nn.py 323.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
P
phlrain 已提交
172
    'lstm',
Y
Yu Yang 已提交
173 174 175 176 177 178 179 180 181
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
182
       is_test=False,
183
       name=None):
Y
Yu Yang 已提交
184
    """
185
    **Fully Connected Layer**
Y
Yu Yang 已提交
186

187 188 189 190 191 192 193 194
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
195
    to the output as well.
C
caoying03 已提交
196

C
caoying03 已提交
197
    This process can be formulated as follows:
198 199 200

    .. math::

201
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
202 203 204

    In the above equation:

C
caoying03 已提交
205 206 207 208
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
209
    * :math:`Act`: The activation function.
C
caoying03 已提交
210
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
211 212

    Args:
R
ranqiu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
228 229
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
230
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
231
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
232
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
233

234
    Returns:
F
fengjiayi 已提交
235
        Variable: The transformation result.
236 237

    Raises:
C
caoying03 已提交
238
        ValueError: If rank of the input tensor is less than 2.
239 240 241 242

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
243
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
244
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
245
    """
C
caoying03 已提交
246

C
caoying03 已提交
247
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
248 249 250 251

    dtype = helper.input_dtype()

    mul_results = []
252 253
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
254 255 256
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
257

Y
Yu Yang 已提交
258
        w = helper.create_parameter(
259
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
260
        tmp = helper.create_variable_for_type_inference(dtype)
261
        helper.append_op(
262 263 264
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
265
            outputs={"Out": tmp},
M
mozga-intel 已提交
266 267
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
268 269 270 271
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
272
    else:
X
Xin Pan 已提交
273
        pre_bias = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
278
            attrs={"use_mkldnn": False})
279 280 281 282
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
283 284


285 286 287
def embedding(input,
              size,
              is_sparse=False,
288
              is_distributed=False,
289 290 291
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
292
    """
293 294
    **Embedding Layer**

295
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
296 297
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
298 299 300

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
301 302

    Args:
303 304 305 306 307
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
308
        is_distributed(bool): Whether to run lookup table from remote parameter server.
309 310
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
311
            with zeros whenever lookup encounters it in :attr:`input`. If
312
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
313 314
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
315
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
316

317 318 319
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
320

321 322
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
323

C
chengduoZH 已提交
324
          dict_size = len(dataset.ids)
325
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
326
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
327 328 329
    """

    helper = LayerHelper('embedding', **locals())
330 331 332
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
333 334
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
335 336
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
337
    tmp = helper.create_variable_for_type_inference(dtype)
338 339
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
340 341 342 343 344
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
345 346 347
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
348
            'remote_prefetch': remote_prefetch,
349 350
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
351 352 353
    return tmp


W
wopeizl 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
370

W
wopeizl 已提交
371 372 373 374 375 376 377 378 379 380 381
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
382

W
wopeizl 已提交
383 384 385 386
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
387

W
wopeizl 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
474 475


P
phlrain 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489
def lstm(input,
         init_h,
         init_c,
         max_len,
         dropout_prob,
         input_size,
         hidden_size,
         num_layers,
         is_bidirec=False,
         dtype='float32',
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
490
    """
P
phlrain 已提交
491
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
492 493 494 495 496

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        dropout_prob(float): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
        input_size (int): hidden size of the input tensor
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
        is_bidirec (bool): If it is bidirectional
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
546
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
547

L
liuhongyu 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
573
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
639 640 641 642 643 644 645 646 647 648 649
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
650 651
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
652 653 654
    """
    **Dynamic LSTMP Layer**

655 656 657 658 659 660
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
661 662 663 664 665

    The formula is as follows:

    .. math::

666
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
667

668
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
669

670
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
671

672
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
673

674
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
675

676
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
677

678
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
679

Y
Yibing Liu 已提交
680 681 682 683 684 685
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
686
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
687
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
688
          bias vector).
Y
Yibing Liu 已提交
689 690 691
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
692
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
693
    * :math:`h`: The hidden state.
694
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
695 696
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
697
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
698
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
699
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
700 701
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
702 703 704 705

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
706

Y
Yibing Liu 已提交
707 708 709 710 711 712 713 714 715 716 717 718
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
719
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
720 721
                               hidden-hidden weight and projection weight.

722 723
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
724 725
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
726 727
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
728
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
729 730 731 732 733

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
734
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
735 736 737 738 739 740
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
741
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
742 743 744
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
745
                                - The shape is (1 x 7D).
C
chengduo 已提交
746 747 748 749 750

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
751 752 753 754 755 756 757 758 759
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
760
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
761 762
                              default "tanh".
        proj_activation(str): The activation for projection output.
763
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
764 765
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
766 767
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
768 769

    Returns:
770 771 772 773
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
774 775

    Examples:
776

Y
Yibing Liu 已提交
777 778
        .. code-block:: python

779 780 781 782
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
783
            hidden_dim, proj_dim = 512, 256
784
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
785
                                     act=None, bias_attr=None)
786 787 788
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
789 790 791 792
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
793
    """
794

C
chengduo 已提交
795
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
796
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
797
    size = size // 4
Y
Yibing Liu 已提交
798 799 800 801 802 803 804 805 806 807
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
808 809 810 811 812 813
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
842 843 844 845 846 847 848 849 850
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
851
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
852

853
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
854
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
855

G
guosheng 已提交
856 857 858 859 860 861 862 863 864
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
865

G
guosheng 已提交
866
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
867

G
guosheng 已提交
868
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
869 870
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
871 872 873 874
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
875
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
876 877

    Args:
878 879
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
880
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
881
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
882 883
            is the hidden size.
        size(int): The dimension of the gru cell.
884
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
885 886
            hidden-hidden weight matrix. Note:

887
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
888
              :math:`D` is the hidden size.
889
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
890
              The first part are weights of the update gate and reset gate with
891
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
892
              candidate hidden state with shape :math:`(D \\times D)`.
893 894 895 896 897

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
898
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
899
            the bias in the update gate, reset gate and candidate calculations.
900 901 902
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
903 904
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
905
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
906 907 908
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
909
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
910
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
911 912 913 914
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
915 916

    Returns:
G
guosheng 已提交
917
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
918
            and sequence length is the same with the input.
919

G
guosheng 已提交
920
    Examples:
921

G
guosheng 已提交
922 923
        .. code-block:: python

924 925 926 927
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
928
            hidden_dim = 512
929
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
930 931 932 933 934 935 936 937 938 939
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
940
    batch_size = input.shape[0]
G
guosheng 已提交
941
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
942
    if h_0:
G
guosheng 已提交
943
        assert h_0.shape == (
Y
Yancey 已提交
944 945 946
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
947

X
Xin Pan 已提交
948 949 950 951
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
970 971 972
def gru_unit(input,
             hidden,
             size,
973 974
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
975
             activation='tanh',
976
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
977
    """
978
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
979

980 981
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
982

983
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
984

985
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
986

987
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
988 989

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
990 991 992
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
993 994
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

995 996
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
997 998 999
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1000 1001 1002

    Args:
        input (Variable): The fc transformed input value of current step.
1003
        hidden (Variable): The hidden value of gru unit from previous step.
1004
        size (integer): The input dimension value.
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1019
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1020
            the bias in the update gate, reset gate and candidate calculations.
1021 1022 1023
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1024 1025
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1026 1027 1028 1029
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1030

1031 1032 1033 1034 1035 1036
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1037

1038
             # assuming we have x_t_data and prev_hidden of size=10
1039
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1040 1041
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1054
    size = size // 3
Y
Yu Yang 已提交
1055 1056

    # create weight
1057 1058
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1059

X
Xin Pan 已提交
1060 1061 1062
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1063
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1064
    # create bias
1065
    if helper.bias_attr:
Y
Yu Yang 已提交
1066 1067 1068
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1069
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1070 1071 1072

    helper.append_op(
        type='gru_unit',
1073
        inputs=inputs,
Y
Yu Yang 已提交
1074 1075 1076 1077 1078 1079
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1080 1081
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1082 1083 1084 1085 1086
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1087
@templatedoc()
1088
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1089 1090 1091 1092 1093 1094 1095
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1096
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1097 1098 1099 1100
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1101 1102 1103
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1104 1105

    """
Y
Yu Yang 已提交
1106 1107 1108 1109 1110 1111
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1112 1113 1114 1115 1116 1117 1118 1119
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1135 1136 1137 1138
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1139

W
wopeizl 已提交
1140 1141
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1142

W
wopeizl 已提交
1143
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1144

W
wopeizl 已提交
1145
        label(${label_type}): ${label_comment}
1146

W
wopeizl 已提交
1147 1148
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1149

W
wopeizl 已提交
1150 1151
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1152

W
wopeizl 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1163
                "Transition": transition,
W
wopeizl 已提交
1164 1165
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1166

W
wopeizl 已提交
1167
    return viterbi_path
Y
Yu Yang 已提交
1168 1169


Y
yi.wu 已提交
1170
@templatedoc()
F
fengjiayi 已提交
1171
def cos_sim(X, Y):
Y
Yu Yang 已提交
1172
    """
Y
yi.wu 已提交
1173 1174 1175
    ${comment}

    Args:
1176 1177
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1178

Y
yi.wu 已提交
1179
    Returns:
1180
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1181
    """
F
fengjiayi 已提交
1182
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1183 1184 1185
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1196 1197 1198 1199 1200
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1201
            dropout_implementation="downgrade_in_infer"):
1202 1203 1204 1205 1206
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1207
    training. The dropout operator randomly sets (according to the given dropout
1208 1209 1210 1211
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1212 1213
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1214 1215 1216 1217 1218 1219 1220
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1232
                                           dropout op can be removed from the program.
P
phlrain 已提交
1233
                                           the program will be efficient
1234

P
phlrain 已提交
1235

1236 1237

    Returns:
1238
        Variable: A tensor variable is the shape with `x`.
1239 1240

    Examples:
1241

1242 1243
        .. code-block:: python

1244 1245
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1246 1247
    """

F
fengjiayi 已提交
1248
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1249 1250 1251
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1252 1253 1254 1255

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1256 1257 1258 1259 1260
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1261 1262 1263 1264
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1265 1266
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1267
        })
1268 1269 1270
    return out


1271
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1272
    """
Y
Yibing Liu 已提交
1273 1274
    **Cross Entropy Layer**

1275 1276 1277
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1278 1279

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1280
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1281

