yang 已提交
2959
               in_place=False,
2960 2961
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2962
               moving_variance_name=None,
2963
               do_model_average_for_mean_and_var=False,
2964 2965
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2966
    """
Q
qiaolongfei 已提交
2967 2968 2969 2970
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2971

Q
qiaolongfei 已提交
2972
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2973

Q
qiaolongfei 已提交
2974 2975
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2976 2977 2978
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2991

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3005
    Args:
Q
qingqing01 已提交
3006
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3007
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3017 3018 3019 3020 3021 3022 3023 3024
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3025
        data_layout(string, default NCHW): NCHW|NHWC
3026
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3027 3028 3029 3030
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3031
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3032
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3033 3034 3035 3036 3037
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3038 3039

    Returns:
Q
qiaolongfei 已提交
3040
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3041 3042 3043 3044 3045

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3046
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3047 3048
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3049
    """
C
chengduo 已提交
3050
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3051 3052 3053
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3054 3055 3056 3057
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3076
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3077

3078 3079
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3080 3081 3082
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3083
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3084
        shape=param_shape,
W
Wu Yi 已提交
3085
        dtype=dtype)
3086 3087 3088 3089 3090 3091
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3092
            trainable=False,
W
wanghaoshuang 已提交
3093
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3094
        shape=param_shape,
W
Wu Yi 已提交
3095
        dtype=dtype)
3096
    variance.stop_gradient = True
Y
Yu Yang 已提交
3097 3098 3099 3100 3101 3102

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3103 3104 3105 3106
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3107

X
Xin Pan 已提交
3108 3109
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3127 3128 3129 3130
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3131
            "data_layout": data_layout,
X
Xin Pan 已提交
3132
            "use_mkldnn": False,
3133 3134
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3135
        })
Y
Yu Yang 已提交
3136 3137 3138 3139

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3259
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3260 3261 3262 3263

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3264
@templatedoc()
G
guosheng 已提交
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3275
    ${comment}
G
guosheng 已提交
3276 3277 3278

    The formula is as follows:

Y
yuyang18 已提交
3279
    ..  math::
G
guosheng 已提交
3280 3281 3282 3283 3284 3285 3286

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3287 3288 3289 3290 3291 3292 3293 3294
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3295

G
guosheng 已提交
3296 3297
    Args:
        input(Variable): The input tensor variable.
3298
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3299
            normalization. Default True.
3300
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3301 3302
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3303
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3304
            Default 1.
3305
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3306
            division by zero. Default 1e-05.
G
guosheng 已提交
3307
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3308 3309
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3310 3311
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3312
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3313 3314
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3315
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3316
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3317
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3318 3319 3320
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3321 3322

    Returns:
Y
yuyang18 已提交
3323
        ${y_comment}
G
guosheng 已提交
3324 3325 3326

    Examples:

Y
yuyang18 已提交
3327 3328 3329
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3330
    """
L
lujun 已提交
3331
    assert in_dygraph_mode(
L
lujun 已提交
3332
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3347
    if shift:
G
guosheng 已提交
3348 3349 3350 3351 3352 3353
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3354 3355 3356 3357 3358
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3386
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3434 3435
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3453
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3454 3455 3456
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3457
    This layer calculates the spectral normalization value of weight parameters of
3458
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3459
    Parameters. Calculations are showed as follows.
3460

D
dengkaipeng 已提交
3461 3462 3463
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3464
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3477
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3478 3479 3480 3481

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3482

D
dengkaipeng 已提交
3483
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3484 3485
                

D
dengkaipeng 已提交
3486 3487 3488 3489
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3490 3491 3492
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3493 3494 3495
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3496
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3497 3498 3499 3500 3501 3502 3503 3504

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3505
    dtype = weight.dtype
D
dengkaipeng 已提交
3506 3507 3508

    # create intput and parameters
    inputs = {'Weight': weight}
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3527 3528

    # create output
3529
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3530 3531

    helper.append_op(
3532
        type="spectral_norm",
D
Dun 已提交
3533
        inputs=inputs,
3534 3535 3536 3537 3538 3539
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3540

3541
    return out
D
Dun 已提交
3542 3543


Y
Yu Yang 已提交
3544 3545 3546 3547
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3548 3549 3550
                     padding=0,
                     stride=1,
                     dilation=1,
3551
                     groups=None,
C
caoying03 已提交
3552
                     param_attr=None,
3553
                     bias_attr=None,
C
chengduoZH 已提交
3554
                     use_cudnn=True,
3555
                     act=None,
C
caoying03 已提交
3556
                     name=None):
Y
Yu Yang 已提交
3557
    """
3558 3559 3560 3561 3562 3563 3564 3565
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3566 3567
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3568 3569 3570
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3571 3572 3573 3574 3575

    For each input :math:`X`, the equation is:

    .. math::

3576
        Out = \sigma (W \\ast X + b)
3577

3578
    Where:
3579 3580 3581

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3582 3583 3584 3585
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3586

3587 3588 3589 3590
    Example:

        - Input:

3591
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3592

3593
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3594 3595 3596

        - Output:

3597
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3598 3599

        Where
Y
Yu Yang 已提交
3600

3601 3602
        .. math::

3603 3604
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3605 3606
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3607 3608

    Args:
3609 3610 3611 3612
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3613 3614 3615 3616
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3645
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3646 3647 3648
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3649
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3650
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3651 3652

    Returns:
3653
        Variable: The tensor variable storing the convolution transpose result.
3654 3655

    Raises:
3656 3657
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3658 3659 3660 3661

    Examples:
       .. code-block:: python

3662 3663
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3664
    """
C
chengduo 已提交
3665
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3666 3667 3668 3669 3670 3671 3672 3673
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3674 3675 3676
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3677 3678 3679
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3680

C
chengduoZH 已提交
3681 3682
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3683

Y
Yu Yang 已提交
3684 3685 3686 3687 3688
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3689

Y
Yu Yang 已提交
3690 3691
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3692

C
chengduoZH 已提交
3693
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3694
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3695
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3696
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3697
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3698 3699 3700
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3701

3702 3703 3704 3705 3706 3707 3708
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3709
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3710
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3711

Y
Yu Yang 已提交
3712 3713 3714
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3715
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3716
    helper.append_op(
3717
        type=op_type,
Y
Yu Yang 已提交
3718 3719
        inputs={'Input': [input],
                'Filter': [img_filter]},
3720
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3721
        attrs={
3722
            'output_size': output_size,
3723 3724 3725 3726 3727
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3728 3729
        })

3730 3731 3732
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3733 3734


3735
def conv3d_transpose(input,
Y
Yu Yang 已提交
3736 3737 3738
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3739 3740 3741
                     padding=0,
                     stride=1,
                     dilation=1,
3742
                     groups=None,
C
caoying03 已提交
3743
                     param_attr=None,
3744
                     bias_attr=None,
C
chengduoZH 已提交
3745
                     use_cudnn=True,
3746
                     act=None,
C
caoying03 已提交
3747
                     name=None):
Y
Yu Yang 已提交
3748
    """
3749
    **Convlution3D transpose layer**
3750

3751
    The convolution3D transpose layer calculates the output based on the input,
3752
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3753 3754 3755 3756 3757 3758
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3759 3760 3761
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3762 3763 3764 3765 3766

    For each input :math:`X`, the equation is:

    .. math::

3767
        Out = \sigma (W \\ast X + b)
3768 3769 3770

    In the above equation:

3771 3772
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3773 3774 3775 3776
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3777

3778 3779 3780 3781
    Example:

        - Input:

3782
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3783

3784
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3785 3786 3787

        - Output:

3788
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3789 3790

        Where
Y
Yu Yang 已提交
3791

3792 3793
        .. math::

3794 3795 3796
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3797 3798

    Args:
3799
        input(Variable): The input image with [N, C, D, H, W] format.
3800 3801 3802
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3803
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3804 3805
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3806
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3807 3808 3809
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3810 3811
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3812
        stride(int|tuple): The stride size. If stride is a tuple, it must
3813 3814
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3815
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3816 3817 3818
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3819 3820 3821 3822 3823
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3824 3825 3826 3827 3828 3829 3830 3831 3832
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3833 3834
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3835 3836
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3837 3838
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3839 3840

    Returns:
3841
        Variable: The tensor variable storing the convolution transpose result.
3842 3843

    Raises:
3844 3845
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3846 3847 3848 3849

    Examples:
       .. code-block:: python

3850 3851
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3852
    """
C
chengduo 已提交
3853
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3854 3855
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3856
    if not isinstance(input, Variable):
3857
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3858 3859
    input_channel = input.shape[1]

3860 3861 3862
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3863

C
chengduoZH 已提交
3864 3865 3866
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3867 3868 3869 3870 3871 3872
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3873 3874 3875
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3876

3877
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3878
                         padding[0] - 1) // dilation[0] + 1
3879
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3880
                         padding[1] - 1) // dilation[1] + 1
3881
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3882
                         padding[2] - 1) // dilation[2] + 1
3883
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3884
    else:
3885 3886
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3887

3888
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3889
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3890 3891 3892
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3893
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3894
    helper.append_op(
3895
        type=l_type,
Y
Yu Yang 已提交
3896 3897
        inputs={'Input': [input],
                'Filter': [img_filter]},
3898
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3899 3900 3901 3902
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3903
            'groups': groups,
C
chengduoZH 已提交
3904 3905
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3906

3907 3908
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3909
    return out
Y
yangyaming 已提交
3910 3911


Y
yangyaming 已提交
3912
def sequence_expand(x, y, ref_level=-1, name=None):
3913
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3914 3915 3916 3917
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3918 3919 3920 3921 3922

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3923
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3924
                x.data = [[a], [b], [c], [d]]
3925 3926 3927
                x.dims = [4, 1]

            y is a LoDTensor:
3928 3929
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3930

Y
yangyaming 已提交
3931
            ref_level: 0
3932

Y
yangyaming 已提交
3933
            then output is a 1-level LoDTensor:
3934
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3935
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3936 3937 3938 3939
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3940
                x.data = [[a], [b], [c]]
3941 3942 3943
                x.dims = [3, 1]

            y is a LoDTensor:
3944
                y.lod = [[2, 0, 3]]
3945

Y
yangyaming 已提交
3946
            ref_level: -1
3947

Y
yangyaming 已提交
3948 3949 3950
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3951 3952 3953
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3954 3955
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3956
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3957
                        will be named automatically.
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3968
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3969
    """
L
lujun 已提交
3970
    assert not in_dygraph_mode(), (
3971
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
3972
    helper = LayerHelper('sequence_expand', input=x, **locals())
3973
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3974
    tmp = helper.create_variable_for_type_inference(dtype)
3975
    helper.append_op(
Y
yangyaming 已提交
3976 3977 3978 3979 3980
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3981
    return tmp
3982 3983


