nn.py 324.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
P
phlrain 已提交
172
    'lstm',
Y
Yu Yang 已提交
173 174
]

J
jerrywgz 已提交
175 176
kIgnoreIndex = -100

Y
Yu Yang 已提交
177 178 179 180 181 182 183

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
184
       is_test=False,
185
       name=None):
Y
Yu Yang 已提交
186
    """
187
    **Fully Connected Layer**
Y
Yu Yang 已提交
188

189 190 191 192 193 194 195 196
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
197
    to the output as well.
C
caoying03 已提交
198

C
caoying03 已提交
199
    This process can be formulated as follows:
200 201 202

    .. math::

203
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
204 205 206

    In the above equation:

C
caoying03 已提交
207 208 209 210
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
211
    * :math:`Act`: The activation function.
C
caoying03 已提交
212
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
213 214

    Args:
R
ranqiu 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
230 231
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
232
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
233
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
234
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
235

236
    Returns:
F
fengjiayi 已提交
237
        Variable: The transformation result.
238 239

    Raises:
C
caoying03 已提交
240
        ValueError: If rank of the input tensor is less than 2.
241 242 243 244

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
245
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
246
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
247
    """
C
caoying03 已提交
248

C
caoying03 已提交
249
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
250 251 252 253

    dtype = helper.input_dtype()

    mul_results = []
254 255
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
256 257 258
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
259

Y
Yu Yang 已提交
260
        w = helper.create_parameter(
261
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
262
        tmp = helper.create_variable_for_type_inference(dtype)
263
        helper.append_op(
264 265 266
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
267
            outputs={"Out": tmp},
M
mozga-intel 已提交
268 269
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
270 271 272 273
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
274
    else:
X
Xin Pan 已提交
275
        pre_bias = helper.create_variable_for_type_inference(dtype)
276
        helper.append_op(
277 278 279
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
280
            attrs={"use_mkldnn": False})
281 282 283 284
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
285 286


287 288 289
def embedding(input,
              size,
              is_sparse=False,
290
              is_distributed=False,
291 292 293
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
294
    """
295 296
    **Embedding Layer**

297
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
298 299
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
300 301 302

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
303 304

    Args:
305 306 307 308 309
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
310
        is_distributed(bool): Whether to run lookup table from remote parameter server.
311 312
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
313
            with zeros whenever lookup encounters it in :attr:`input`. If
314
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
315 316
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
317
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
318

319 320 321
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
322

323 324
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
325

C
chengduoZH 已提交
326
          dict_size = len(dataset.ids)
327
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
328
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
329 330 331
    """

    helper = LayerHelper('embedding', **locals())
332 333 334
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
335 336
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
337 338
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
339
    tmp = helper.create_variable_for_type_inference(dtype)
340 341
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
342 343 344 345 346
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
347 348 349
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
350
            'remote_prefetch': remote_prefetch,
351 352
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
353 354 355
    return tmp


W
wopeizl 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
372

W
wopeizl 已提交
373 374 375 376 377 378 379 380 381 382 383
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
384

W
wopeizl 已提交
385 386 387 388
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
389

W
wopeizl 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
476 477


P
phlrain 已提交
478 479 480 481 482 483
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
484
         dropout_prob=0.0,
P
phlrain 已提交
485 486 487 488 489
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
490
    """
P
phlrain 已提交
491
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
492 493 494 495 496

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
536 537
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
538 539 540 541 542 543
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
544
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
545

L
liuhongyu 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
571
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
572 573 574 575 576 577
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
578 579 580
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
640 641 642 643 644 645 646 647 648 649 650
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
651 652
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
653 654 655
    """
    **Dynamic LSTMP Layer**

656 657 658 659 660 661
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
662 663 664 665 666

    The formula is as follows:

    .. math::

667
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
668

669
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
670

671
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
672

673
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
674

675
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
676

677
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
678

679
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
680

Y
Yibing Liu 已提交
681 682 683 684 685 686
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
687
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
688
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
689
          bias vector).
Y
Yibing Liu 已提交
690 691 692
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
693
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
694
    * :math:`h`: The hidden state.
695
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
696 697
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
698
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
699
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
700
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
701 702
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
703 704 705 706

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
707

Y
Yibing Liu 已提交
708 709 710 711 712 713 714 715 716 717 718 719
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
720
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
721 722
                               hidden-hidden weight and projection weight.

723 724
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
725 726
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
727 728
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
729
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
730 731 732 733 734

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
735
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
736 737 738 739 740 741
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
742
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
743 744 745
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
746
                                - The shape is (1 x 7D).
C
chengduo 已提交
747 748 749 750 751

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
752 753 754 755 756 757 758 759 760
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
761
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
762 763
                              default "tanh".
        proj_activation(str): The activation for projection output.
764
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
765 766
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
767 768
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
769 770

    Returns:
771 772 773 774
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
775 776

    Examples:
777

Y
Yibing Liu 已提交
778 779
        .. code-block:: python

780 781 782 783
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
784
            hidden_dim, proj_dim = 512, 256
785
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
786
                                     act=None, bias_attr=None)
787 788 789
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
790 791 792 793
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
794
    """
795

C
chengduo 已提交
796
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
797
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
798
    size = size // 4
Y
Yibing Liu 已提交
799 800 801 802 803 804 805 806 807 808
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
809 810 811 812 813 814
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
843 844 845 846 847 848 849 850 851
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
852
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
853

854
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
855
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
856

G
guosheng 已提交
857 858 859 860 861 862 863 864 865
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
866

G
guosheng 已提交
867
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
868

G
guosheng 已提交
869
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
870 871
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
872 873 874 875
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
876
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
877 878