Y
Yibing Liu 已提交
1282
        .. math::
Y
yangyaming 已提交
1283

Y
Yibing Liu 已提交
1284 1285 1286
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1287 1288
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1289 1290 1291 1292 1293

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1294
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1295 1296 1297
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1298 1299
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1300
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1301

Y
Yibing Liu 已提交
1302
    Args:
Y
yangyaming 已提交
1303
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1304 1305 1306 1307
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1308
        label (Variable|list): the ground truth which is a 2-D tensor. When
1309 1310 1311 1312
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1313
        soft_label (bool): a flag indicating whether to
1314
                                           interpretate the given labels as soft
1315
                                           labels. Default: `False`.
M
minqiyang 已提交
1316 1317
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1318
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1319 1320 1321 1322 1323

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1324 1325 1326 1327 1328
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1329 1330 1331 1332 1333 1334

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1335
    """
F
fengjiayi 已提交
1336
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1337
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1338 1339 1340 1341 1342
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1343 1344
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1345 1346 1347
    return out


F
fengjiayi 已提交
1348
def square_error_cost(input, label):
Y
Yu Yang 已提交
1349
    """
1350 1351
    **Square error cost layer**

1352 1353
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1368 1369
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1370 1371

    Returns:
G
guosheng 已提交
1372
        Variable: The tensor variable storing the element-wise squared error \
1373
                  difference of input and label.
1374 1375 1376 1377 1378 1379 1380 1381

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1382
    """
F
fengjiayi 已提交
1383
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1384
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1385 1386 1387 1388 1389 1390
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1391
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1392
    helper.append_op(
F
fengjiayi 已提交
1393 1394
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1395 1396 1397
    return square_out


Y
yi.wu 已提交
1398
@templatedoc()
Y
Yu Yang 已提交
1399 1400 1401 1402
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1403
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1404
    """
Y
yi.wu 已提交
1405
    **Chunk Evaluator**
Y
yi.wu 已提交
1406

Y
yangyaming 已提交
1407
    This function computes and outputs the precision, recall and
1408
    F1-score of chunk detection.
Y
yi.wu 已提交
1409

Y
yi.wu 已提交
1410 1411 1412 1413 1414 1415 1416 1417
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1418

Y
yi.wu 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1444

Y
yi.wu 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1469
    Args:
1470 1471 1472 1473 1474
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1475

Y
yi.wu 已提交
1476
    Returns:
Y
update  
yi.wu 已提交
1477 1478 1479
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1480

Y
yi.wu 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1493
    """
F
fengjiayi 已提交
1494
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1495 1496

    # prepare output
X
Xin Pan 已提交
1497 1498 1499 1500 1501 1502 1503
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1504 1505 1506 1507 1508 1509 1510 1511

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1512 1513 1514 1515
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1516 1517 1518
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1519 1520
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1521
        })
1522 1523
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1524 1525


1526
@templatedoc()
Y
Yu Yang 已提交
1527 1528 1529 1530 1531 1532 1533
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1534 1535
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1536 1537 1538 1539
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1540 1541 1542 1543 1544 1545 1546

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1560

1561 1562
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1563 1564 1565 1566 1567 1568 1569
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1570
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1581
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1582 1583 1584 1585 1586 1587
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1588
def sequence_softmax(input, use_cudnn=False, name=None):
1589 1590 1591
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1592
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1609 1610 1611
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1624 1625
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1626
    softmax_out = helper.create_variable_for_type_inference(dtype)
1627 1628 1629 1630 1631 1632 1633 1634
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1635
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1636
    """
1637
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1638
    has the same shape as the input.
Q
qiaolongfei 已提交
1639

1640 1641 1642 1643 1644 1645
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1646
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1647 1648 1649 1650 1651 1652 1653

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1654
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1655 1656 1657 1658 1659 1660 1661 1662

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1663 1664 1665
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1678 1679
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1680
    softmax_out = helper.create_variable_for_type_inference(dtype)
1681 1682 1683 1684 1685 1686 1687 1688
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1689 1690 1691
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1692 1693
           stride=1,
           padding=0,
1694
           dilation=1,
Y
Yu Yang 已提交
1695 1696 1697
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1698
           use_cudnn=True,
1699 1700
           act=None,
           name=None):
Y
Yu Yang 已提交
1701
    """
C
chengduoZH 已提交
1702
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1703 1704
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1705
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1706 1707 1708 1709 1710 1711 1712
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1713 1714 1715
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1716

1717
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1718

C
chengduoZH 已提交
1719 1720
    .. math::

C
refine  
chengduoZH 已提交
1721
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1722

T
tensor-tang 已提交
1723
    Where:
C
chengduoZH 已提交
1724

1725 1726 1727 1728 1729
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1730
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1731 1732 1733

    Example:

1734 1735
        - Input:

W
weixing02 已提交
1736
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1737

W
weixing02 已提交
1738
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1739

1740
        - Output:
T
tensor-tang 已提交
1741

W
weixing02 已提交
1742
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1743

C
chengduoZH 已提交
1744
        Where
1745 1746

        .. math::
C
chengduoZH 已提交
1747

W
weixing02 已提交
1748 1749
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1750 1751

    Args:
1752
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1753
        num_filters(int): The number of filter. It is as same as the output
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1782 1783
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1784 1785
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1786
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1787
            will be named automatically. Default: None
C
chengduoZH 已提交
1788 1789

    Returns:
G
guosheng 已提交
1790
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1791 1792
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1793
    Raises:
1794 1795
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1796

C
chengduoZH 已提交
1797 1798 1799
    Examples:
        .. code-block:: python

1800 1801
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1802 1803 1804
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1805
    assert param_attr is not False, "param_attr should not be False here."
1806
    l_type = 'conv2d'
X
xzl 已提交
1807 1808
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1809
        l_type = 'depthwise_conv2d'
1810 1811 1812 1813

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1814 1815 1816 1817 1818
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1819
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1820

C
chengduoZH 已提交
1821 1822 1823
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1824
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1825

C
chengduoZH 已提交
1826 1827
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1828 1829

    input_shape = input.shape
M
minqiyang 已提交
1830
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1831 1832

    def _get_default_param_initializer():
C
chengduo 已提交
1833 1834
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1835 1836 1837 1838 1839 1840 1841 1842
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1843
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1859
    helper.append_op(
1860
        type=l_type,
Y
Yu Yang 已提交
1861 1862 1863 1864 1865
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1866 1867 1868
        attrs={
            'strides': stride,
            'paddings': padding,
1869
            'dilations': dilation,
C
chengduoZH 已提交
1870
            'groups': groups,
1871
            'use_cudnn': use_cudnn,
1872
            'use_mkldnn': False,
C
chengduoZH 已提交
1873
        })
Y
Yu Yang 已提交
1874 1875 1876 1877 1878 1879

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1897 1898 1899 1900 1901 1902
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1912 1913
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1914 1915 1916
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1917
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1943
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1944 1945
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1946
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1947 1948
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1949
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1950 1951
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1952
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1953 1954 1955 1956 1957 1958
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1969 1970
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1971 1972
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1973
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1974
            will be named automatically. Default: None.
C
chengduoZH 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1987 1988
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1989 1990 1991
    """

    l_type = 'conv3d'
C
chengduo 已提交
1992
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2003
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2017 2018 2019
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2020 2021 2022 2023 2024 2025 2026 2027
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2028
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2043
            'use_mkldnn': False
C
chengduoZH 已提交
2044 2045
        })

2046
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2047 2048 2049 2050

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2051
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2052
    """
Y
yangyaming 已提交
2053 2054 2055
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2067
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2068 2069 2070 2071 2072
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2073
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2074 2075 2076 2077 2078 2079 2080

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2081 2082
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2083

L
Luo Tao 已提交
2084 2085
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2086
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2087
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2088
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2089 2090 2091 2092 2093 2094 2095

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2096

Y
yangyaming 已提交
2097
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2098 2099 2100 2101 2102
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2103 2104
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2105
    """
F
fengjiayi 已提交
2106
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2107
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2108 2109
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2110 2111 2112 2113 2114 2115

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2116 2117
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2118

Y
yangyaming 已提交
2119 2120 2121 2122 2123
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2124 2125 2126
    return pool_out


C
add doc  
chengduoZH 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2146
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2147 2148 2149 2150 2151
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2152
def sequence_first_step(input):
L
Luo Tao 已提交
2153
    """
L
Luo Tao 已提交
2154
    This function gets the first step of sequence.
L
Luo Tao 已提交
2155 2156 2157 2158

    .. code-block:: text

       x is a 1-level LoDTensor:
2159
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2160 2161 2162 2163 2164
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2165
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2166
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2167

L
Luo Tao 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2177

Y
yangyaming 已提交
2178
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2179 2180 2181
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2182 2183 2184
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2185
def sequence_last_step(input):
L
Luo Tao 已提交
2186
    """
L
Luo Tao 已提交
2187
    This function gets the last step of sequence.
L
Luo Tao 已提交
2188 2189 2190 2191

    .. code-block:: text

       x is a 1-level LoDTensor:
2192
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2193 2194 2195 2196 2197
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2198
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2199
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2200

L
Luo Tao 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2210

Y
yangyaming 已提交
2211
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2212 2213 2214
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2215 2216 2217
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2218 2219 2220 2221
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2222
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2223 2224 2225 2226 2227
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2228

Y
Yibing Liu 已提交
2229 2230
	- Case:

2231
            Given the input Variable **input**:
2232

2233 2234 2235
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2236

2237
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2238

2239
            the output Variable will be
2240

2241 2242 2243
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2244 2245

    NOTE: The first dimension size of **input**, **offset** and **length**
2246
          should be equal. The **offset** should start from 0.
2247

Y
Yibing Liu 已提交
2248
    Args:
2249
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2250
                         sequences.
Y
Yibing Liu 已提交
2251 2252 2253 2254 2255 2256
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2257
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2268
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2269 2270 2271 2272
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2273
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2288
@templatedoc()
Y
Yu Yang 已提交
2289
def pool2d(input,
C
chengduoZH 已提交
2290 2291
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2292 2293
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2294
           global_pooling=False,
C
chengduoZH 已提交
2295
           use_cudnn=True,
2296
           ceil_mode=False,
2297 2298
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2299
    """
F
fengjiayi 已提交
2300
    ${comment}
2301 2302