C
chengduo 已提交
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4038
    assert not in_dygraph_mode(), (
4039
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4040 4041
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4042
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4043 4044 4045 4046 4047 4048 4049 4050
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4051
@templatedoc()
4052
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4053 4054 4055 4056 4057
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4058 4059 4060
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4061
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4062 4063 4064 4065
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4066 4067 4068
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4069

F
fengjiayi 已提交
4070
    Returns:
M
minqiyang 已提交
4071
        Variable: The padded sequence batch and the original lengths before
4072
                  padding. All sequences has the same length.
M
minqiyang 已提交
4073

F
fengjiayi 已提交
4074 4075 4076 4077 4078 4079 4080
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4081
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4082
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4083 4084 4085
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4086
    assert not in_dygraph_mode(), (
4087
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4088 4089
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4090 4091
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4092 4093 4094 4095

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4096 4097 4098 4099 4100 4101
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4102 4103
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4104
        attrs={'padded_length': maxlen})
4105
    return out, length
F
fengjiayi 已提交
4106 4107


4108
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4109
    """
4110
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4111

4112 4113
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4114 4115 4116 4117 4118 4119 4120 4121 4122
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4123 4124 4125
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4126
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4127 4128 4129 4130 4131 4132

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4133
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4134 4135 4136 4137 4138 4139

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4140 4141
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4154
    assert not in_dygraph_mode(), (
4155
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4156 4157
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4158
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4170 4171 4172 4173 4174 4175 4176
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4177
                is_accumulated=True,
4178 4179
                name=None,
                return_parent_idx=False):
4180
    """
4181 4182
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4183 4184 4185

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4186 4187

    This layer does the search in beams for one time step. Specifically, it
4188 4189 4190
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4202 4203 4204 4205

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4206

4207
    Args:
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4231 4232
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4233 4234
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4235 4236 4237 4238
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4239

4240
    Returns:
4241 4242 4243 4244
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4245 4246 4247 4248

    Examples:
        .. code-block:: python

4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4266
    helper = LayerHelper('beam_search', **locals())
4267 4268 4269 4270 4271 4272
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4273

X
Xin Pan 已提交
4274 4275 4276
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4277 4278 4279 4280 4281
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4282 4283 4284

    helper.append_op(
        type='beam_search',
4285
        inputs=inputs,
Q
Qiao Longfei 已提交
4286 4287 4288
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4289
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4290 4291 4292 4293 4294 4295
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4296
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4297
        })
4298 4299 4300 4301
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4302 4303


4304 4305 4306 4307 4308 4309 4310
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4311

4312 4313 4314 4315 4316 4317 4318 4319 4320
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4321

4322 4323 4324 4325 4326 4327
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4328

4329 4330
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4331

4332 4333 4334 4335 4336 4337
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4338 4339
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4355 4356 4357 4358
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4359
              param_attr=None,
C
caoying03 已提交
4360 4361
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4362 4363 4364 4365
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4366
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4367

4368
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4369

4370
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4371

4372
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4373 4374 4375

            h_t & = o_t tanh(c_t)

4376 4377 4378 4379 4380 4381
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4382 4383 4384

        .. math::

4385
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4386 4387 4388 4389 4390 4391 4392 4393

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4394
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4395 4396

    Args:
Y
yangyaming 已提交
4397 4398 4399 4400 4401 4402
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4403
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4416 4417
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4418 4419

    Returns:
Y
yangyaming 已提交
4420
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4421 4422

    Raises:
4423 4424 4425 4426
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4427 4428 4429 4430 4431 4432

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4433
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4434
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4435
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4452
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4453 4454 4455 4456
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4457 4458
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4459 4460 4461
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4462
    size = cell_t_prev.shape[1]
4463
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4464 4465
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4466
                param_attr=param_attr,
4467
                bias_attr=bias_attr)
Y
yangyaming 已提交
4468
    dtype = x_t.dtype
X
Xin Pan 已提交
4469 4470
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4480
    return h, c
G
guosheng 已提交
4481 4482


C
caoying03 已提交
4483
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4484
    """
Y
yangyaming 已提交
4485
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4486 4487 4488

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4489
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4490 4491
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4492 4493
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4494
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4495
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4496
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4497 4498
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4499 4500 4501

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4502

G
guosheng 已提交
4503 4504 4505 4506 4507 4508
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4509
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4510 4511 4512 4513
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4514 4515 4516 4517

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4518
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4519 4520 4521
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4522 4523
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4524
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4525 4526
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4527 4528 4529 4530 4531
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4532
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4533 4534 4535 4536
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4537 4538


C
caoying03 已提交
4539
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4540
    """
Y
Yibing Liu 已提交
4541
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4542 4543 4544

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4545 4546 4547
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4548
            must be in the range :math:`[-rank(input), rank(input))`. If
4549
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4550
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4551 4552
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4553
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4554
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4555
                       will be named automatically.
G
guosheng 已提交
4556 4557

    Returns:
Y
Yibing Liu 已提交
4558
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4559

G
guosheng 已提交
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4570 4571
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4572 4573 4574 4575 4576 4577 4578

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4579 4580
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4581
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4582 4583
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4584 4585 4586 4587 4588
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4589
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4590 4591 4592 4593
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4594 4595


C
caoying03 已提交
4596
def reduce_max(input, dim=None, keep_dim=False, name=None):
4597
    """
Y
yangyaming 已提交
4598
    Computes the maximum of tensor elements over the given dimension.
4599 4600 4601

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4602
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4603 4604 4605
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4606
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4607 4608
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4609
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4610 4611
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4612 4613 4614

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4615

4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4627 4628 4629 4630 4631 4632 4633

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4634 4635
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4636
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4637 4638
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4639 4640 4641 4642 4643
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4644
            'dim': dim if dim != None else [0],
4645 4646 4647 4648 4649 4650
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4651
def reduce_min(input, dim=None, keep_dim=False, name=None):
4652
    """
Y
yangyaming 已提交
4653
    Computes the minimum of tensor elements over the given dimension.
4654 4655 4656

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4657
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4658 4659 4660
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4661
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4662 4663
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4664
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4665 4666
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4667 4668 4669

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4670

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4682 4683 4684 4685 4686 4687 4688

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4689 4690
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4691
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4692 4693
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4694 4695 4696 4697 4698
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4699
            'dim': dim if dim != None else [0],
4700 4701 4702 4703
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4704 4705


4706 4707 4708 4709 4710 4711
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4712
        dim (list|int|None): The dimensions along which the product is performed. If
4713 4714
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4715 4716
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4717 4718 4719
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4720
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4721
            layer will be named automatically.
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4736
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4737
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4738 4739 4740 4741 4742 4743 4744

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4745 4746
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4747
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4748 4749
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4750 4751 4752 4753 4754
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4755
            'dim': dim if dim != None else [0],
4756 4757 4758 4759 4760 4761
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4762 4763
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4764
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4784
        
Z
zhoukunsheng 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4814
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4834

Z
zhoukunsheng 已提交
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4857 4858 4859 4860 4861
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4862
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4863
    """
C
caoying03 已提交
4864
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4865 4866 4867

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4868 4869 4870 4871 4872
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4873
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4874
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4875
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4876 4877
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4878 4879

    Returns:
D
dzhwinter 已提交
4880
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4881 4882 4883 4884 4885 4886 4887 4888 4889

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4890 4891
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
4903
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
4904 4905 4906
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4907
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4921 4922 4923 4924 4925 4926 4927 4928 4929


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4930
    .. math::
4931 4932

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4933 4934 4935 4936 4937

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4938
        x(Variable|list): The input tensor to l2_normalize layer.
4939
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4940 4941
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4942
        epsilon(float): The epsilon value is used to avoid division by zero, \
4943
            the defalut value is 1e-12.
4944
        name(str|None): A name for this layer(optional). If set None, the layer \
4945
            will be named automatically.
C
caoying03 已提交
4946 4947

    Returns:
4948
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4949 4950

    Examples:
4951

C
caoying03 已提交
4952 4953
        .. code-block:: python

4954 4955 4956 4957
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4958 4959
    """

F
fengjiayi 已提交
4960 4961
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4962 4963
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4964 4965
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4966
    helper.append_op(
4967 4968 4969 4970
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4971
        attrs={
4972 4973
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4974 4975
        })
    return out
4976 4977


S
sneaxiy 已提交
4978
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4979
    """
Y
ying 已提交
4980 4981 4982 4983
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4984

C
chengduoZH 已提交
4985
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4986
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4987

4988 4989 4990 4991 4992
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4993
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4994

C
chengduoZH 已提交
4995
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4996
      performs in the following way.
G
guosheng 已提交
4997

4998
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4999
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5000
        last two dimensions and a batched matrix multiply supporting broadcast
5001
        applies on the two tensors.
G
guosheng 已提交
5002

Y
ying 已提交
5003 5004
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5005
    removed after matrix multiplication.
G
guosheng 已提交
5006 5007 5008

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5009 5010 5011
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5012
        alpha (float): The scale of output. Default 1.0.
5013
        name(str|None): A name for this layer(optional). If set None, the layer
5014
            will be named automatically.
G
guosheng 已提交
5015 5016

    Returns:
5017
        Variable: The product Tensor variable.
G
guosheng 已提交
5018

G
guosheng 已提交
5019 5020 5021
    Examples:
        .. code-block:: python

5022
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5023 5024
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5025

5026 5027
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5028

5029 5030
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5031

5032 5033
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5034 5035 5036 5037

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5038 5039
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5040

Y
ying 已提交
5041
            # x: [M], y: [N]
5042
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5043
    """
Y
ying 已提交
5044 5045 5046 5047 5048 5049 5050

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5051
            y_shape = y_shape + [1]
Y
ying 已提交
5052 5053 5054 5055 5056 5057 5058

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5059 5060
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5061

C
chengduo 已提交
5062
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5063
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5064 5065 5066
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5067
                if dim_x != y_shape[i]:
C
chengduo 已提交
5068 5069
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5070 5071 5072