    Args:
2303 2304 2305
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2306
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2307
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2308 2309
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2310
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2311 2312 2313 2314 2315 2316
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2317 2318 2319
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2320
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2321
                        layer will be named automatically.
2322
        exclusive (bool): Whether to exclude padding points in average pooling
2323
                          mode, default is true
F
fengjiayi 已提交
2324

2325
    Returns:
F
fengjiayi 已提交
2326
        Variable: The pooling result.
F
fengjiayi 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2340 2341 2342 2343
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2344
                            global_pooling=False)
Y
Yu Yang 已提交
2345 2346 2347 2348 2349
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2350

C
chengduoZH 已提交
2351 2352 2353 2354 2355
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2356 2357 2358 2359
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2360 2361
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2362

C
Add doc  
chengduoZH 已提交
2363
    l_type = 'pool2d'
2364 2365

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2366
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2367
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2368 2369

    helper.append_op(
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2381 2382
            "use_mkldnn": False,
            "exclusive": exclusive,
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2396 2397
           name=None,
           exclusive=True):
2398 2399
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2400
    pooling configurations mentioned in input parameters.
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2413
        exclusive (bool): Whether to exclude padding points in average pooling
2414
                          mode, default is true
2415

2416
    Returns:
2417
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2418 2419 2420 2421 2422
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2423

C
chengduoZH 已提交
2424 2425 2426 2427 2428
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2429 2430 2431
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2432

C
chengduoZH 已提交
2433 2434
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2435

2436 2437
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2438
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2439
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2440 2441

    helper.append_op(
2442
        type=l_type,
Y
Yu Yang 已提交
2443 2444 2445 2446 2447 2448 2449
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2450
            "paddings": pool_padding,
2451
            "use_cudnn": use_cudnn,
2452
            "ceil_mode": ceil_mode,
2453 2454
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2467
               data_layout='NCHW',
Y
Yang Yang 已提交
2468
               in_place=False,
2469 2470
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2471
               moving_variance_name=None,
2472
               do_model_average_for_mean_and_var=False,
2473 2474
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2475
    """
Q
qiaolongfei 已提交
2476 2477 2478 2479
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2480

Q
qiaolongfei 已提交
2481
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2482

Q
qiaolongfei 已提交
2483 2484
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2485 2486 2487
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2500

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2514
    Args:
Q
qiaolongfei 已提交
2515
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2516 2517 2518 2519
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2520 2521 2522 2523 2524 2525 2526 2527
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2528
        data_layout(string, default NCHW): NCHW|NHWC
2529
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2530 2531 2532 2533
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2534
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2535
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2536 2537 2538 2539 2540
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2541 2542

    Returns:
Q
qiaolongfei 已提交
2543
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2544 2545 2546 2547 2548 2549 2550

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2551
    """
C
chengduo 已提交
2552
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2573 2574 2575
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2576 2577

    bias = helper.create_parameter(
2578
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2579 2580 2581
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2582

2583 2584
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2585 2586 2587
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2588
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2589
        shape=param_shape,
2590 2591 2592 2593 2594 2595 2596
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2597
            trainable=False,
W
wanghaoshuang 已提交
2598
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2599
        shape=param_shape,
2600 2601
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2602 2603 2604 2605 2606 2607

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2608 2609 2610 2611
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2612

X
Xin Pan 已提交
2613 2614
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2632 2633 2634 2635
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2636
            "use_mkldnn": False,
2637 2638
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2639
        })
Y
Yu Yang 已提交
2640 2641 2642 2643

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2644
@templatedoc()
G
guosheng 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2655
    ${comment}
G
guosheng 已提交
2656 2657 2658

    The formula is as follows:

Y
yuyang18 已提交
2659
    ..  math::
G
guosheng 已提交
2660 2661 2662 2663 2664 2665 2666

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2667 2668 2669 2670 2671 2672 2673 2674
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2675

G
guosheng 已提交
2676 2677
    Args:
        input(Variable): The input tensor variable.
2678
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2679
            normalization. Default True.
2680
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2681 2682
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2683
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2684
            Default 1.
2685
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2686
            division by zero. Default 1e-05.
G
guosheng 已提交
2687
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2688 2689
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2690 2691
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2692
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2693 2694
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2695
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2696
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2697
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2698 2699 2700
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2701 2702

    Returns:
Y
yuyang18 已提交
2703
        ${y_comment}
G
guosheng 已提交
2704 2705 2706

    Examples:

Y
yuyang18 已提交
2707 2708 2709
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2725
    if shift:
G
guosheng 已提交
2726 2727 2728 2729 2730 2731
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2732 2733 2734 2735 2736
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2830 2831 2832 2833
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2834 2835 2836
                     padding=0,
                     stride=1,
                     dilation=1,
2837
                     groups=None,
C
caoying03 已提交
2838
                     param_attr=None,
2839
                     bias_attr=None,
C
chengduoZH 已提交
2840
                     use_cudnn=True,
2841
                     act=None,
C
caoying03 已提交
2842
                     name=None):
Y
Yu Yang 已提交
2843
    """
2844 2845 2846 2847 2848 2849 2850 2851
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2852 2853
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2854 2855 2856
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2857 2858 2859 2860 2861

    For each input :math:`X`, the equation is:

    .. math::

2862
        Out = \sigma (W \\ast X + b)
2863

2864
    Where:
2865 2866 2867

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2868 2869 2870 2871
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2872

2873 2874 2875 2876
    Example:

        - Input:

2877
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2878

2879
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2880 2881 2882

        - Output:

2883
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2884 2885

        Where
Y
Yu Yang 已提交
2886

2887 2888
        .. math::

2889 2890 2891 2892
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2893 2894

    Args:
2895 2896 2897 2898
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2899 2900 2901 2902
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2931
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2932 2933 2934
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2935
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2936
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2937 2938

    Returns:
2939
        Variable: The tensor variable storing the convolution transpose result.
2940 2941

    Raises:
2942 2943
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2944 2945 2946 2947

    Examples:
       .. code-block:: python

2948 2949
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2950
    """
C
chengduo 已提交
2951
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2952 2953 2954 2955 2956 2957 2958 2959
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2960 2961 2962
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2963 2964 2965
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2966

C
chengduoZH 已提交
2967 2968
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2969

Y
Yu Yang 已提交
2970 2971 2972 2973 2974
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2975

Y
Yu Yang 已提交
2976 2977
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2978

C
chengduoZH 已提交
2979
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2980
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2981
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2982
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2983
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2984 2985 2986
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2987

2988 2989 2990 2991 2992 2993 2994
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2995
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2996
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2997

Y
Yu Yang 已提交
2998 2999 3000
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3001
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3002
    helper.append_op(
3003
        type=op_type,
Y
Yu Yang 已提交
3004 3005
        inputs={'Input': [input],
                'Filter': [img_filter]},
3006
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3007
        attrs={
3008
            'output_size': output_size,
3009 3010 3011 3012 3013
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3014 3015
        })

3016 3017 3018
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3019 3020


3021
def conv3d_transpose(input,
Y
Yu Yang 已提交
3022 3023 3024
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3025 3026 3027
                     padding=0,
                     stride=1,
                     dilation=1,
3028
                     groups=None,
C
caoying03 已提交
3029
                     param_attr=None,
3030
                     bias_attr=None,
C
chengduoZH 已提交
3031
                     use_cudnn=True,
3032
                     act=None,
C
caoying03 已提交
3033
                     name=None):
Y
Yu Yang 已提交
3034
    """
3035
    **Convlution3D transpose layer**
3036

3037
    The convolution3D transpose layer calculates the output based on the input,
3038
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3039 3040 3041 3042 3043 3044
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3045 3046 3047
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3048 3049 3050 3051 3052

    For each input :math:`X`, the equation is:

    .. math::

3053
        Out = \sigma (W \\ast X + b)
3054 3055 3056

    In the above equation:

3057 3058
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3059 3060 3061 3062
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3063

3064 3065 3066 3067
    Example:

        - Input:

3068
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3069

3070
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3071 3072 3073

        - Output:

3074
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3075 3076

        Where
Y
Yu Yang 已提交
3077

3078 3079
        .. math::

3080 3081 3082
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3083 3084

    Args:
3085
        input(Variable): The input image with [N, C, D, H, W] format.
3086 3087 3088
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3089
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3090 3091
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3092
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3093 3094 3095
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3096 3097
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3098
        stride(int|tuple): The stride size. If stride is a tuple, it must
3099 3100
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3101
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3102 3103 3104
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3105 3106 3107 3108 3109
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3119 3120
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3121 3122
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3123 3124
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3125 3126

    Returns:
3127
        Variable: The tensor variable storing the convolution transpose result.
3128 3129

    Raises:
3130 3131
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3132 3133 3134 3135

    Examples:
       .. code-block:: python

3136 3137
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3138
    """
C
chengduo 已提交
3139
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3140 3141
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3142
    if not isinstance(input, Variable):
3143
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3144 3145
    input_channel = input.shape[1]

3146 3147 3148
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3149

C
chengduoZH 已提交
3150 3151 3152
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3153 3154 3155 3156 3157 3158
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3159 3160 3161
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3162

3163
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3164
                         padding[0] - 1) // dilation[0] + 1
3165
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3166
                         padding[1] - 1) // dilation[1] + 1
3167
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3168
                         padding[2] - 1) // dilation[2] + 1
3169
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3170
    else:
3171 3172
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3173

3174
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3175
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3176 3177 3178
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3179
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3180
    helper.append_op(
3181
        type=l_type,
Y
Yu Yang 已提交
3182 3183
        inputs={'Input': [input],
                'Filter': [img_filter]},
3184
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3185 3186 3187 3188
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3189
            'groups': groups,
C
chengduoZH 已提交
3190 3191
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3192

3193 3194
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3195
    return out
Y
yangyaming 已提交
3196 3197


Y
yangyaming 已提交
3198
def sequence_expand(x, y, ref_level=-1, name=None):
3199
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3200 3201 3202 3203
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3204 3205 3206 3207 3208

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3209
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3210
                x.data = [[a], [b], [c], [d]]
3211 3212 3213
                x.dims = [4, 1]

            y is a LoDTensor:
3214 3215
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3216

Y
yangyaming 已提交
3217
            ref_level: 0
3218

Y
yangyaming 已提交
3219
            then output is a 1-level LoDTensor:
3220
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3221
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3222 3223 3224 3225
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3226
                x.data = [[a], [b], [c]]
3227 3228 3229
                x.dims = [3, 1]

            y is a LoDTensor:
3230
                y.lod = [[2, 0, 3]]
3231

Y
yangyaming 已提交
3232
            ref_level: -1
3233

Y
yangyaming 已提交
3234 3235 3236
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3237 3238 3239
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3240 3241
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3242
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3243
                        will be named automatically.
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3254
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3255
    """
Y
yangyaming 已提交
3256
    helper = LayerHelper('sequence_expand', input=x, **locals())
3257
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3258
    tmp = helper.create_variable_for_type_inference(dtype)
3259
    helper.append_op(
Y
yangyaming 已提交
3260 3261 3262 3263 3264
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3265
    return tmp
3266 3267


C
chengduo 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3324
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3325 3326 3327 3328 3329 3330 3331 3332
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3333
@templatedoc()
3334
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3335 3336 3337 3338 3339
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3340 3341 3342
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3343
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3344 3345 3346 3347
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3348 3349 3350
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3351

F
fengjiayi 已提交
3352
    Returns:
M
minqiyang 已提交
3353
        Variable: The padded sequence batch and the original lengths before
3354
                  padding. All sequences has the same length.
M
minqiyang 已提交
3355

F
fengjiayi 已提交
3356 3357 3358 3359 3360 3361 3362
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3363
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3364
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3365 3366 3367 3368 3369
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3370 3371
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3372 3373 3374 3375

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3376 3377 3378 3379 3380 3381
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3382 3383
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3384
        attrs={'padded_length': maxlen})
3385
    return out, length
F
fengjiayi 已提交
3386 3387


3388
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3389
    """
3390
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3391

3392 3393
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3394 3395 3396 3397 3398 3399 3400 3401 3402
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3403 3404 3405
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3406
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3407 3408 3409 3410 3411 3412

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3413
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3414 3415 3416 3417 3418 3419

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3420 3421
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3436
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3448 3449 3450 3451 3452 3453 3454 3455 3456
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3457 3458
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3459 3460 3461

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3462 3463

    This layer does the search in beams for one time step. Specifically, it
3464 3465 3466 3467 3468 3469
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3470

3471 3472 3473 3474 3475 3476 3477 3478
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3479

3480
    Args:
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3506

3507
    Returns:
3508 3509
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3510 3511 3512 3513

    Examples:
        .. code-block:: python

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3531 3532 3533 3534
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3535 3536 3537
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3538 3539 3540 3541 3542

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3543
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3561 3562 3563 3564 3565 3566 3567
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3568

3569 3570 3571 3572 3573 3574 3575 3576 3577
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3578

3579 3580 3581 3582 3583 3584
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3585

3586 3587 3588 3589 3590 3591 3592 3593
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3594 3595
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3611 3612 3613 3614
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3615
              param_attr=None,
C
caoying03 已提交
3616 3617
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3618 3619 3620 3621
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3622
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3623

3624
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3625

3626
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3627

3628
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3629 3630 3631

            h_t & = o_t tanh(c_t)

3632 3633 3634 3635 3636 3637
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3638 3639 3640

        .. math::

3641
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3642 3643 3644 3645 3646 3647 3648 3649

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3650
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3651 3652

    Args:
Y
yangyaming 已提交
3653 3654 3655 3656 3657 3658
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3659
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3672 3673
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3674 3675

    Returns:
Y
yangyaming 已提交
3676
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3677 3678

    Raises:
3679 3680 3681 3682
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3683 3684 3685 3686 3687 3688

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3689
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3690
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3691
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3708
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3709 3710 3711 3712
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3713 3714
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3715 3716 3717
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3718
    size = cell_t_prev.shape[1]
3719
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3720 3721
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3722
                param_attr=param_attr,
3723
                bias_attr=bias_attr)
Y
yangyaming 已提交
3724
    dtype = x_t.dtype
X
Xin Pan 已提交
3725 3726
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3736
    return h, c
G
guosheng 已提交
3737 3738


C
caoying03 已提交
3739
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3740
    """
Y
yangyaming 已提交
3741
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3742 3743 3744

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3745
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3746 3747
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3748 3749
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3750
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3751
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3752
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3753 3754
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3755 3756 3757

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3758

G
guosheng 已提交
3759 3760 3761 3762 3763 3764
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3765
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3766 3767 3768 3769
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3770 3771 3772 3773

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3774
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3775 3776 3777
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3778 3779
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3780
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3781 3782
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3783 3784 3785 3786 3787
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3788
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3789 3790 3791 3792
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3793 3794


C
caoying03 已提交
3795
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3796
    """
Y
Yibing Liu 已提交
3797
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3798 3799 3800

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3801 3802 3803
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3804
            must be in the range :math:`[-rank(input), rank(input))`. If
3805
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3806
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3807 3808
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3809
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3810
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3811
                       will be named automatically.
G
guosheng 已提交
3812 3813

    Returns:
Y
Yibing Liu 已提交
3814
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3815

G
guosheng 已提交
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3826 3827
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3828 3829 3830 3831 3832 3833 3834

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3835 3836
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3837
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3838 3839
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3840 3841 3842 3843 3844
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3845
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3846 3847 3848 3849
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3850 3851


C
caoying03 已提交
3852
def reduce_max(input, dim=None, keep_dim=False, name=None):
3853
    """
Y
yangyaming 已提交
3854
    Computes the maximum of tensor elements over the given dimension.
3855 3856 3857

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3858
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3859 3860 3861
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3862
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3863 3864
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3865
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3866 3867
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3868 3869 3870

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3871

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3883 3884 3885 3886 3887 3888 3889

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3890 3891
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3892
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3893 3894
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3895 3896 3897 3898 3899
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3900
            'dim': dim if dim != None else [0],
3901 3902 3903 3904 3905 3906
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3907
def reduce_min(input, dim=None, keep_dim=False, name=None):
3908
    """
Y
yangyaming 已提交
3909
    Computes the minimum of tensor elements over the given dimension.
3910 3911 3912

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3913
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3914 3915 3916
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3917
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3918 3919
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3920
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3921 3922
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3923 3924 3925

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3926

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3938 3939 3940 3941 3942 3943 3944

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3945 3946
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3947
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3948 3949
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3950 3951 3952 3953 3954
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3955
            'dim': dim if dim != None else [0],
3956 3957 3958 3959
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3960 3961


3962 3963 3964 3965 3966 3967
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3968
        dim (list|int|None): The dimensions along which the product is performed. If
3969 3970
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3971 3972
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3973 3974 3975
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3976
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3977
            layer will be named automatically.
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3992
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3993
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3994 3995 3996 3997 3998 3999 4000

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4001 4002
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4003
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4004 4005
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4006 4007 4008 4009 4010
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4011
            'dim': dim if dim != None else [0],
4012 4013 4014 4015 4016 4017
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4018
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4019
    """
C
caoying03 已提交
4020
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4021 4022 4023

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4024 4025 4026 4027 4028
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4029
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4030
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4031
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4032 4033
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4034 4035

    Returns:
D
dzhwinter 已提交
4036
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4037 4038 4039 4040 4041 4042 4043 4044 4045

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4046 4047
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4063
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4086
    .. math::
4087 4088

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4089 4090 4091 4092 4093

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4094
        x(Variable|list): The input tensor to l2_normalize layer.
4095
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4096 4097
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4098
        epsilon(float): The epsilon value is used to avoid division by zero, \
4099
            the defalut value is 1e-10.
4100
        name(str|None): A name for this layer(optional). If set None, the layer \
4101
            will be named automatically.
C
caoying03 已提交
4102 4103

    Returns:
4104
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4105 4106

    Examples:
4107

C
caoying03 已提交
4108 4109
        .. code-block:: python

4110 4111 4112 4113
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4114 4115
    """

F
fengjiayi 已提交
4116 4117
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4118 4119
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4120 4121
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4122
    helper.append_op(
4123 4124 4125 4126
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4127
        attrs={
4128 4129
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4130 4131
        })
    return out
4132 4133


S
sneaxiy 已提交
4134
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4135
    """
Y
ying 已提交
4136 4137 4138 4139
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4140

C
chengduoZH 已提交
4141
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4142
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4143

4144 4145 4146 4147 4148
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4149
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4150

C
chengduoZH 已提交
4151
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4152
      performs in the following way.
G
guosheng 已提交
4153

4154
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4155
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4156
        last two dimensions and a batched matrix multiply supporting broadcast
4157
        applies on the two tensors.
G
guosheng 已提交
4158

Y
ying 已提交
4159 4160
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4161
    removed after matrix multiplication.
G
guosheng 已提交
4162 4163 4164

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4165 4166 4167
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4168
        alpha (float): The scale of output. Default 1.0.
4169
        name(str|None): A name for this layer(optional). If set None, the layer
4170
            will be named automatically.
G
guosheng 已提交
4171 4172

    Returns:
4173
        Variable: The product Tensor variable.
G
guosheng 已提交
4174

G
guosheng 已提交
4175 4176 4177
    Examples:
        .. code-block:: python

4178
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4179 4180
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4181

4182 4183
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4184

4185 4186
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4187

4188 4189
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4190 4191 4192 4193

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4194 4195
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4196

Y
ying 已提交
4197
            # x: [M], y: [N]
4198
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4199
    """
Y
ying 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4212
            y_shape = y_shape + [1]
Y
ying 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4229
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4230
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4231
    helper.append_op(
4232 4233 4234 4235
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4236 4237 4238
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4239
            'alpha': float(alpha),
S
sneaxiy 已提交
4240
        })
4241
    return out
4242 4243


4244
def topk(input, k, name=None):
Q
qingqing01 已提交
4245 4246 4247 4248
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4249
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4250 4251 4252 4253 4254 4255
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4277 4278 4279
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4280
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4281
                 of input.
4282
        name(str|None): A name for this layer(optional). If set None, the layer
4283
                       will be named automatically.
F
fengjiayi 已提交
4284
                       Default: None
Q
qingqing01 已提交
4285 4286

    Returns:
4287 4288 4289
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4290
        within the last dimension of input.
Q
qingqing01 已提交
4291

F
fengjiayi 已提交
4292 4293
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4294 4295 4296 4297 4298 4299 4300

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4301 4302
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4314
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4315
    """
Y
ying 已提交
4316 4317 4318 4319 4320 4321 4322 4323 4324
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4325

Y
ying 已提交
4326
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4327

4328
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4329 4330
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4331
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4332

4333
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4334 4335
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4336