    __check_input(x, y)

5073
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5074
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5075
    helper.append_op(
5076 5077 5078 5079
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5080 5081 5082
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5083
            'alpha': float(alpha),
S
sneaxiy 已提交
5084
        })
5085
    return out
5086 5087


5088
def topk(input, k, name=None):
Q
qingqing01 已提交
5089 5090 5091 5092
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5093
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5094 5095 5096 5097 5098 5099
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5121 5122 5123
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5124
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5125
                 of input.
5126
        name(str|None): A name for this layer(optional). If set None, the layer
5127
                       will be named automatically.
F
fengjiayi 已提交
5128
                       Default: None
Q
qingqing01 已提交
5129 5130

    Returns:
5131 5132 5133
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5134
        within the last dimension of input.
Q
qingqing01 已提交
5135

F
fengjiayi 已提交
5136 5137
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5138 5139 5140 5141 5142 5143 5144

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5145 5146
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5147 5148 5149 5150 5151 5152
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5153 5154
    helper.append_op(
        type="top_k",
W
whs 已提交
5155
        inputs=inputs,
Q
qingqing01 已提交
5156 5157
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5158
        attrs=attrs)
Q
qingqing01 已提交
5159 5160 5161 5162 5163
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5164
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5165
    """
Y
ying 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5175

Y
ying 已提交
5176
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5177

5178
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5179 5180
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5181
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5182

5183
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5184 5185
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5186

5187 5188 5189
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5190
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5191
                          the length of reference string.
5192
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5193
                                     calculating edit distance.
5194
        name (str): The name of this layer. It is optional.
5195

W
wanghaoshuang 已提交
5196
    Returns:
W
wanghaoshuang 已提交
5197
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5198 5199 5200 5201

    Examples:
        .. code-block:: python

T
tink2123 已提交
5202 5203
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5204
            cost = fluid.layers.edit_distance(input=x,label=y)
5205
    """
5206
    helper = LayerHelper("edit_distance", **locals())
5207

5208
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5209
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5210 5211
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5212 5213 5214 5215 5216

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5217
            attrs={"tokens": ignored_tokens})
5218 5219 5220 5221 5222
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5223
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5224
            attrs={"tokens": ignored_tokens})
5225 5226
        label = erased_label

5227
    # edit distance op
X
Xin Pan 已提交
5228 5229
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5230 5231 5232 5233
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5234 5235
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5236 5237
        attrs={"normalized": normalized})

5238
    return edit_distance_out, sequence_num
5239 5240 5241 5242 5243


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5244

Y
ying 已提交
5245 5246 5247 5248
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5266
        input.lod = [[4, 4]]
M
minqiyang 已提交
5267

W
whs 已提交
5268
        Computation:
5269

W
whs 已提交
5270 5271 5272 5273 5274 5275
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5276 5277 5278 5279 5280

        output.data = [[2],
                       [1],
                       [3]]

5281
        output.lod = [[2, 1]]
5282

W
whs 已提交
5283

5284 5285
    Args:

Y
ying 已提交
5286 5287 5288 5289 5290 5291 5292 5293 5294
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5295
        name (str): The name of this layer. It is optional.
5296 5297

    Returns:
H
haowang101779990 已提交
5298 5299 5300
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5301
                  LoD [[]] and dims [1, 1].
5302 5303 5304 5305 5306

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5307

5308
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5309
    """
5310
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5311
    _, topk_indices = topk(input, k=1)
5312 5313

    # ctc align op
X
Xin Pan 已提交
5314
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5315 5316 5317
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5318
        outputs={"Output": [ctc_out]},
5319 5320
        attrs={"merge_repeated": True,
               "blank": blank})
5321
    return ctc_out
5322 5323


W
Wu Yi 已提交
5324
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5325
    """
5326 5327
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5328
    to compute Connectionist Temporal Classification (CTC) loss.
5329 5330
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5331 5332 5333
    input tensor.

    Args:
5334
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5335 5336 5337 5338
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5339
       label (Variable): The ground truth of variable-length sequence,
5340 5341 5342
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5343 5344
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5345 5346 5347
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5348
         follewed by a mean_op.
W
Wu Yi 已提交
5349
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5350 5351

    Returns:
5352 5353
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5354 5355

    Examples:
5356

W
wanghaoshuang 已提交
5357
        .. code-block:: python
5358

5359 5360 5361
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5362 5363

    """
F
fengjiayi 已提交
5364
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5365 5366
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5367 5368 5369 5370 5371 5372
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5373 5374 5375 5376 5377
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5378
    return loss_out
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5394 5395 5396
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5397 5398 5399 5400 5401
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5402

5403
            out.lod  = [[0, 1, 3]]
5404 5405 5406 5407

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5408 5409 5410 5411 5412 5413 5414
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5415 5416 5417

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5418 5419

    Returns:
5420

5421 5422 5423 5424 5425
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5426
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5427
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5428
    """
L
lujun 已提交
5429
    assert not in_dygraph_mode(), (
5430
        "sequence layer is not supported in dygraph mode yet.")
5431
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5432
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5433 5434 5435 5436 5437 5438
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5439 5440


5441 5442 5443 5444
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5445 5446 5447 5448 5449 5450
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5451
        num_neg_samples=None,
5452 5453 5454
        name=None,
        sampler="uniform",
        custom_dist=None,
5455 5456
        seed=0,
        is_sparse=False):
5457 5458 5459 5460 5461 5462 5463
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5464 5465
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5466
            sample is 1.0.
C
chengduo 已提交
5467 5468 5469 5470 5471 5472 5473 5474 5475
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5476
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5477 5478
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5479 5480 5481
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5482
        custom_dist (float[]): A float[] with size=num_total_classes.
5483 5484 5485 5486
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5487
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5488

5489
    Returns:
Y
Yibing Liu 已提交
5490 5491 5492 5493 5494 5495
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5496
	    import numpy as np
Y
Yibing Liu 已提交
5497

Y
Yibing Liu 已提交
5498 5499 5500 5501 5502 5503 5504 5505
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5506

Y
Yibing Liu 已提交
5507 5508 5509 5510
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5511

Y
Yibing Liu 已提交
5512 5513 5514
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5515

Y
Yibing Liu 已提交
5516 5517 5518 5519
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5520

Y
Yibing Liu 已提交
5521 5522 5523 5524 5525 5526 5527 5528
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5529
    """
Y
Yang Yu 已提交
5530 5531 5532
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5533 5534

    dim = input.shape[1]
Y
Yang Yu 已提交
5535 5536 5537 5538 5539 5540
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5541
    inputs = {}
C
chengduo 已提交
5542 5543 5544 5545 5546 5547 5548
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5549 5550 5551
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5552

5553 5554 5555 5556
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5557 5558 5559 5560 5561 5562 5563

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5564 5565
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5566
        custom_dist_len = num_total_classes
5567 5568 5569 5570 5571 5572
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5573
            if normal_prob - 1.0 > 0:
5574
                bigs.append((i, normal_prob))
5575
            elif 1.0 - normal_prob > 0:
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5591
            if big_left - 1.0 > 0:
5592
                bigs.append((big_idx, big_left))
5593
            elif 1.0 - big_left > 0:
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5623 5624 5625 5626
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5627 5628 5629 5630 5631
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5632 5633 5634 5635
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5636

Y
Yang Yu 已提交
5637 5638
    attrs = {
        'num_total_classes': int(num_total_classes),
5639 5640
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5641
        'sampler': sampler,
5642 5643
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5644
    }
Y
Yang Yu 已提交
5645 5646 5647

    helper.append_op(
        type='nce',
C
chengduo 已提交
5648
        inputs=inputs,
Y
Yang Yu 已提交
5649 5650 5651 5652 5653 5654
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5655
    return cost / (num_neg_samples + 1)
5656 5657


C
chengduo 已提交
5658 5659
def hsigmoid(input,
             label,
5660
             num_classes,
C
chengduo 已提交
5661 5662
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5663
             name=None,
5664 5665 5666
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5667
             is_sparse=False):
W
weixing02 已提交
5668 5669
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5670
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5671
    complete binary tree, or you can use is_custom to pass your own tree to
5672
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5673 5674 5675 5676 5677 5678
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5679
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5680
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5681

5682 5683
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5684 5685 5686 5687
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5688
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5689
       related to the same batch of inputs.
5690

W
weixing02 已提交
5691
    Args:
M
minqiyang 已提交
5692
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5693 5694 5695 5696
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5697 5698
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5699
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5711
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5712
            it should be in leaf -> root order
M
minqiyang 已提交
5713 5714 5715
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5716
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5717
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5718
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5719
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5720
             of W and input will be sparse.
W
weixing02 已提交
5721 5722

    Returns:
J
JiabinYang 已提交
5723
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5724 5725 5726 5727 5728

    Examples:

        .. code-block:: python

G
guosheng 已提交
5729 5730 5731
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5732 5733 5734 5735
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5736 5737
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5738
    dim = input.shape[1]
5739
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5740 5741 5742
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5743 5744 5745 5746 5747 5748 5749 5750 5751
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5752
    if (is_custom) and (path_code is None):
5753
        raise ValueError("path_code should not be None with custom tree")
5754
    elif (is_custom) and (path_table is None):
5755
        raise ValueError("path_table should not be None with custom tree")
5756
    elif (is_custom) and (num_classes is None):
5757
        raise ValueError("num_classes should not be None with custom tree")
5758 5759 5760
    else:
        pass

J
JiabinYang 已提交
5761
    weights = None
5762 5763 5764 5765
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5766
    if not is_custom:
J
JiabinYang 已提交
5767 5768 5769 5770 5771 5772 5773 5774
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5775
            shape=[num_classes, dim],
J
JiabinYang 已提交
5776 5777
            is_bias=False,
            dtype=input.dtype)
5778 5779 5780
    inputs = {
        "X": input,
        "W": weights,
5781
        "PathTable": path_table,
5782
        "PathCode": path_code,
5783 5784
        "Label": label
    }
W
weixing02 已提交
5785
    if helper.bias_attr:
5786
        if not is_custom:
J
JiabinYang 已提交
5787 5788
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5789
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5790 5791 5792 5793 5794 5795
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5796
                shape=[num_classes, 1],
J
JiabinYang 已提交
5797 5798 5799
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5800 5801
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5802
        inputs=inputs,
W
weixing02 已提交
5803
        outputs={"Out": out,
5804 5805 5806 5807 5808 5809 5810
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5811 5812 5813
    return out