4337 4338 4339
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4340
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4341
                          the length of reference string.
4342
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4343
                                     calculating edit distance.
4344
        name (str): The name of this layer. It is optional.
4345

W
wanghaoshuang 已提交
4346
    Returns:
W
wanghaoshuang 已提交
4347
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4348 4349 4350 4351

    Examples:
        .. code-block:: python

T
tink2123 已提交
4352 4353
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4354
            cost = fluid.layers.edit_distance(input=x,label=y)
4355
    """
4356
    helper = LayerHelper("edit_distance", **locals())
4357

4358
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4359
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4360 4361
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4362 4363 4364 4365 4366

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4367
            attrs={"tokens": ignored_tokens})
4368 4369 4370 4371 4372
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4373
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4374
            attrs={"tokens": ignored_tokens})
4375 4376
        label = erased_label

4377
    # edit distance op
X
Xin Pan 已提交
4378 4379
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4380 4381 4382 4383
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4384 4385
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4386 4387
        attrs={"normalized": normalized})

4388
    return edit_distance_out, sequence_num
4389 4390 4391 4392 4393


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4394

Y
ying 已提交
4395 4396 4397 4398
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4416
        input.lod = [[4, 4]]
W
whs 已提交
4417 4418
      
        Computation:
4419

W
whs 已提交
4420 4421 4422 4423 4424 4425
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4426 4427 4428 4429 4430

        output.data = [[2],
                       [1],
                       [3]]

4431
        output.lod = [[2, 1]]
4432

W
whs 已提交
4433

4434 4435
    Args:

Y
ying 已提交
4436 4437 4438 4439 4440 4441 4442 4443 4444
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4445
        name (str): The name of this layer. It is optional.
4446 4447

    Returns:
W
whs 已提交
4448 4449 4450 4451
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4452 4453 4454 4455 4456

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4457

4458
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4459
    """
4460
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4461
    _, topk_indices = topk(input, k=1)
4462 4463

    # ctc align op
X
Xin Pan 已提交
4464
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4465 4466 4467
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4468
        outputs={"Output": [ctc_out]},
4469 4470
        attrs={"merge_repeated": True,
               "blank": blank})
4471
    return ctc_out
4472 4473


W
Wu Yi 已提交
4474
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4475
    """
4476 4477
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4478
    to compute Connectionist Temporal Classification (CTC) loss.
4479 4480
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4481 4482 4483
    input tensor.

    Args:
4484
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4485 4486 4487 4488
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4489
       label (Variable): The ground truth of variable-length sequence,
4490 4491 4492
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4493 4494
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4495 4496 4497
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4498
         follewed by a mean_op.
W
Wu Yi 已提交
4499
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4500 4501

    Returns:
4502 4503
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4504 4505

    Examples:
4506

W
wanghaoshuang 已提交
4507
        .. code-block:: python
4508

4509 4510 4511
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4512 4513

    """
F
fengjiayi 已提交
4514
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4515 4516
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4517 4518 4519 4520 4521 4522
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4523 4524 4525 4526 4527
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4528
    return loss_out
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4544 4545 4546
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4547 4548 4549 4550 4551
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4552

4553
            out.lod  = [[0, 1, 3]]
4554 4555 4556 4557

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4558 4559 4560 4561 4562 4563 4564
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4565 4566 4567

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4568 4569

    Returns:
4570

4571 4572 4573 4574 4575
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4576
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4577
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4578 4579
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4580
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4581 4582 4583 4584 4585 4586
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4587 4588


4589 4590 4591 4592
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4593 4594 4595 4596 4597 4598
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4599
        num_neg_samples=None,
4600 4601 4602
        name=None,
        sampler="uniform",
        custom_dist=None,
4603 4604
        seed=0,
        is_sparse=False):
4605 4606 4607 4608 4609 4610 4611
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4612 4613
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4614
            sample is 1.0.
C
chengduo 已提交
4615 4616 4617 4618 4619 4620 4621 4622 4623
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4624
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4625 4626
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4627 4628 4629
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4630
        custom_dist (float[]): A float[] with size=num_total_classes.
4631 4632 4633 4634
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4635
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4636

4637
    Returns:
Y
Yibing Liu 已提交
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4665 4666 4667 4668 4669 4670 4671 4672 4673

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4674

4675
    """
Y
Yang Yu 已提交
4676 4677 4678
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4679 4680

    dim = input.shape[1]
Y
Yang Yu 已提交
4681 4682 4683 4684 4685 4686
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4687
    inputs = {}
C
chengduo 已提交
4688 4689 4690 4691 4692 4693 4694
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4695 4696 4697
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4698

4699 4700 4701 4702
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4703 4704 4705 4706 4707 4708 4709

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4762 4763 4764 4765
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4766 4767 4768 4769 4770
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4771 4772
    attrs = {
        'num_total_classes': int(num_total_classes),
4773 4774
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4775 4776
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4777
    }
Y
Yang Yu 已提交
4778 4779 4780

    helper.append_op(
        type='nce',
C
chengduo 已提交
4781
        inputs=inputs,
Y
Yang Yu 已提交
4782 4783 4784 4785 4786 4787
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4788
    return cost / (num_neg_samples + 1)
4789 4790


C
chengduo 已提交
4791 4792
def hsigmoid(input,
             label,
4793
             num_classes,
C
chengduo 已提交
4794 4795
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4796
             name=None,
4797 4798 4799
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4800
             is_sparse=False):
W
weixing02 已提交
4801 4802
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4803
    process of language model. This operator organizes the classes into a
4804 4805
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4806 4807 4808 4809 4810 4811
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4812
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4813
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4814

4815 4816 4817 4818 4819 4820 4821 4822 4823
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4824
    Args:
M
minqiyang 已提交
4825
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4826 4827 4828 4829
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4830 4831 4832
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4844 4845 4846 4847 4848 4849 4850
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4851
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4852 4853
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4854 4855

    Returns:
J
JiabinYang 已提交
4856
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4857 4858 4859 4860 4861

    Examples:

        .. code-block:: python

G
guosheng 已提交
4862 4863 4864
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4865 4866 4867 4868
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4869 4870
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4871
    dim = input.shape[1]
4872
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4873 4874 4875
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4876 4877 4878 4879
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4880 4881
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4882 4883 4884
    else:
        pass

J
JiabinYang 已提交
4885 4886
    weights = None

4887
    if not is_custom:
J
JiabinYang 已提交
4888 4889 4890 4891 4892 4893 4894 4895
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4896
            shape=[num_classes, dim],
J
JiabinYang 已提交
4897 4898
            is_bias=False,
            dtype=input.dtype)
4899 4900 4901
    inputs = {
        "X": input,
        "W": weights,
4902 4903
        "PTable": path_table,
        "PathCode": path_code,
4904 4905
        "Label": label
    }
W
weixing02 已提交
4906
    if helper.bias_attr:
4907
        if not is_custom:
J
JiabinYang 已提交
4908 4909
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4910
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4911 4912 4913 4914 4915 4916
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4917
                shape=[num_classes, 1],
J
JiabinYang 已提交
4918 4919 4920
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4921 4922
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4923
        inputs=inputs,
W
weixing02 已提交
4924 4925
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4926 4927
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4928 4929 4930
    return out


Y
fix ci.  
ying 已提交
4931
def transpose(x, perm, name=None):
Y
ying 已提交
4932 4933 4934 4935 4936 4937 4938
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4939 4940 4941
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4942 4943 4944 4945 4946 4947 4948

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4949
            # use append_batch_size=False to avoid prepending extra
4950
            # batch size in shape
4951
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4952
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4953
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4954 4955
    """

Y
fix ci.  
ying 已提交
4956
    if len(perm) != len(x.shape):
Y
ying 已提交
4957 4958 4959
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4960 4961 4962 4963 4964 4965
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4966 4967

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4968 4969
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4970
    helper.append_op(
4971
        type='transpose2',
Y
fix ci.  
ying 已提交
4972
        inputs={'X': [x]},
4973 4974
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4975 4976
        attrs={'axis': perm})
    return out
4977 4978


4979 4980 4981 4982 4983 4984 4985
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4986
    """
4987 4988 4989 4990 4991 4992 4993
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5022 5023 5024 5025 5026 5027 5028 5029 5030
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5031 5032 5033
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5034 5035 5036 5037 5038
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5066 5067 5068
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5081
            output.dims = {8, 8}
5082

5083
            output.lod = [[4, 4]]
5084

D
dzhwinter 已提交
5085
     Examples:
5086 5087 5088

        .. code-block:: python

5089 5090
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5091 5092

    """
W
wanghaoshuang 已提交
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5103 5104 5105 5106 5107 5108 5109
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5110
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5111
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5112
    helper.append_op(
5113
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5114
    return out
5115 5116


Y
yuyang18 已提交
5117
@templatedoc()
5118
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5119 5120
    """
    ${comment}
5121 5122

    Args:
Y
yuyang18 已提交
5123
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5124 5125
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5126 5127 5128 5129 5130
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5131
        ${out_comment}.
5132 5133

    Examples:
Y
yuyang18 已提交
5134 5135 5136 5137
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5138 5139 5140 5141 5142 5143
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5144
    out = helper.create_variable_for_type_inference(dtype)
5145 5146 5147 5148 5149
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5150
    return helper.append_activation(out)
5151 5152


Y
yuyang18 已提交
5153
@templatedoc()
5154 5155
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5156 5157 5158 5159 5160 5161 5162
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5163 5164

    Args:
Y
yuyang18 已提交
5165 5166
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5167 5168

    Returns:
Y
yuyang18 已提交
5169
        ${out_comment}.
5170 5171
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5172 5173 5174 5175 5176

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5177
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5178 5179 5180 5181 5182 5183
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5184 5185


5186 5187 5188
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
5189
                               ignore_index=-100,
5190 5191
                               numeric_stable_mode=False,
                               return_softmax=False):
5192 5193
    """
    **Softmax With Cross Entropy Operator.**
5194

5195 5196 5197 5198
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5199

5200 5201 5202
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5203

5204 5205 5206
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5207

5208
    The equation is as follows:
5209

5210
    1) Hard label (one-hot label, so every sample has exactly one class)
5211

5212 5213 5214 5215
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5216

5217 5218 5219
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5220

5221 5222 5223 5224
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5225 5226 5227
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5228

S
sneaxiy 已提交
5229 5230 5231 5232 5233 5234 5235 5236
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5237 5238 5239 5240 5241 5242 5243 5244
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5245 5246
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5247
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5248 5249 5250
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5251 5252 5253
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5254
                                    stable algorithm. Default: False
5255
        return_softmax (bool): A flag indicating whether to return the softmax
5256
                               along with the cross entropy loss. Default: False
5257

5258
    Returns:
5259 5260 5261 5262
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5263
                              2-D tensor with shape [N x K].
5264 5265 5266 5267 5268 5269 5270

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5271 5272
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5273 5274
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5275 5276
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5277 5278 5279 5280 5281 5282
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5283 5284 5285 5286 5287
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5288 5289 5290 5291

    if return_softmax:
        return loss, softmax

5292 5293 5294 5295 5296
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5297 5298
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5299
    For each instance, it computes the smooth L1 loss element by element first
5300
    and then sums all the losses. So the shape of ouput Variable is
5301
    [batch_size, 1].
5302

5303 5304
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5305
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5306
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5307
            L1 loss op with same shape as :attr:`x`.
5308
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5309 5310
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5311
            by this tensor element by element.
5312
        outside_weight (Variable|None): A tensor with rank at least 2. This
5313 5314
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5315
            element by element.
5316
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5317 5318
           scalar with default value 1.0.

5319
    Returns:
5320
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5321 5322 5323 5324 5325

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5326 5327
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5328
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5329
            out = fluid.layers.smooth_l1(x=fc, y=label)
5330
    """
5331

5332
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5333 5334
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5347 5348 5349 5350


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5351
    This layer creates the one-hot representations for input indices.
5352 5353

    Args:
Y
Yibing Liu 已提交
5354 5355
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5356 5357

    Returns:
Y
Yibing Liu 已提交
5358
        Variable: The one-hot representations of input.
5359 5360

    Examples:
C
caoying03 已提交
5361
        .. code-block:: python
5362

Y
Yibing Liu 已提交
5363 5364
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5365 5366
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5367
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5368 5369 5370 5371 5372 5373
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5374 5375


Y
Yu Yang 已提交
5376
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5377
    """
Y
yi.wu 已提交
5378 5379 5380
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5381 5382 5383 5384 5385 5386

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5387 5388
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5389 5390 5391 5392 5393 5394

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5395 5396
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5397 5398
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5399 5400 5401 5402 5403
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5404
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5405
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5406 5407
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5408 5409
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5410 5411 5412
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5413 5414


5415
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5416
    """
C
caoying03 已提交
5417 5418
    Gives a new shape to the input Tensor without changing its data.

5419 5420 5421 5422 5423
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5424

5425
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5426

5427 5428 5429 5430
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5431
    2. 0 means the actual dimension value is going to be copied from the
5432 5433 5434 5435
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5436 5437

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5438
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5439
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5440

5441
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5442 5443
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5444 5445
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5446
    dimensions.
C
caoying03 已提交
5447

5448
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5449 5450 5451 5452
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5453 5454

    Args:
5455
        x(variable): The input tensor.
C
caoying03 已提交
5456 5457
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5458 5459 5460 5461 5462
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5463 5464
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5465 5466 5467 5468 5469 5470 5471
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5472
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5473

5474
    Returns:
G
guosheng 已提交
5475 5476 5477 5478
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5479

X
Xin Pan 已提交
5480 5481 5482
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5483 5484
    Examples:
        .. code-block:: python
G
guosheng 已提交
5485

5486
            data = fluid.layers.data(
5487
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5488
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5489
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5490 5491 5492
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5493
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5494 5495 5496 5497 5498
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5499

5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5515
    helper = LayerHelper("reshape2", **locals())
5516 5517
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5518
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5519
    helper.append_op(
5520
        type="reshape2",
X
Xin Pan 已提交
5521
        inputs=inputs,
D
dzhwinter 已提交
5522
        attrs={"shape": shape},
5523 5524
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5525

D
dzhwinter 已提交
5526
    return helper.append_activation(out)
5527

5528

5529
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5530
    """
M
minqiyang 已提交
5531 5532 5533
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5534
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5535

Y
Yibing Liu 已提交
5536 5537
    Examples:
    Case 1:
M
minqiyang 已提交
5538
      Given
Y
Yibing Liu 已提交
5539 5540 5541 5542 5543 5544 5545 5546
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5547
        and
Y
Yibing Liu 已提交
5548 5549 5550
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5551

Y
Yibing Liu 已提交
5552
    Args:
5553
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5554
        axes (list): List of integers, indicating the dimensions to be squeezed.
5555
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5556 5557 5558 5559 5560 5561 5562 5563

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5564
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5565 5566
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5567 5568
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5569
    helper.append_op(
5570
        type="squeeze2",
5571
        inputs={"X": input},
Y
Yibing Liu 已提交
5572
        attrs={"axes": axes},
5573 5574
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5575

5576 5577 5578
    return out


5579
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5580
    """
M
minqiyang 已提交
5581 5582 5583
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5584

M
minqiyang 已提交
5585 5586
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5587
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5588

Y
Yibing Liu 已提交
5589
    Args:
5590
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5591
        axes (list): List of integers, indicating the dimensions to be inserted.
5592
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5593 5594 5595 5596 5597 5598 5599 5600

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5601
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5602 5603
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5604 5605
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5606
    helper.append_op(
5607
        type="unsqueeze2",
5608
        inputs={"X": input},
Y
Yibing Liu 已提交
5609
        attrs={"axes": axes},
5610 5611
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5612

5613 5614
    return out

5615

Y
yangyaming 已提交
5616
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5617
    """
Y
Yibing Liu 已提交
5618
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5619 5620 5621 5622
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5623
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5624 5625 5626 5627 5628 5629

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5630
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5631 5632 5633
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5634
            target_lod: [4, 2]
Y
yangyaming 已提交
5635 5636

            then we get a 1-level LoDTensor:
5637
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5638 5639 5640 5641 5642 5643
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5644
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5645 5646 5647 5648
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5649
                y.data = [[2, 4]]
Y
yangyaming 已提交
5650 5651 5652
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5653
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5654 5655 5656 5657 5658 5659
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5660
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5661 5662 5663 5664
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5665
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5666 5667 5668 5669
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5670
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5671 5672 5673 5674 5675
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5676
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5677
                           from :attr:`y`.
Y
yangyaming 已提交
5678
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5679
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5680 5681

    Returns:
Y
Yibing Liu 已提交
5682
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5683 5684

    Raises:
Y
Yibing Liu 已提交
5685
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5686 5687 5688 5689 5690 5691 5692 5693 5694

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5695
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5721
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5750 5751
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5764 5765 5766
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5780 5781 5782 5783


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5784
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5785
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5786

G
guosheng 已提交
5787 5788 5789 5790
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5813
                         The length of :attr:paddings must be
G
guosheng 已提交
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5824

G
guosheng 已提交
5825 5826 5827 5828 5829 5830
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5831
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5832 5833 5834 5835 5836 5837 5838
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5839 5840


C
chengduo 已提交
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5911
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5912 5913 5914 5915 5916 5917 5918 5919 5920
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5921 5922 5923 5924 5925 5926 5927
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5928 5929
    called label-smoothing regularization (LSR).

5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5953
                              be :math:`(1, class\_num)`.
5954 5955
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5956
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5976
    smooth_label = helper.create_variable_for_type_inference(dtype)
5977 5978 5979 5980 5981 5982 5983
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5984 5985


W
wopeizl 已提交
5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6022 6023


J
jerrywgz 已提交
6024 6025 6026 6027 6028 6029
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6030 6031
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6048 6049 6050
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6051 6052 6053 6054 6055 6056
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6057
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6098 6099
        .. code-block:: python

W
whs 已提交
6100 6101 6102 6103
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6104
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6105 6106 6107 6108 6109 6110
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6111 6112


6113 6114 6115 6116
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6117 6118
                 resample='BILINEAR',
                 actual_shape=None):
6119
    """
Q
qiaolongfei 已提交
6120
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6121

6122
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6123 6124 6125
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6126

6127
        'BILINEAR' : Bilinear interpolation
6128
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6129

6130
    Args:
6131
        input (Variable): The input tensor of image resize layer,
6132 6133
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6134
        out_shape(list|tuple|Variable|None): Output shape of image resize
6135 6136
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6137
        scale(float|None): The multiplier for the input height or width.
6138 6139 6140
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6141 6142
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6143
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6144
                       currently.
6145
                       Default: 'BILINEAR'
6146 6147 6148
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6149
                                :attr:`out_shape` and :attr:`scale` specifying
6150 6151 6152 6153 6154 6155 6156
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6157 6158
                                constructing stage.
                                Default: None
6159 6160

    Returns:
Q
update  
qiaolongfei 已提交
6161 6162
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6163

6164 6165 6166
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6167
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6168 6169 6170 6171
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6172 6173 6174
    Examples:
        .. code-block:: python

6175
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6176
    """
6177 6178 6179 6180
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6181 6182
    if resample not in resample_methods:
        raise ValueError(
6183
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6184
        )
6185
    resample_type = resample_methods[resample]
6186
    if out_shape is None and scale is None:
6187
        raise ValueError("One of out_shape and scale must not be None.")
6188
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6189
    dtype = helper.input_dtype()
6190 6191 6192 6193

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6194 6195 6196
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6197
    if out_shape is not None:
6198 6199 6200 6201
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6202
            inputs['OutSize'] = out_shape
6203 6204 6205 6206 6207 6208 6209 6210
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6211 6212 6213 6214
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6215 6216 6217 6218 6219
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6220
    out = helper.create_variable_for_type_inference(dtype)
6221
    helper.append_op(
6222
        type='{}_interp'.format(resample_type),
6223
        inputs=inputs,
6224
        outputs={"Out": out},
6225 6226 6227
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6228
    return out
F
stash  
fengjiayi 已提交
6229 6230


6231
@templatedoc(op_type="bilinear_interp")
6232 6233 6234 6235 6236
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6237
    """
6238 6239
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6240 6241
    in priority order.

6242 6243 6244 6245
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6246 6247
    again in the other direction.