Y
fix ci.  
ying 已提交
5814
def transpose(x, perm, name=None):
Y
ying 已提交
5815 5816 5817 5818 5819 5820 5821
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5822 5823 5824
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5825 5826 5827 5828 5829 5830 5831

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5832
            # use append_batch_size=False to avoid prepending extra
5833
            # batch size in shape
5834
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5835
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5836
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5837 5838
    """

Y
fix ci.  
ying 已提交
5839
    if len(perm) != len(x.shape):
Y
ying 已提交
5840 5841 5842
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5843 5844 5845 5846 5847 5848
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5849 5850

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5851 5852
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5853
    helper.append_op(
5854
        type='transpose2',
Y
fix ci.  
ying 已提交
5855
        inputs={'X': [x]},
5856 5857
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5858 5859
        attrs={'axis': perm})
    return out
5860 5861


5862 5863 5864 5865 5866 5867 5868
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5869
    """
5870 5871 5872 5873 5874 5875 5876
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5905 5906 5907 5908 5909 5910 5911 5912 5913
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5914 5915 5916
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5917 5918 5919 5920 5921
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5949 5950 5951
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5964
            output.dims = {8, 8}
5965

5966
            output.lod = [[4, 4]]
5967

T
Tink_Y 已提交
5968
    Examples:
5969 5970 5971

        .. code-block:: python

5972 5973
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5974 5975

    """
L
lujun 已提交
5976
    assert not in_dygraph_mode(), (
5977
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5988 5989 5990 5991 5992 5993 5994
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5995
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5996
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5997
    helper.append_op(
5998
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5999
    return out
6000 6001


Y
yuyang18 已提交
6002
@templatedoc()
6003
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6004 6005
    """
    ${comment}
6006 6007

    Args:
Y
yuyang18 已提交
6008
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6009 6010
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6011 6012 6013 6014 6015
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6016
        ${out_comment}.
6017 6018

    Examples:
Y
yuyang18 已提交
6019 6020 6021 6022
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6023 6024 6025 6026 6027 6028
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6029
    out = helper.create_variable_for_type_inference(dtype)
6030 6031 6032 6033 6034
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6035
    return helper.append_activation(out)
6036 6037


Y
yuyang18 已提交
6038
@templatedoc()
6039 6040
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6041 6042
    ${comment}

L
lujun 已提交
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6086 6087

    Args:
Y
yuyang18 已提交
6088 6089
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6090 6091

    Returns:
Y
yuyang18 已提交
6092
        ${out_comment}.
6093 6094
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6095 6096 6097 6098 6099

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6100
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6101 6102 6103 6104 6105 6106
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6107 6108


6109 6110 6111
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6112
                               ignore_index=kIgnoreIndex,
6113
                               numeric_stable_mode=True,
6114 6115
                               return_softmax=False,
                               axis=-1):
6116 6117
    """
    **Softmax With Cross Entropy Operator.**
6118

6119
    Cross entropy loss with softmax is used as the output layer extensively. This
6120 6121 6122
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6123

6124 6125 6126
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6127

6128 6129 6130 6131
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6132

6133
    The equation is as follows:
6134

6135
    1) Hard label (one-hot label, so every sample has exactly one class)
6136

6137 6138 6139 6140
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6141

6142 6143 6144
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6145

6146 6147 6148 6149
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6150 6151
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6152 6153

    .. math::
6154

H
haowang101779990 已提交
6155
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6156

H
haowang101779990 已提交
6157
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6158

H
haowang101779990 已提交
6159
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6160 6161 6162

    and then cross entropy loss is calculated by softmax and label.

6163
    Args:
6164 6165 6166 6167 6168 6169
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6170
        soft_label (bool): A flag to indicate whether to interpretate the given
6171
            labels as soft labels. Default False.
M
minqiyang 已提交
6172 6173
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6174 6175
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6176 6177
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6178 6179 6180 6181
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6182
                                    Note that the speed may be slower when use
6183
                                    stable algorithm. Default: True
6184
        return_softmax (bool): A flag indicating whether to return the softmax
6185
                               along with the cross entropy loss. Default: False
6186 6187 6188
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6189

6190
    Returns:
H
haowang101779990 已提交
6191 6192
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6193 6194 6195 6196
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6197 6198 6199 6200 6201 6202 6203

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6204 6205
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6206 6207
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6208 6209
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6210 6211 6212 6213 6214 6215
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6216 6217 6218
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6219 6220
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6221
        })
6222 6223 6224 6225

    if return_softmax:
        return loss, softmax

6226 6227 6228
    return loss


6229 6230 6231
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6232
                                       num_true=1,
6233
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6234 6235 6236
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6237
                                       seed=0):
X
xuezhong 已提交
6238 6239 6240 6241 6242
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6243
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6244 6245 6246 6247 6248 6249 6250 6251
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6252
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6253 6254 6255 6256 6257 6258 6259 6260
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6261
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6273
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6274 6275 6276 6277 6278
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6279
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6280
            logits.
X
xuezhong 已提交
6281 6282 6283 6284 6285
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6286 6287 6288
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6309 6310
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6311 6312
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6313 6314 6315 6316 6317

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6318
            'Labels': label,
X
xuezhong 已提交
6319 6320
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6321 6322 6323 6324
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6325
            'SampledLabels': sampled_label,
6326 6327 6328
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6329 6330
        },
        attrs={
X
xuezhong 已提交
6331
            'use_customized_samples': use_customized_samples,
6332
            'uniq': True,
X
xuezhong 已提交
6333 6334 6335 6336
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6337 6338
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6339 6340 6341 6342 6343 6344
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6345 6346
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6347
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6348
                'Label': sampled_softlabel},
X
xuezhong 已提交
6349 6350 6351
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6352
            'soft_label': True,
X
xuezhong 已提交
6353 6354 6355
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6356
    return loss / num_true
X
xuezhong 已提交
6357 6358


6359 6360
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6361 6362
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6363
    For each instance, it computes the smooth L1 loss element by element first
6364
    and then sums all the losses. So the shape of ouput Variable is
6365
    [batch_size, 1].
6366

6367 6368
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6369
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6370
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6371
            L1 loss op with same shape as :attr:`x`.
6372
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6373 6374
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6375
            by this tensor element by element.
6376
        outside_weight (Variable|None): A tensor with rank at least 2. This
6377 6378
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6379
            element by element.
6380
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6381 6382
           scalar with default value 1.0.

6383
    Returns:
6384
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6385 6386 6387 6388 6389

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6390 6391
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6392
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6393
            out = fluid.layers.smooth_l1(x=fc, y=label)
6394
    """
6395

6396
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6397 6398
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6399 6400 6401 6402 6403 6404 6405 6406 6407 6408
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6409
        attrs={'sigma': sigma if sigma is not None else 1.0})
6410
    return loss
6411 6412 6413 6414


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6415
    This layer creates the one-hot representations for input indices.
6416 6417

    Args:
Y
Yibing Liu 已提交
6418 6419
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6420 6421

    Returns:
Y
Yibing Liu 已提交
6422
        Variable: The one-hot representations of input.
6423 6424

    Examples:
C
caoying03 已提交
6425
        .. code-block:: python
6426

Y
Yibing Liu 已提交
6427 6428
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6429 6430
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6431
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6432 6433 6434 6435
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6436 6437
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6438
    return one_hot_out
Y
Yu Yang 已提交
6439 6440


Y
Yu Yang 已提交
6441
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6442
    """
Y
yi.wu 已提交
6443 6444 6445
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6446 6447 6448 6449 6450 6451

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6452 6453
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6454 6455 6456 6457 6458

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6459
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6460 6461
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6462 6463
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6464 6465 6466 6467 6468
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6469
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6470
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6471 6472
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6473
            outputs={'Out': [counter]},
M
minqiyang 已提交
6474 6475
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6476 6477 6478
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6479 6480


6481
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6482
    """
C
caoying03 已提交
6483 6484
    Gives a new shape to the input Tensor without changing its data.

6485 6486 6487 6488 6489
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6490

6491
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6492

6493 6494 6495 6496
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6497
    2. 0 means the actual dimension value is going to be copied from the
6498 6499 6500 6501
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6502 6503

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6504
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6505
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6506

6507
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6508 6509
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6510 6511
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6512
    dimensions.
C
caoying03 已提交
6513

6514
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6515 6516 6517 6518
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6519 6520

    Args:
6521
        x(variable): The input tensor.
C
caoying03 已提交
6522 6523
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6524 6525 6526 6527 6528
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6529 6530
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6531 6532 6533
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6534
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6535
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6536

6537
    Returns:
G
guosheng 已提交
6538 6539 6540 6541
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6542

X
Xin Pan 已提交
6543 6544 6545
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6546 6547
    Examples:
        .. code-block:: python
G
guosheng 已提交
6548

6549
            data = fluid.layers.data(
6550
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6551
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6552
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6553 6554 6555
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6556
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6557 6558 6559 6560 6561
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6562

6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6578
    helper = LayerHelper("reshape2", **locals())
6579 6580
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6581
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6582
    helper.append_op(
6583
        type="reshape2",
X
Xin Pan 已提交
6584
        inputs=inputs,
D
dzhwinter 已提交
6585
        attrs={"shape": shape},
6586 6587
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6588

D
dzhwinter 已提交
6589
    return helper.append_activation(out)
6590

6591

6592
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6593
    """
M
minqiyang 已提交
6594 6595 6596
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6597
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6598

H
haowang101779990 已提交
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6620

Y
Yibing Liu 已提交
6621
    Args:
6622
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6623
        axes (list): List of integers, indicating the dimensions to be squeezed.
6624
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6625 6626 6627 6628 6629 6630 6631 6632

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6633
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6634
    """
L
lujun 已提交
6635
    assert not in_dygraph_mode(), (
L
lujun 已提交
6636
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6637
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6638 6639
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6640
    helper.append_op(
6641
        type="squeeze2",
6642
        inputs={"X": input},
Y
Yibing Liu 已提交
6643
        attrs={"axes": axes},
6644 6645
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6646

6647 6648 6649
    return out


6650
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6651
    """
M
minqiyang 已提交
6652 6653 6654
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6655

M
minqiyang 已提交
6656
    For example:
H
haowang101779990 已提交
6657 6658 6659

    .. code-block:: text

M
minqiyang 已提交
6660
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6661
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6662

Y
Yibing Liu 已提交
6663
    Args:
6664
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6665
        axes (list): List of integers, indicating the dimensions to be inserted.
6666
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6667 6668 6669 6670 6671 6672 6673 6674

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6675
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6676 6677
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6678 6679
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6680
    helper.append_op(
6681
        type="unsqueeze2",
6682
        inputs={"X": input},
Y
Yibing Liu 已提交
6683
        attrs={"axes": axes},
6684 6685
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6686

6687 6688
    return out

6689

Y
yangyaming 已提交
6690
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6691
    """
Y
Yibing Liu 已提交
6692
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6693 6694 6695 6696
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6697
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6698 6699 6700 6701 6702 6703

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6704
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6705 6706 6707
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6708
            target_lod: [4, 2]
Y
yangyaming 已提交
6709 6710

            then we get a 1-level LoDTensor:
6711
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6712 6713 6714 6715 6716 6717
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6718
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6719 6720 6721 6722
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6723
                y.data = [[2, 4]]
Y
yangyaming 已提交
6724 6725 6726
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6727
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6728 6729 6730 6731 6732 6733
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6734
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6735 6736 6737 6738
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6739
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6740 6741 6742 6743
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6744
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6745 6746 6747 6748 6749
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6750
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6751
                           from :attr:`y`.
Y
yangyaming 已提交
6752
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6753
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6754 6755

    Returns:
Y
Yibing Liu 已提交
6756
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6757 6758

    Raises:
Y
Yibing Liu 已提交
6759
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6760 6761 6762 6763 6764 6765 6766 6767 6768

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6769
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6795
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6824 6825
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6838 6839 6840
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6854 6855 6856 6857


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6858
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6859
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6860

G
guosheng 已提交
6861 6862 6863 6864
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6887
                         The length of :attr:paddings must be
G
guosheng 已提交
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6898

G
guosheng 已提交
6899 6900 6901 6902 6903 6904
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6905
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6906 6907 6908 6909 6910 6911 6912
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6913 6914


C
chengduo 已提交
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6946 6947
		And
            pad_value = -1,
C
chengduo 已提交
6948

T
Tink_Y 已提交
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6984
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6985 6986 6987 6988 6989 6990 6991 6992 6993
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6994 6995 6996 6997 6998 6999 7000
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7001 7002
    called label-smoothing regularization (LSR).

7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7026
                              be :math:`(1, class\_num)`.
7027 7028
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7029
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7049
    smooth_label = helper.create_variable_for_type_inference(dtype)
7050 7051 7052 7053 7054 7055 7056
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7057 7058


W
wopeizl 已提交
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7095 7096


J
jerrywgz 已提交
7097 7098 7099 7100 7101 7102
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7103 7104
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7121 7122 7123 7124
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7125 7126 7127
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7128 7129 7130 7131 7132 7133
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7134
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7175 7176
        .. code-block:: python

W
whs 已提交
7177 7178 7179 7180
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
7181
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7182 7183 7184 7185 7186 7187
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7188 7189


7190 7191 7192 7193
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7194
                 resample='BILINEAR',
7195 7196
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7197
                 align_mode=1):
7198
    """
Q
qiaolongfei 已提交
7199
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7200

7201
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7202 7203 7204
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7205

7206
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7207

7208
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7209

7210 7211 7212 7213 7214 7215 7216 7217 7218 7219
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7220
    Align_corners and align_mode are optinal parameters,the calculation method 
7221 7222 7223 7224
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7225
    .. code-block:: text
7226

T
Tink_Y 已提交
7227
        For scale:
7228
          
T
Tink_Y 已提交
7229
            if align_corners = True && out_size > 1 :
7230

T
Tink_Y 已提交
7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7242

T
Tink_Y 已提交
7243 7244
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7245

T
Tink_Y 已提交
7246 7247
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7248

T
Tink_Y 已提交
7249 7250
          else:
              align_corners = True
7251

T
Tink_Y 已提交
7252 7253
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7254

T
Tink_Y 已提交
7255 7256
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7257

T
Tink_Y 已提交
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7268

T
Tink_Y 已提交
7269 7270 7271 7272
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7273

T
Tink_Y 已提交
7274 7275
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7276 7277 7278 7279 7280 7281 7282 7283 7284

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7285
    Args:
7286
        input (Variable): The input tensor of image resize layer,
7287 7288
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7289
        out_shape(list|tuple|Variable|None): Output shape of image resize
7290 7291
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7292
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7293
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7294
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7295
             Default: None.
7296 7297
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7298
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7299
                       currently.
7300
                       Default: 'BILINEAR'
7301 7302 7303
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7304
                                :attr:`out_shape` and :attr:`scale` specifying
7305 7306 7307 7308 7309 7310 7311
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7312 7313
                                constructing stage.
                                Default: None
7314 7315 7316 7317
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7318
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7319 7320
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7321 7322

    Returns:
Q
update  
qiaolongfei 已提交
7323 7324
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7325

7326 7327 7328
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7329
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7330 7331 7332
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7333
        ValueError: scale should be greater than zero.
7334 7335
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7336

7337 7338 7339
    Examples:
        .. code-block:: python

R
ruri 已提交
7340
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7341
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7342
    """
7343 7344 7345 7346
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7347 7348
    if resample not in resample_methods:
        raise ValueError(
7349
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7350
        )
7351
    resample_type = resample_methods[resample]
7352 7353 7354 7355 7356 7357

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7358
    if out_shape is None and scale is None:
7359
        raise ValueError("One of out_shape and scale must not be None.")
7360
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7361
    dtype = helper.input_dtype()
7362 7363 7364 7365

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7366
    inputs = {"X": input}
D
dengkaipeng 已提交
7367
    attrs = {
D
dengkaipeng 已提交
7368 7369
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7370 7371 7372 7373 7374
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7375
    if out_shape is not None:
7376 7377 7378 7379
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7380
            inputs['OutSize'] = out_shape
7381 7382
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7383 7384
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7385 7386 7387 7388 7389 7390 7391
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7392
    else:
D
dengkaipeng 已提交
7393 7394
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7395
        attrs['scale'] = float(scale)
7396

7397 7398 7399 7400 7401
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7402
    out = helper.create_variable_for_type_inference(dtype)
7403
    helper.append_op(
7404
        type='{}_interp'.format(resample_type),
7405
        inputs=inputs,
7406
        outputs={"Out": out},
D
dengkaipeng 已提交
7407
        attrs=attrs)
7408
    return out
F
stash  
fengjiayi 已提交
7409 7410


7411
@templatedoc(op_type="bilinear_interp")
7412 7413 7414 7415
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7416 7417
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7418
                    align_mode=1):
7419
    """
7420 7421
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7422 7423
    in priority order.

7424 7425 7426 7427
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7428 7429
    again in the other direction.

7430
    For details of bilinear interpolation, please refer to Wikipedia:
7431
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7432

T
tink2123 已提交
7433
    Align_corners and align_mode are optinal parameters,the calculation 
7434 7435 7436 7437
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7438
    .. code-block:: text
7439

T
Tink_Y 已提交
7440
        For scale:
7441
          
T
Tink_Y 已提交
7442
            if align_corners = True && out_size > 1 :
7443

T
Tink_Y 已提交
7444 7445 7446 7447 7448
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7449

T
Tink_Y 已提交
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7460 7461


T
Tink_Y 已提交
7462
          else:
T
tink2123 已提交
7463

T
Tink_Y 已提交
7464 7465
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7466

T
Tink_Y 已提交
7467 7468
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7469 7470 7471



Y
yuyang18 已提交
7472 7473 7474
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7475 7476 7477
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7478

Y
yuyang18 已提交
7479
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7480
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7481
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7482
             Default: None.
Y
yuyang18 已提交
7483 7484

        name(str|None): The output variable name.
7485 7486 7487
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7488
                                :attr:`out_shape` and :attr:`scale` specifying
7489 7490 7491 7492 7493 7494 7495
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7496 7497
                                constructing stage.
                                Default: None
7498 7499
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7500 7501 7502

    Returns:
        ${out_comment}.
7503 7504 7505 7506

    Examples:
        .. code-block:: python

R
ruri 已提交
7507
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7508
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7509 7510
    """

7511 7512
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7513 7514


7515
@templatedoc(op_type="nearest_interp")
7516 7517 7518 7519
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7520 7521
                   actual_shape=None,
                   align_corners=True):
7522
    """
7523
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7524 7525
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7526 7527
    out_shape and scale in priority order.

7528 7529
    Example:

T
Tink_Y 已提交
7530 7531 7532 7533 7534
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7535

T
Tink_Y 已提交
7536 7537 7538 7539 7540 7541 7542 7543
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7544
          
T
Tink_Y 已提交
7545 7546
          if:
              align_corners = False
7547

T
Tink_Y 已提交
7548 7549
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7550

T
Tink_Y 已提交
7551 7552
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7553

T
Tink_Y 已提交
7554 7555
          else:
              align_corners = True
7556

T
Tink_Y 已提交
7557 7558
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7559

T
Tink_Y 已提交
7560 7561
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7562 7563


7564
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7565
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7566 7567 7568 7569

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7570 7571 7572
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7573

Y
yuyang18 已提交
7574
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7575
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7576
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7577
             Default: None.
Y
yuyang18 已提交
7578 7579

        name(str|None): The output variable name.
7580 7581 7582
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7583
                                :attr:`out_shape` and :attr:`scale` specifying
7584 7585 7586 7587 7588 7589 7590
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7591 7592
                                constructing stage.
                                Default: None
7593
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7594 7595 7596

    Returns:
        ${out_comment}.
7597 7598 7599 7600

    Examples:
        .. code-block:: python

R
ruri 已提交
7601
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7602
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7603 7604
    """

7605 7606
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7607 7608 7609 7610


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7611 7612 7613
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7614 7615 7616 7617 7618 7619 7620
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7621
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7622

7623
    Returns:
Q
update  
qiaolongfei 已提交
7624
        Variable: The output is a 4-D tensor of the shape
7625
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7626 7627 7628 7629 7630 7631

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7632 7633 7634 7635 7636 7637 7638 7639 7640 7641
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7642 7643 7644
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7645 7646 7647
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7648 7649
def gather(input, index):
    """
Q
qiaolongfei 已提交
7650 7651
    **Gather Layer**

7652
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7653 7654 7655 7656
    of X indexed by `index` and concatenate them together.