6248
    For details of bilinear interpolation, please refer to Wikipedia:
6249
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6250 6251 6252 6253 6254

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6255

Y
yuyang18 已提交
6256 6257 6258 6259 6260
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6261 6262 6263
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6264
                                :attr:`out_shape` and :attr:`scale` specifying
6265 6266 6267 6268 6269 6270 6271
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6272 6273
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6274 6275 6276

    Returns:
        ${out_comment}.
6277 6278 6279 6280 6281

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6282 6283
    """

6284
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6285 6286


6287
@templatedoc(op_type="nearest_interp")
6288 6289 6290 6291 6292
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6293
    """
6294
    Resize input by performing nearest neighbor interpolation in both the
6295 6296
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6297 6298
    out_shape and scale in priority order.

6299
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6300
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6301 6302 6303 6304 6305

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6306

Y
yuyang18 已提交
6307 6308 6309 6310 6311
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6312 6313 6314
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6315
                                :attr:`out_shape` and :attr:`scale` specifying
6316 6317 6318 6319 6320 6321 6322
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6323 6324
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6325 6326 6327

    Returns:
        ${out_comment}.
6328 6329 6330 6331 6332

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6333 6334
    """

6335
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6336 6337 6338 6339


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6340 6341 6342
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6343 6344 6345 6346 6347 6348 6349
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6350
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6351

6352
    Returns:
Q
update  
qiaolongfei 已提交
6353
        Variable: The output is a 4-D tensor of the shape
6354
        (num_batches, channls, out_h, out_w).
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6365 6366 6367
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6368 6369 6370
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6371 6372
def gather(input, index):
    """
Q
qiaolongfei 已提交
6373 6374
    **Gather Layer**

6375
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6376 6377 6378 6379
    of X indexed by `index` and concatenate them together.

    .. math::

6380
        Out = X[Index]
W
whs 已提交
6381 6382 6383 6384 6385 6386 6387


    .. code-block:: text


                Given:

6388 6389
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6400
        input (Variable): The source input with rank>=1.
W
whs 已提交
6401 6402 6403 6404 6405 6406
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6407

W
whs 已提交
6408 6409 6410 6411 6412 6413
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6414
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6415 6416 6417 6418 6419 6420 6421 6422
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6454
    out = helper.create_variable_for_type_inference(dtype)
6455 6456 6457 6458 6459 6460 6461 6462 6463
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6514
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6515 6516 6517 6518 6519 6520 6521 6522 6523
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6537

6538 6539 6540
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6541
    """
F
stash  
fengjiayi 已提交
6542
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6543
    dtype = x.dtype
X
Xin Pan 已提交
6544
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6545
    if seed is None:
6546
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6547
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6548
    if isinstance(seed, int):
F
fengjiayi 已提交
6549 6550 6551 6552 6553
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6554 6555 6556 6557
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6558
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6559 6560
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6561 6562
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6563
    return out
W
whs 已提交
6564 6565


6566
def log(x, name=None):
W
wanghaoshuang 已提交
6567 6568 6569 6570 6571
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6572
        Out = \\ln(x)
W
wanghaoshuang 已提交
6573 6574

    Args:
6575
        x (Variable): Input tensor.
6576 6577
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6578 6579 6580 6581 6582 6583 6584 6585

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6586
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6587 6588
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6589
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6590
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6591
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6592 6593 6594
    return out


6595
def relu(x, name=None):
W
wanghaoshuang 已提交
6596 6597
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6598
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6599 6600 6601 6602
    the tensor elementwise.

    .. math::

6603
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6604 6605

    Args:
6606
        x (Variable): The input tensor.
6607 6608
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6609 6610 6611 6612 6613 6614 6615 6616

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6617
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6618 6619
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6620
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6621
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6622
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6623
    return out
6624 6625


C
chengduo 已提交
6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6667 6668 6669
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6670 6671 6672 6673
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6674
    .. math::
6675 6676

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6677

6678
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6679 6680 6681 6682 6683
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6684
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6685
                           Its shape should be the same as input.
6686
        num_classes (int): The possible number of labels.
W
whs 已提交
6687 6688 6689 6690

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6691
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6692 6693 6694 6695

    Examples:

        .. code-block:: python
6696

W
whs 已提交
6697 6698 6699 6700
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6701 6702 6703
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6704 6705
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6706 6707
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6708
        outputs={
W
whs 已提交
6709 6710 6711
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6712 6713 6714
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6789
            isinstance(shape, Variable)):
6790 6791 6792 6793 6794
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6795
    out = helper.create_variable_for_type_inference(x.dtype)
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6813 6814


W
whs 已提交
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6832

W
whs 已提交
6833
              out_shape = [2, 3, 5, 5]
6834

W
whs 已提交
6835
          Step 1:
6836

W
whs 已提交
6837 6838 6839
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6840

W
whs 已提交
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6911
            isinstance(out_shape, Variable)):
W
whs 已提交
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6933 6934 6935 6936 6937 6938 6939 6940
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6941

6942 6943
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6944

6945 6946 6947 6948
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6949

6950 6951 6952 6953 6954
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6955 6956 6957

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6993
    out = helper.create_variable_for_type_inference("float32")
6994 6995 6996 6997 6998 6999 7000 7001

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7002 7003


M
minqiyang 已提交
7004 7005
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7006
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7007
    which compares left score and right score passed in.
M
minqiyang 已提交
7008
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7009 7010 7011 7012 7013 7014

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7015
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7016 7017
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7018
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7019 7020 7021
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7022
       Variable: The ranking loss.
M
minqiyang 已提交
7023
    Raises:
M
minqiyang 已提交
7024
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7025 7026 7027 7028 7029 7030 7031
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7032
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7033 7034 7035 7036 7037 7038
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7039 7040
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
7066

W
whs 已提交
7067 7068
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
7069

W
whs 已提交
7070
      Case 0:
M
minqiyang 已提交
7071

W
whs 已提交
7072 7073 7074
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
7075

W
whs 已提交
7076 7077 7078
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7079

W
whs 已提交
7080
      Case 1:
M
minqiyang 已提交
7081

W
whs 已提交
7082 7083
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
7084

W
whs 已提交
7085 7086 7087
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7088

W
whs 已提交
7089
      Case 2:
M
minqiyang 已提交
7090

W
whs 已提交
7091 7092
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
7093

W
whs 已提交
7094 7095 7096
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7097 7098


W
whs 已提交
7099 7100
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7101
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7125
    out = helper.create_variable_for_type_inference(dtype)
7126 7127 7128 7129 7130 7131 7132 7133 7134
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7135
    helper.append_op(
7136
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7137 7138 7139 7140

    return out


7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7153 7154 7155 7156 7157

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7158 7159
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7160 7161
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7162
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7183 7184 7185 7186 7187

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7188 7189
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7190 7191
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7192
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7213 7214 7215 7216 7217

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7218 7219
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7220 7221
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7222
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7244 7245 7246 7247 7248

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7249
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7250
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7251 7252
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7253
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7276 7277 7278 7279 7280

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7281 7282
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7283 7284
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7285
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7307 7308 7309 7310 7311

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7312 7313
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7314 7315
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7316
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7317 7318 7319 7320 7321 7322 7323 7324
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7325 7326 7327 7328
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7329
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7330 7331 7332

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7333 7334
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7335 7336 7337 7338
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7339
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7340
                       will be named automatically.
J
jerrywgz 已提交
7341 7342 7343 7344 7345 7346 7347 7348

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7349
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7363
        attr=helper.param_attr,
J
jerrywgz 已提交
7364 7365 7366 7367
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7368
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7369 7370 7371 7372 7373 7374 7375 7376 7377
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7378 7379 7380 7381 7382 7383 7384 7385 7386 7387
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7388
    Returns:
7389
        output(${out_type}): ${out_comment}
7390 7391 7392 7393 7394 7395 7396

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7397 7398
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7399
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7418
    Returns:
7419
        output(${out_type}): ${out_comment}
7420 7421 7422 7423 7424 7425 7426

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7427 7428
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7429
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7447
    Returns:
7448
        output(${out_type}): ${out_comment}
7449 7450 7451 7452 7453 7454 7455

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7456 7457
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7458
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7459 7460 7461 7462 7463 7464 7465 7466
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7480

7481 7482 7483 7484 7485 7486 7487 7488 7489 7490
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7491 7492
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7508
        ValueError: If axis is not in range [0, rank(x)].
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7525 7526
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7527
    helper.append_op(
7528
        type='flatten2',
7529
        inputs={"X": x},
7530 7531
        outputs={'Out': out,
                 'XShape': x_shape},
7532 7533
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7534 7535


C
chenweihang 已提交
7536
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7537
    """
C
chenweihang 已提交
7538
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7539
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7540 7541
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7542

C
chenweihang 已提交
7543 7544 7545 7546
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7547
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7548 7549 7550 7551 7552 7553
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7554
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7555 7556 7557
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7558 7559 7560
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7572 7573
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7574 7575 7576 7577 7578 7579
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7580
    return out
7581

7582

S
sneaxiy 已提交
7583 7584 7585 7586 7587 7588 7589 7590 7591
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7592

S
sneaxiy 已提交
7593
    .. math::
7594

S
sneaxiy 已提交
7595 7596 7597
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7598
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7599 7600 7601 7602
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7603 7604 7605
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7606 7607
    Returns:
        Variable: The output sequence mask.
7608

S
sneaxiy 已提交
7609 7610
    """

Q
qingqing01 已提交
7611
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7612
    if name is None:
X
Xin Pan 已提交
7613
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7614
    else:
X
Xin Pan 已提交
7615
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7616

Q
qingqing01 已提交
7617 7618 7619
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7620 7621
        outputs={'Y': out},
        attrs={
7622
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7623 7624 7625
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7626 7627


X
Xin Pan 已提交
7628
def stack(x, axis=0):
S
sneaxiy 已提交
7629 7630 7631 7632
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7633 7634 7635 7636 7637 7638 7639

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7640
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7641
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7642 7643

    Args:
7644
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7645
        axis (int|None): The axis along which all inputs are stacked.
7646

S
sneaxiy 已提交
7647 7648
    Returns:
        Variable: The stacked variable.
7649

S
sneaxiy 已提交
7650 7651
    """

X
Xin Pan 已提交
7652 7653 7654 7655 7656 7657
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7658
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7659
    helper.append_op(
S
sneaxiy 已提交
7660 7661
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7662

X
Xin Pan 已提交
7663
    return out
D
dzhwinter 已提交
7664 7665 7666 7667 7668 7669 7670


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7671

D
dzhwinter 已提交
7672 7673 7674
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7675
    raised.
D
dzhwinter 已提交
7676 7677