    .. math::

7657
        Out = X[Index]
W
whs 已提交
7658 7659 7660 7661 7662 7663 7664


    .. code-block:: text


                Given:

7665 7666
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7677
        input (Variable): The source input with rank>=1.
W
whs 已提交
7678 7679 7680 7681 7682 7683
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7684

W
whs 已提交
7685 7686
        .. code-block:: python

Y
Yibing Liu 已提交
7687 7688
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7689 7690 7691 7692
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7693
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7694 7695 7696 7697 7698 7699 7700 7701
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7733
    out = helper.create_variable_for_type_inference(dtype)
7734 7735 7736 7737 7738 7739 7740 7741 7742
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7743 7744 7745 7746 7747 7748 7749 7750 7751
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7752

Q
Qingsheng Li 已提交
7753
    Given the following input:
H
haowang101779990 已提交
7754

Q
Qingsheng Li 已提交
7755
    .. code-block:: text
H
haowang101779990 已提交
7756

Q
Qingsheng Li 已提交
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7769

Q
Qingsheng Li 已提交
7770
    .. code-block:: text
H
haowang101779990 已提交
7771

Q
Qingsheng Li 已提交
7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7787
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7788 7789 7790 7791 7792 7793 7794 7795

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7796
    assert not in_dygraph_mode(), (
7797
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7798 7799
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7800
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7801 7802 7803 7804 7805 7806 7807 7808 7809
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7823

7824 7825 7826
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7827
    """
F
stash  
fengjiayi 已提交
7828
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7829
    dtype = x.dtype
X
Xin Pan 已提交
7830
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7831
    if seed is None:
7832
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7833
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7834
    if isinstance(seed, int):
F
fengjiayi 已提交
7835 7836 7837 7838 7839
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7840 7841 7842 7843
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7844
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7845 7846
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7847 7848
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7849
    return out
W
whs 已提交
7850 7851


7852
def log(x, name=None):
W
wanghaoshuang 已提交
7853 7854 7855 7856 7857
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7858
        Out = \\ln(x)
W
wanghaoshuang 已提交
7859 7860

    Args:
7861
        x (Variable): Input tensor.
7862 7863
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7864 7865 7866 7867 7868 7869 7870 7871

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7872
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7873 7874
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7875
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7876
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7877
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7878 7879 7880
    return out


7881
def relu(x, name=None):
W
wanghaoshuang 已提交
7882 7883
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7884
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7885 7886 7887 7888
    the tensor elementwise.

    .. math::

7889
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7890 7891

    Args:
7892
        x (Variable): The input tensor.
7893 7894
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7895 7896 7897 7898 7899 7900 7901 7902

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7903
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
7904
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7905 7906
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7907
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7908
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7909 7910
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7911
    return out
7912 7913


C
chengduo 已提交
7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7955 7956 7957
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7958 7959 7960 7961
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7962
    .. math::
7963

H
haowang101779990 已提交
7964
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7965

7966
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7967 7968 7969 7970 7971
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7972
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7973
                           Its shape should be the same as input.
7974
        num_classes (int): The possible number of labels.
W
whs 已提交
7975 7976

    Returns:
M
minqiyang 已提交
7977 7978
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7979
                     Three variables:
M
minqiyang 已提交
7980

H
haowang101779990 已提交
7981 7982 7983
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7984 7985 7986 7987

    Examples:

        .. code-block:: python
7988

W
whs 已提交
7989 7990 7991 7992
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7993 7994 7995
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7996 7997
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7998 7999
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8000
        outputs={
W
whs 已提交
8001 8002 8003
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8004 8005 8006
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8075
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8076 8077 8078 8079 8080

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8081
            isinstance(shape, Variable)):
8082 8083 8084 8085 8086
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8087
    out = helper.create_variable_for_type_inference(x.dtype)
8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8105 8106


W
whs 已提交
8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8124

W
whs 已提交
8125
              out_shape = [2, 3, 5, 5]
8126

W
whs 已提交
8127
          Step 1:
8128

W
whs 已提交
8129 8130 8131
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8132

W
whs 已提交
8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8178
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8179
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8192

W
whs 已提交
8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8204
            isinstance(out_shape, Variable)):
W
whs 已提交
8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8226 8227
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8228

8229 8230
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8231
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8232 8233 8234
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8235

8236 8237
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8238

H
haowang101779990 已提交
8239 8240
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8241 8242
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8243

H
haowang101779990 已提交
8244 8245 8246 8247 8248 8249 8250 8251
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8252 8253 8254

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8289
    out = helper.create_variable_for_type_inference("float32")
8290 8291 8292 8293 8294 8295 8296 8297

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8298 8299


M
minqiyang 已提交
8300 8301
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8302
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8303
    which compares left score and right score passed in.
M
minqiyang 已提交
8304
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8305 8306 8307

    .. math::

H
haowang101779990 已提交
8308
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8309 8310

    Args:
M
minqiyang 已提交
8311
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8312 8313
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8314
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8315 8316
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8317

M
minqiyang 已提交
8318
    Returns:
M
minqiyang 已提交
8319
       Variable: The ranking loss.
H
haowang101779990 已提交
8320

M
minqiyang 已提交
8321
    Raises:
M
minqiyang 已提交
8322
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8323

M
minqiyang 已提交
8324
    Examples:
H
haowang101779990 已提交
8325

M
minqiyang 已提交
8326
        .. code-block:: python
H
haowang101779990 已提交
8327

Y
Yibing Liu 已提交
8328 8329 8330
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8331 8332
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8333
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8334 8335 8336 8337 8338 8339
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8340 8341
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8365
        .. code-block:: text
W
whs 已提交
8366

T
Tink_Y 已提交
8367
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8368

T
Tink_Y 已提交
8369 8370
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8371

T
Tink_Y 已提交
8372
	      Case 0:
M
minqiyang 已提交
8373

T
Tink_Y 已提交
8374 8375 8376
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8377

T
Tink_Y 已提交
8378 8379 8380
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8381

T
Tink_Y 已提交
8382
	      Case 1:
M
minqiyang 已提交
8383

T
Tink_Y 已提交
8384 8385
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8386

T
Tink_Y 已提交
8387 8388 8389
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8390

T
Tink_Y 已提交
8391
	      Case 2:
M
minqiyang 已提交
8392

T
Tink_Y 已提交
8393 8394
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8395

T
Tink_Y 已提交
8396 8397 8398
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8399 8400


W
whs 已提交
8401 8402
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8403
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8427
    out = helper.create_variable_for_type_inference(dtype)
8428 8429 8430 8431 8432 8433 8434 8435 8436
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8437
    helper.append_op(
8438
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8439 8440 8441 8442

    return out


8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8455 8456 8457 8458 8459

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8460 8461
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8462 8463
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8464
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8485 8486 8487 8488 8489

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8490 8491
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8492 8493
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8494
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8515 8516 8517 8518 8519

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8520 8521
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8522 8523
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8524
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8546 8547 8548 8549 8550

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8551
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8552
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8553 8554
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8555
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8578 8579 8580 8581 8582

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8583 8584
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8585 8586
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8587
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8609 8610 8611 8612 8613

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8614 8615
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8616 8617
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8618
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8619 8620 8621 8622 8623 8624 8625 8626
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8627 8628 8629 8630
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8631 8632
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8633 8634 8635

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8636
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8637
          weight (alpha).
J
jerrywgz 已提交
8638
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8639 8640 8641
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8642
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8643
          will be named automatically.
J
jerrywgz 已提交
8644 8645 8646 8647 8648 8649 8650 8651

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8652
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8666
        attr=helper.param_attr,
J
jerrywgz 已提交
8667 8668 8669 8670
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8671
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8672 8673 8674 8675 8676 8677 8678 8679 8680
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8691
    Returns:
8692
        output(${out_type}): ${out_comment}
8693 8694 8695

    Examples:

8696
    .. code-block:: python
8697

H
haowang101779990 已提交
8698 8699
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8700 8701
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8702
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8721
    Returns:
8722
        output(${out_type}): ${out_comment}
8723 8724 8725 8726 8727

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8728 8729
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8730 8731
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8732
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8750
    Returns:
8751
        output(${out_type}): ${out_comment}
8752 8753 8754 8755 8756

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8757 8758
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8759 8760
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8761
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8762 8763 8764 8765 8766 8767 8768 8769
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8770 8771 8772 8773
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8774

H
haowang101779990 已提交
8775
    For Example:
M
minqiyang 已提交
8776

H
haowang101779990 已提交
8777
    .. code-block:: text
8778

H
haowang101779990 已提交
8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8800 8801 8802

    Args:
        x (Variable): A tensor of rank >= axis.
8803 8804
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8805 8806 8807 8808 8809 8810 8811 8812
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8813 8814 8815
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8816 8817 8818 8819
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8820
        ValueError: If axis is not in range [0, rank(x)].
8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8837 8838
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8839
    helper.append_op(
8840
        type='flatten2',
8841
        inputs={"X": x},
8842 8843
        outputs={'Out': out,
                 'XShape': x_shape},
8844 8845
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8846 8847


C
chenweihang 已提交
8848
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8849
    """
C
chenweihang 已提交
8850
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8851
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8852 8853
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8854

H
haowang101779990 已提交
8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8872 8873

    Args:
C
chenweihang 已提交
8874 8875 8876
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8877 8878 8879 8880 8881 8882 8883 8884 8885 8886

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
8887
    assert not in_dygraph_mode(), (
8888
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8889
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8890 8891
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8892 8893 8894 8895 8896 8897
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8898
    return out
8899

8900

S
sneaxiy 已提交
8901 8902 8903 8904 8905 8906 8907 8908 8909
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8910

S
sneaxiy 已提交
8911
    .. math::
8912

S
sneaxiy 已提交
8913 8914 8915
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8916
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8917 8918 8919 8920
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8921 8922 8923
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8924 8925
    Returns:
        Variable: The output sequence mask.
8926

S
sneaxiy 已提交
8927
    """
L
lujun 已提交
8928
    assert not in_dygraph_mode(), (
8929
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8930

Q
qingqing01 已提交
8931
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8932
    if name is None:
X
Xin Pan 已提交
8933
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8934
    else:
X
Xin Pan 已提交
8935
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8936

Q
qingqing01 已提交
8937 8938 8939
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8940 8941
        outputs={'Y': out},
        attrs={
8942
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8943 8944 8945
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8946 8947


X
Xin Pan 已提交
8948
def stack(x, axis=0):
S
sneaxiy 已提交
8949 8950 8951 8952
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8953 8954 8955 8956 8957 8958 8959

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8960
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8961
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8962

C
chengduozh 已提交
8963 8964
    For Example:

C
chengduozh 已提交
8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9003
    Args:
9004
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9005
        axis (int|None): The axis along which all inputs are stacked.
9006

S
sneaxiy 已提交
9007 9008
    Returns:
        Variable: The stacked variable.
9009

S
sneaxiy 已提交
9010 9011
    """

X
Xin Pan 已提交
9012 9013 9014 9015 9016 9017
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9018
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9019
    helper.append_op(
S
sneaxiy 已提交
9020 9021
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9022

X
Xin Pan 已提交
9023
    return out
D
dzhwinter 已提交
9024 9025 9026 9027 9028 9029 9030


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9031

D
dzhwinter 已提交
9032 9033 9034
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9035
    raised.
D
dzhwinter 已提交
9036 9037

    Args:
M
minqiyang 已提交
9038
        x (Variable): Input variable.
D
dzhwinter 已提交
9039 9040
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9041

D
dzhwinter 已提交
9042 9043
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9044

D
dzhwinter 已提交
9045 9046 9047 9048 9049 9050 9051 9052 9053 9054
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9055
    for _ in range(num):
X
Xin Pan 已提交
9056
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9057 9058 9059 9060 9061 9062 9063 9064

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9077

W
whs 已提交
9078 9079 9080 9081
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9082

W
whs 已提交
9083
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9084

W
whs 已提交
9085
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9086

W
whs 已提交
9087 9088 9089 9090
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9091

W
whs 已提交
9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9108
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9109 9110 9111 9112 9113 9114
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9115 9116


G
fix  
gongweibao 已提交
9117 9118 9119
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9120
@templatedoc()
G
fix  
gongweibao 已提交
9121 9122 9123 9124 9125 9126 9127 9128 9129
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9130
    ${comment}
G
fix  
gongweibao 已提交
9131 9132

    Args:
G
gongweibao 已提交
9133 9134 9135
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9136
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9137 9138 9139
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9140 9141
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9142
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9143

9144 9145 9146 9147 9148
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9149 9150 9151
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9152
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9169 9170


G
gongweibao 已提交
9171
@templatedoc()
X
Xin Pan 已提交
9172
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9173
    """
G
gongweibao 已提交
9174
    ${comment}
G
fix  
gongweibao 已提交
9175 9176

    Args:
G
gongweibao 已提交
9177 9178 9179 9180
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9181 9182 9183
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9184
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9185

9186 9187 9188 9189
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9190 9191 9192
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9193
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9194 9195 9196 9197 9198 9199 9200 9201 9202 9203
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9204
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9205 9206 9207 9208 9209
        })

    return out


G
gongweibao 已提交
9210
@templatedoc()
G
fix  
gongweibao 已提交
9211
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9212
    """
G
gongweibao 已提交
9213
    ${comment}
G
fix  
gongweibao 已提交
9214 9215

    Args:
G
gongweibao 已提交
9216 9217 9218 9219
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9220
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9221 9222

    Returns:
G
gongweibao 已提交
9223
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9224

9225 9226 9227
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9228
            x = fluid.layers.data(
9229 9230 9231 9232 9233
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9234
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9235 9236 9237
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9238
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9250
@templatedoc()
G
fix  
gongweibao 已提交
9251 9252 9253 9254 9255 9256 9257 9258 9259
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9260
    ${comment}
G
fix  
gongweibao 已提交
9261 9262

    Args:
G
gongweibao 已提交
9263 9264
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9265
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9266 9267 9268 9269
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9270
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9271 9272

    Returns:
G
gongweibao 已提交
9273
        out (Variable): ${out_comment}
9274 9275 9276 9277

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9278
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9279

Y
Yibing Liu 已提交
9280
            out = fluid.layers.gaussian_random_batch_size_like(
9281
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9282 9283 9284
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9285
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9304
@templatedoc()
X
Xin Pan 已提交
9305
def sum(x):
G
fix  
gongweibao 已提交
9306
    """
G
gongweibao 已提交
9307
    ${comment}
G
fix  
gongweibao 已提交
9308 9309

    Args:
G
gongweibao 已提交
9310
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9311 9312

    Returns:
G
gongweibao 已提交
9313
        out (Variable): ${out_comment}
9314 9315 9316 9317 9318 9319

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9320 9321 9322
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9323 9324
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9325 9326 9327 9328
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9329
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9330 9331 9332 9333

    return out


G
gongweibao 已提交
9334
@templatedoc()
G
fix  
gongweibao 已提交
9335 9336
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9337
    ${comment}
G
fix  
gongweibao 已提交
9338 9339

    Args:
G
gongweibao 已提交
9340 9341 9342 9343
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9344 9345

    Returns:
G
gongweibao 已提交
9346
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9347

9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9359 9360 9361
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9362 9363
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9377 9378
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9379
    Get the shape of the input.
G
fix  
gongweibao 已提交
9380 9381

    Args:
C
chengduozh 已提交
9382
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9383 9384

    Returns:
C
fix doc  
chengduozh 已提交
9385
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9386

9387 9388 9389 9390 9391 9392
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9393 9394 9395
    """

    helper = LayerHelper('shape', **locals())
9396
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9397
    helper.append_op(
G
fix  
gongweibao 已提交
9398
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9399 9400

    return out
G
merge  
gongweibao 已提交
9401 9402


Z
zhoukunsheng 已提交
9403 9404 9405 9406
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9407
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9429 9430 9431 9432
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9433
    if in_dygraph_mode():
X
Xin Pan 已提交
9434 9435 9436
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9437 9438 9439 9440
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9441 9442
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9443
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9444 9445 9446
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9447

S
sneaxiy 已提交
9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9459
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9460 9461 9462 9463 9464 9465 9466 9467
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9468
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9469
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9470 9471 9472 9473 9474 9475

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9476
    if name is None:
X
Xin Pan 已提交
9477
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9478 9479 9480
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9481 9482 9483 9484 9485 9486 9487 9488 9489 9490

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9491
    return helper.append_activation(out)
S
sneaxiy 已提交
9492 9493


X
Xin Pan 已提交
9494
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9495 9496 9497
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9498
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9499 9500 9501
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9502
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9503 9504 9505
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9506
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9507 9508 9509
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9510
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9511 9512 9513
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9514
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9515 9516 9517
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9518
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9519 9520 9521
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9522 9523 9524 9525 9526 9527 9528 9529
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9530
for func in [
9531 9532 9533 9534 9535 9536 9537 9538 9539
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9540 9541 9542 9543 9544
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9545 9546
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9547
        ])
M
minqiyang 已提交
9548 9549


9550
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9551 9552
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9553 9554
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9555 9556 9557

    if out is None:
        if name is None:
X
Xin Pan 已提交
9558
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9574
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9586 9587 9588 9589 9590 9591 9592 9593 9594

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9595 9596 9597 9598 9599 9600 9601
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9602
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9614 9615 9616 9617 9618 9619 9620 9621 9622

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9623 9624 9625 9626 9627 9628 9629
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9630
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9642 9643 9644 9645 9646 9647 9648 9649 9650

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9651 9652 9653 9654 9655 9656 9657
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9658
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9659 9660 9661 9662 9663 9664 9665 9666 9667 9668
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9669 9670 9671 9672 9673 9674 9675

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9676 9677 9678 9679
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9695 9696 9697 9698 9699 9700 9701

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9702 9703 9704 9705 9706
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9707 9708 9709 9710
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9734 9735 9736 9737 9738 9739 9740

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9741 9742 9743 9744 9745
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9746 9747 9748 9749
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9750 9751 9752 9753 9754 9755 9756 9757

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9776
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9777 9778 9779 9780 9781 9782 9783 9784 9785 9786
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9829
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9830 9831 9832 9833 9834 9835 9836 9837 9838
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9839 9840
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9841 9842 9843 9844 9845 9846
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9847 9848 9849
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9850 9851
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9852 9853 9854 9855 9856 9857
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9858
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9859
        name(basestring|None): Name of the output.
9860 9861
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9862 9863 9864

    Returns:
        out(${out_type}): ${out_comment}
9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9879 9880 9881 9882 9883
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9884
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9885 9886 9887 9888 9889 9890 9891 9892
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9893 9894
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
9911 9912 9913 9914 9915 9916 9917 9918 9919

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
9920 9921 9922 9923
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9924
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9925 9926 9927 9928 9929 9930 9931 9932 9933 9934
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9935 9936


J
JiabinYang 已提交
9937
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9938
    """
J
JiabinYang 已提交
9939
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9940 9941 9942

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9943
    The attr blocksize indicates the input block size.
9944 9945

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9946
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9947 9948

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9949
    (but keeping all data)
J
JiabinYang 已提交
9950

J
JiabinYang 已提交
9951
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9952
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9953 9954 9955 9956 9957
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9958
    Args:
J
JiabinYang 已提交
9959
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9960
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9961 9962

    Returns:
J
JiabinYang 已提交
9963
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9964 9965

    Raises:
J
JiabinYang 已提交
9966
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9967 9968 9969 9970 9971

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9972
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9973
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9974
                x=data, blocksize=2)
9975 9976 9977 9978 9979 9980

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9981 9982
    """

J
JiabinYang 已提交
9983
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9984

J
JiabinYang 已提交
9985 9986
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9987 9988

    if name is None:
J
JiabinYang 已提交
9989 9990
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9991 9992 9993 9994 9995
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9996
        type="space_to_depth",
J
JiabinYang 已提交
9997
        inputs={"X": x},
J
JiabinYang 已提交
9998
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9999
        outputs={"Out": out})
J
JiabinYang 已提交
10000 10001
    return out

J
JiabinYang 已提交
10002

S
sneaxiy 已提交
10003 10004
@templatedoc()
def sequence_reverse(x, name=None):
10005
    """
S
sneaxiy 已提交
10006 10007 10008 10009 10010 10011 10012 10013 10014
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
10015
    assert not in_dygraph_mode(), (
10016
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10017 10018
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10019
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10020 10021 10022 10023 10024 10025 10026 10027 10028 10029
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10030 10031


10032 10033 10034 10035 10036 10037
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10038 10039 10040 10041 10042
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10043

10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10056
        act (str, default None): Activation to be applied to the output of this layer.
10057 10058 10059 10060 10061 10062 10063

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10064
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10076
    return helper.append_activation(out)
10077 10078