    Args:
M
minqiyang 已提交
7678
        x (Variable): Input variable.
D
dzhwinter 已提交
7679 7680
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7681

D
dzhwinter 已提交
7682 7683
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7684

D
dzhwinter 已提交
7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7696
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7697 7698 7699 7700 7701 7702 7703 7704

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7717

W
whs 已提交
7718 7719 7720 7721
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7722

W
whs 已提交
7723
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7724

W
whs 已提交
7725
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7726

W
whs 已提交
7727 7728 7729 7730
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7731

W
whs 已提交
7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7748
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7749 7750 7751 7752 7753 7754
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7755 7756


G
fix  
gongweibao 已提交
7757 7758 7759
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7760
@templatedoc()
G
fix  
gongweibao 已提交
7761 7762 7763 7764 7765 7766 7767 7768 7769
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7770
    ${comment}
G
fix  
gongweibao 已提交
7771 7772

    Args:
G
gongweibao 已提交
7773 7774 7775
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7776
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7777 7778 7779
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7780 7781
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7782
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7783

7784 7785 7786 7787 7788
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7789 7790 7791
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7792
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7809 7810


G
gongweibao 已提交
7811
@templatedoc()
X
Xin Pan 已提交
7812
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7813
    """
G
gongweibao 已提交
7814
    ${comment}
G
fix  
gongweibao 已提交
7815 7816

    Args:
G
gongweibao 已提交
7817 7818 7819 7820
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7821 7822 7823
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7824
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7825

7826 7827 7828 7829
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7830 7831 7832
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7833
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7834 7835 7836 7837 7838 7839 7840 7841 7842 7843
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7844
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7845 7846 7847 7848 7849
        })

    return out


G
gongweibao 已提交
7850
@templatedoc()
G
fix  
gongweibao 已提交
7851
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7852
    """
G
gongweibao 已提交
7853
    ${comment}
G
fix  
gongweibao 已提交
7854 7855

    Args:
G
gongweibao 已提交
7856 7857 7858 7859
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7860
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7861 7862

    Returns:
G
gongweibao 已提交
7863
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7864

7865 7866 7867 7868 7869 7870 7871 7872 7873 7874
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7875 7876 7877
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7878
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7890
@templatedoc()
G
fix  
gongweibao 已提交
7891 7892 7893 7894 7895 7896 7897 7898 7899
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7900
    ${comment}
G
fix  
gongweibao 已提交
7901 7902

    Args:
G
gongweibao 已提交
7903 7904
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7905
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7906 7907 7908 7909
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7910
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7911 7912

    Returns:
G
gongweibao 已提交
7913
        out (Variable): ${out_comment}
7914 7915 7916 7917 7918 7919 7920 7921

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7922 7923 7924
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7925
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7944
@templatedoc()
X
Xin Pan 已提交
7945
def sum(x):
G
fix  
gongweibao 已提交
7946
    """
G
gongweibao 已提交
7947
    ${comment}
G
fix  
gongweibao 已提交
7948 7949

    Args:
G
gongweibao 已提交
7950
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7951 7952

    Returns:
G
gongweibao 已提交
7953
        out (Variable): ${out_comment}
7954 7955 7956 7957 7958 7959

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
7960 7961 7962
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7963 7964
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7965 7966 7967 7968
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7969
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7970 7971 7972 7973

    return out


G
gongweibao 已提交
7974
@templatedoc()
G
fix  
gongweibao 已提交
7975 7976
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7977
    ${comment}
G
fix  
gongweibao 已提交
7978 7979

    Args:
G
gongweibao 已提交
7980 7981 7982 7983
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7984 7985

    Returns:
G
gongweibao 已提交
7986
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7987

7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
7999 8000 8001
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8002 8003
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8015
@templatedoc()
G
fix  
gongweibao 已提交
8016 8017
def shape(input):
    """
G
gongweibao 已提交
8018
    ${comment}
G
fix  
gongweibao 已提交
8019 8020

    Args:
G
gongweibao 已提交
8021
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8022 8023

    Returns:
G
gongweibao 已提交
8024
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8025

8026 8027 8028 8029 8030 8031
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8032 8033 8034
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8035 8036
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8037
    helper.append_op(
G
fix  
gongweibao 已提交
8038
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8039 8040

    return out
G
merge  
gongweibao 已提交
8041 8042


S
sneaxiy 已提交
8043 8044 8045 8046 8047 8048 8049 8050
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8051 8052
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8053
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8054 8055 8056
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8057

S
sneaxiy 已提交
8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8069
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8070 8071 8072 8073 8074 8075 8076 8077
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8078
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8079
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8080 8081 8082 8083 8084 8085

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8086
    if name is None:
X
Xin Pan 已提交
8087
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8088 8089 8090
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8091 8092 8093 8094 8095 8096 8097 8098 8099 8100

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8101
    return helper.append_activation(out)
S
sneaxiy 已提交
8102 8103


X
Xin Pan 已提交
8104
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8105 8106 8107
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8108
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8109 8110 8111
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8112
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8113 8114 8115
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8116
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8117 8118 8119
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8120
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8121 8122 8123
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8124
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8125 8126 8127
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8128
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8140 8141
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8142
        ])
M
minqiyang 已提交
8143 8144


8145
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8146 8147
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8148 8149
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8150 8151 8152

    if out is None:
        if name is None:
X
Xin Pan 已提交
8153
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8169
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8181 8182 8183 8184 8185 8186 8187 8188 8189

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8190 8191 8192 8193 8194 8195 8196
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8197
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8209 8210 8211 8212 8213 8214 8215 8216 8217

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8218 8219 8220 8221 8222 8223 8224
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8225
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8237 8238 8239 8240 8241 8242 8243 8244 8245

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8246 8247 8248 8249 8250 8251 8252
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8253
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8264 8265 8266 8267 8268 8269 8270

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8271 8272 8273 8274
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8290 8291 8292 8293 8294 8295 8296

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8297 8298 8299 8300 8301
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8302 8303 8304 8305
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8329 8330 8331 8332 8333 8334 8335

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8336 8337 8338 8339 8340
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8341 8342 8343 8344
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8345 8346 8347 8348 8349 8350 8351 8352

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8371
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8401
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8402 8403 8404 8405 8406 8407 8408 8409 8410
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8411 8412
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8435
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8465
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8466 8467 8468 8469 8470 8471 8472 8473 8474 8475
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8476 8477


J
JiabinYang 已提交
8478
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8479
    """
J
JiabinYang 已提交
8480
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8481 8482 8483

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8484
    The attr blocksize indicates the input block size.
8485 8486

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8487
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8488 8489

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8490
    (but keeping all data)
J
JiabinYang 已提交
8491

J
JiabinYang 已提交
8492
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8493
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8494 8495 8496 8497 8498
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8499
    Args:
J
JiabinYang 已提交
8500
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8501
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8502 8503

    Returns:
J
JiabinYang 已提交
8504
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8505 8506

    Raises:
J
JiabinYang 已提交
8507
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8508 8509 8510 8511 8512 8513

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8514
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8515
                x=data, blocksize=2)
J
JiabinYang 已提交
8516 8517
    """

J
JiabinYang 已提交
8518
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8519

J
JiabinYang 已提交
8520 8521
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8522 8523

    if name is None:
J
JiabinYang 已提交
8524 8525
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8526 8527 8528 8529 8530
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8531
        type="space_to_depth",
J
JiabinYang 已提交
8532
        inputs={"X": x},
J
JiabinYang 已提交
8533
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8534
        outputs={"Out": out})
J
JiabinYang 已提交
8535 8536
    return out

J
JiabinYang 已提交
8537

S
sneaxiy 已提交
8538 8539
@templatedoc()
def sequence_reverse(x, name=None):
8540
    """
S
sneaxiy 已提交
8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8552
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8553 8554 8555 8556 8557 8558 8559 8560 8561 8562
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8563 8564


8565 8566 8567 8568 8569 8570
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8571

8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8591
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8604 8605


B
barrierye 已提交
8606
def similarity_focus(input, axis, indexes, name=None):
8607
    """
B
barrierye 已提交
8608
    SimilarityFocus Operator
B
barrierye 已提交
8609 8610

    Generate a similarity focus mask with the same shape of input using the following method:
8611 8612 8613
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8614
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8615 8616 8617 8618 8619 8620 8621
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8622
       each index.
B
barrierye 已提交
8623 8624 8625 8626
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8676
    Args:
8677
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8678
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8679
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8680
            1, 2 or 3.
B
barrierye 已提交
8681
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8682 8683

    Returns:
8684
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8685
            as the input.
8686

B
barrierye 已提交
8687 8688 8689
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8690 8691
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8704 8705 8706 8707 8708
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8709 8710 8711 8712 8713 8714 8715
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8716 8717


M
minqiyang 已提交
8718 8719
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8720 8721
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8722 8723
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8762
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8763
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8764 8765 8766 8767 8768 8769 8770 8771 8772

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8773 8774
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8775 8776
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8777 8778 8779 8780 8781 8782 8783
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8784 8785


D
dengkaipeng 已提交
8786
@templatedoc()
8787 8788
def grid_sampler(x, grid, name=None):
    """
8789
    This operation samples input X by using bilinear interpolation based on
8790
    flow field grid, which is usually gennerated by affine_grid. The grid of
8791 8792 8793 8794
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8795
    interpolation value of 4 nearest corner points.
8796 8797 8798 8799 8800 8801 8802 8803

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8804
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8834 8835

    Args:
8836 8837 8838
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8839 8840

    Returns:
8841
        out(Variable): Output of shape [N, C, H, W] data samples input X
8842 8843 8844 8845 8846 8847 8848 8849 8850
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8851 8852 8853 8854 8855 8856 8857 8858 8859
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8860
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8861 8862
    ipts = {'X': x, 'Grid': grid}

8863
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8864 8865 8866
    return out


G
gmcather 已提交
8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8961 8962 8963 8964 8965 8966 8967 8968 8969 8970


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8971
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8972

Q
Qiao Longfei 已提交
8973
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8974 8975 8976
    For example:

    .. math::
8977
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8978

Q
Qiao Longfei 已提交
8979
    In this formula:
8980 8981
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8982
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8983
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8984 8985 8986
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8987 8988
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8989 8990 8991
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8992
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8993
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8994
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8995 8996 8997 8998
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8999
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9000 9001 9002 9003

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9004
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9005 9006
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9007
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9008 9009 9010 9011

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9012
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)