B
barrierye 已提交
10079
def similarity_focus(input, axis, indexes, name=None):
10080
    """
B
barrierye 已提交
10081
    SimilarityFocus Operator
B
barrierye 已提交
10082 10083

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10084

10085 10086 10087
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10088
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10089 10090 10091 10092 10093 10094 10095
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10096
       each index.
B
barrierye 已提交
10097 10098 10099 10100
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10150
    Args:
10151
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10152
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10153
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10154
            1, 2 or 3.
B
barrierye 已提交
10155
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10156 10157

    Returns:
H
haowang101779990 已提交
10158 10159
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10160

B
barrierye 已提交
10161 10162
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10163

B
barrierye 已提交
10164
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10165 10166
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10179 10180 10181 10182 10183
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10184 10185 10186 10187 10188 10189 10190
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10191 10192


M
minqiyang 已提交
10193 10194
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10195 10196
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10197 10198
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10237
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10238
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10239 10240 10241 10242 10243 10244

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10245

10246
           x = fluid.layers.data(name="x", shape=[1], dtype='int32', lod_level=1)
M
minqiyang 已提交
10247
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10248 10249
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10250 10251
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10252 10253 10254 10255 10256 10257 10258
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10259 10260


D
dengkaipeng 已提交
10261
@templatedoc()
10262 10263
def grid_sampler(x, grid, name=None):
    """
10264
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10265
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10266 10267 10268 10269
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10270
    interpolation value of 4 nearest corner points.
10271

H
haowang101779990 已提交
10272
    .. code-block:: text
10273

H
haowang101779990 已提交
10274 10275
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10276

H
haowang101779990 已提交
10277 10278
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10279

H
haowang101779990 已提交
10280 10281 10282
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10283

H
haowang101779990 已提交
10284 10285 10286 10287 10288 10289 10290 10291 10292
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10293

H
haowang101779990 已提交
10294 10295 10296 10297
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10298

H
haowang101779990 已提交
10299 10300 10301 10302
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10303

H
haowang101779990 已提交
10304 10305 10306 10307
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10308

H
haowang101779990 已提交
10309 10310
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10311 10312

    Args:
10313 10314 10315
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10316 10317

    Returns:
H
haowang101779990 已提交
10318
        Variable: Output of shape [N, C, H, W] data samples input X
10319 10320
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10321 10322 10323 10324 10325 10326 10327 10328
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10329

D
dengkaipeng 已提交
10330 10331 10332 10333 10334 10335 10336 10337 10338
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10339
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10340 10341
    ipts = {'X': x, 'Grid': grid}

10342
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10343 10344 10345
    return out


G
gmcather 已提交
10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10373 10374
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10413
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10414 10415 10416 10417 10418 10419 10420
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10421

H
heqiaozhi 已提交
10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10436 10437 10438 10439
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10440
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10441 10442
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10443
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10444 10445

    .. math::
H
haowang101779990 已提交
10446 10447 10448
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10449 10450

    Where:
H
haowang101779990 已提交
10451 10452
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10467

G
gmcather 已提交
10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10484 10485 10486 10487 10488 10489 10490 10491 10492 10493


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10494
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10495

Q
Qiao Longfei 已提交
10496
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10497 10498 10499
    For example:

    .. math::
H
haowang101779990 已提交
10500
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10501

Q
Qiao Longfei 已提交
10502
    In this formula:
10503 10504
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10505
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10506
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10507 10508 10509
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10510 10511
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10512 10513 10514
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10515
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10516
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10517
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10518 10519 10520 10521
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10522
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10523 10524 10525 10526

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10527 10528 10529
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10530 10531
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10532
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10533 10534 10535 10536

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10537
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10578 10579


S
shippingwang 已提交
10580
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10581 10582
    """
    **Shuffle Channel Operator**
10583

S
shippingwang 已提交
10584 10585 10586 10587 10588 10589
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10590
    
S
shippingwang 已提交
10591
    .. code-block:: text
10592

S
shippingwang 已提交
10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10621
    Args: 
S
shippingwang 已提交
10622 10623
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10624 10625

    Returns:
S
shippingwang 已提交
10626 10627
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10628 10629

    Raises:
S
shippingwang 已提交
10630
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10631 10632 10633

    Examples:
        .. code-block:: python
10634 10635

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10636
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10637 10638 10639
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10640
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10641 10642 10643 10644 10645 10646 10647 10648 10649

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10650
    return out
S
Add  
shippingwang 已提交
10651 10652


10653
@templatedoc()
D
dengkaipeng 已提交
10654
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10655 10656 10657 10658 10659 10660 10661 10662
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10663
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10664
        name (str, default None): The name of this layer.
10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10677
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10690 10691
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10692 10693 10694
    return out


S
sneaxiy 已提交
10695
class PyFuncRegistry(object):
S
sneaxiy 已提交
10696 10697 10698
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10699
        if func is None or not callable(func):
S
sneaxiy 已提交
10700 10701 10702
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10703
        # find named args using reflection
S
sneaxiy 已提交
10704 10705 10706 10707 10708 10709 10710
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10711 10712 10713
        '''
        Why record self here?

M
minqiyang 已提交
10714 10715
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10716
           to find the registered function corresponding
M
minqiyang 已提交
10717
           to :code:`idx`.
S
sneaxiy 已提交
10718

M
minqiyang 已提交
10719 10720
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10721
           whose reference count is 1 would cause
M
minqiyang 已提交
10722
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10723 10724
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10725
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10740 10741 10742 10743 10744 10745 10746 10747 10748
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10749

S
sneaxiy 已提交
10750 10751
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10752 10753

        ret = []
S
sneaxiy 已提交
10754 10755 10756
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10757 10758
                continue

S
sneaxiy 已提交
10759 10760
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10761

S
sneaxiy 已提交
10762 10763 10764
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10765

S
sneaxiy 已提交
10766
        return tuple(ret)
S
sneaxiy 已提交
10767 10768


S
sneaxiy 已提交
10769 10770 10771 10772
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10773

S
sneaxiy 已提交
10774 10775 10776 10777 10778 10779 10780 10781
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10782
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10783

S
sneaxiy 已提交
10784 10785
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10786 10787 10788 10789
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10790
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10791
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10792 10793
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10794 10795 10796 10797 10798
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10799
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10800
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10801
                                       None means no backward. Default None.
S
sneaxiy 已提交
10802
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10803
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10804 10805
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10806
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10807 10808 10809

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10810 10811

    Examples:
M
minqiyang 已提交
10812

S
sneaxiy 已提交
10813 10814 10815 10816 10817
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10818
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10819 10820
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10821
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10822 10823 10824
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10825
        >>>
S
sneaxiy 已提交
10826 10827 10828 10829 10830
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10831
        >>>     print(x)
S
sneaxiy 已提交
10832 10833 10834 10835 10836 10837
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10838
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10839 10840
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10841 10842
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10843 10844 10845 10846 10847 10848 10849 10850
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10851
    """
S
sneaxiy 已提交
10852
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10853 10854 10855
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10856
        x = [x]
S
sneaxiy 已提交
10857 10858
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10859

S
sneaxiy 已提交
10860 10861 10862
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10863
        out_list = [out]
S
sneaxiy 已提交
10864
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10865
        out_list = out
S
sneaxiy 已提交
10866 10867 10868
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10869

S
sneaxiy 已提交
10870 10871
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10872
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10873 10874

    for each_out in out_list:
S
sneaxiy 已提交
10875 10876
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10877 10878
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10879

S
sneaxiy 已提交
10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10895 10896 10897 10898

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10899 10900
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10901 10902 10903
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10904
        })
S
sneaxiy 已提交
10905
    return out
S
sneaxiy 已提交
10906 10907 10908


# For debug usage
S
sneaxiy 已提交
10909 10910 10911 10912
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10965

M
minqiyang 已提交
10966

M
minqiyang 已提交
10967
def huber_loss(input, label, delta):
10968
    """
M
minqiyang 已提交
10969 10970 10971
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10972 10973 10974 10975

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10976
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10977 10978 10979 10980

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10981
        huber\_loss = 0.5 * (label - input) * (label - input)
10982 10983 10984 10985 10986 10987 10988


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10989
        delta (float): The parameter of huber loss, which controls
10990 10991 10992
                       the range of outliers

    Returns:
M
minqiyang 已提交
10993
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10994 10995 10996 10997 10998

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10999
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
11000
    """
M
minqiyang 已提交
11001
    helper = LayerHelper('huber_loss', **locals())
11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11013 11014


D
dengkaipeng 已提交
11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11077 11078 11079
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11080
          # edges must be directional
T
Tao Luo 已提交
11081 11082 11083 11084
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11085
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11086 11087
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11088
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11089
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11113 11114


C
ceci3 已提交
11115
from .ops import square
C
ceci3 已提交
11116
from .control_flow import equal
C
ceci3 已提交
11117 11118


C
ceci3 已提交
11119 11120 11121
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11122

C
ceci3 已提交
11123
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11124 11125

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11126
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11127 11128 11129 11130 11131
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11132 11133
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11134 11135 11136 11137 11138 11139 11140

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11141 11142 11143 11144 11145 11146 11147 11148
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11149 11150 11151 11152 11153 11154 11155
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11156
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11157 11158
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11159 11160
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11161 11162 11163 11164
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11165 11166 11167
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11168 11169 11170
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11171 11172


R
ruri 已提交
11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11202
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11203 11204 11205 11206 11207 11208 11209 11210 11211

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11212
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11273 11274 11275 11276


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11277

H
heqiaozhi 已提交
11278
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11279

H
fix doc  
heqiaozhi 已提交
11280
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11281 11282 11283
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11284
    
H
fix doc  
heqiaozhi 已提交
11285
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11286

H
heqiaozhi 已提交
11287
    Args:
H
fix doc  
heqiaozhi 已提交
11288 11289

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11290 11291
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11292 11293
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
                          (cvm op is a customized op, which input is a sequence has embedd_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11294

H
heqiaozhi 已提交
11295
    Returns:
H
fix doc  
heqiaozhi 已提交
11296 11297 11298

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11299
    Examples:
H
fix doc  
heqiaozhi 已提交
11300

H
heqiaozhi 已提交
11301
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11302

H
heqiaozhi 已提交
11303 11304 11305 11306 11307 11308 11309 11310 11311 11312
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11313

H
heqiaozhi 已提交
11314 11315 11316 11317 11318 11319 11320 11321 11322
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11323
    return out