    Args:
879 880
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
881
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
882
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
883 884
            is the hidden size.
        size(int): The dimension of the gru cell.
885
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
886 887
            hidden-hidden weight matrix. Note:

888
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
889
              :math:`D` is the hidden size.
890
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
891
              The first part are weights of the update gate and reset gate with
892
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
893
              candidate hidden state with shape :math:`(D \\times D)`.
894 895 896 897 898

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
899
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
900
            the bias in the update gate, reset gate and candidate calculations.
901 902 903
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
904 905
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
906
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
907 908 909
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
910
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
911
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
912 913 914 915
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
916 917

    Returns:
G
guosheng 已提交
918
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
919
            and sequence length is the same with the input.
920

G
guosheng 已提交
921
    Examples:
922

G
guosheng 已提交
923 924
        .. code-block:: python

925 926 927 928
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
929
            hidden_dim = 512
930
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
931 932 933 934 935 936 937 938 939 940
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
941
    batch_size = input.shape[0]
G
guosheng 已提交
942
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
943
    if h_0:
G
guosheng 已提交
944
        assert h_0.shape == (
Y
Yancey 已提交
945 946 947
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
948

X
Xin Pan 已提交
949 950 951 952
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
971 972 973
def gru_unit(input,
             hidden,
             size,
974 975
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
976
             activation='tanh',
977
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
978
    """
979
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
980

981 982
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
983

984
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
985

986
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
987

988
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
989 990

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
991 992 993
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
994 995
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

996 997
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
998 999 1000
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1001 1002 1003

    Args:
        input (Variable): The fc transformed input value of current step.
1004
        hidden (Variable): The hidden value of gru unit from previous step.
1005
        size (integer): The input dimension value.
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1020
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1021
            the bias in the update gate, reset gate and candidate calculations.
1022 1023 1024
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1025 1026
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1027 1028 1029 1030
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1031

1032 1033 1034 1035 1036 1037
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1038

1039
             # assuming we have x_t_data and prev_hidden of size=10
1040
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1041 1042
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1055
    size = size // 3
Y
Yu Yang 已提交
1056 1057

    # create weight
1058 1059
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1060

X
Xin Pan 已提交
1061 1062 1063
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1064
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1065
    # create bias
1066
    if helper.bias_attr:
Y
Yu Yang 已提交
1067 1068 1069
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1070
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1071 1072 1073

    helper.append_op(
        type='gru_unit',
1074
        inputs=inputs,
Y
Yu Yang 已提交
1075 1076 1077 1078 1079 1080
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1081 1082
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1083 1084 1085 1086 1087
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1088
@templatedoc()
1089
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1090 1091 1092 1093 1094 1095 1096
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1097
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1098 1099 1100 1101
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1102 1103 1104
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1105 1106

    """
Y
Yu Yang 已提交
1107 1108 1109 1110 1111 1112
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1113 1114 1115 1116 1117 1118 1119 1120
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1136 1137 1138 1139
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1140

W
wopeizl 已提交
1141 1142
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1143

W
wopeizl 已提交
1144
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1145

W
wopeizl 已提交
1146
        label(${label_type}): ${label_comment}
1147

W
wopeizl 已提交
1148 1149
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1150

W
wopeizl 已提交
1151 1152
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1153

W
wopeizl 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1164
                "Transition": transition,
W
wopeizl 已提交
1165 1166
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1167

W
wopeizl 已提交
1168
    return viterbi_path
Y
Yu Yang 已提交
1169 1170


Y
yi.wu 已提交
1171
@templatedoc()
F
fengjiayi 已提交
1172
def cos_sim(X, Y):
Y
Yu Yang 已提交
1173
    """
Y
yi.wu 已提交
1174 1175 1176
    ${comment}

    Args:
1177 1178
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1179

Y
yi.wu 已提交
1180
    Returns:
1181
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1182
    """
F
fengjiayi 已提交
1183
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1184 1185 1186
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1197 1198 1199 1200 1201
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1202
            dropout_implementation="downgrade_in_infer"):
1203 1204 1205 1206 1207
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1208
    training. The dropout operator randomly sets (according to the given dropout
1209 1210 1211 1212
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1213 1214
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1215 1216 1217 1218 1219 1220 1221
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1233
                                           dropout op can be removed from the program.
P
phlrain 已提交
1234
                                           the program will be efficient
1235

P
phlrain 已提交
1236

1237 1238

    Returns:
1239
        Variable: A tensor variable is the shape with `x`.
1240 1241

    Examples:
1242

1243 1244
        .. code-block:: python

1245 1246
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1247 1248
    """

F
fengjiayi 已提交
1249
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1250 1251 1252
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1253 1254 1255 1256

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1257 1258 1259 1260 1261
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1262 1263 1264 1265
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1266 1267
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1268
        })
1269 1270 1271
    return out


J
jerrywgz 已提交
1272
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1273
    """
Y
Yibing Liu 已提交
1274 1275
    **Cross Entropy Layer**

1276 1277 1278
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1279 1280

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1281
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1282

Y
Yibing Liu 已提交
1283
        .. math::
Y
yangyaming 已提交
1284

Y
Yibing Liu 已提交
1285 1286 1287
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1288 1289
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1290 1291 1292 1293 1294

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1295
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1296 1297 1298
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1299 1300
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1301
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1302

Y
Yibing Liu 已提交
1303
    Args:
Y
yangyaming 已提交
1304
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1305 1306 1307 1308
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1309
        label (Variable|list): the ground truth which is a 2-D tensor. When
1310 1311 1312 1313
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1314
        soft_label (bool): a flag indicating whether to
1315
                                           interpretate the given labels as soft
1316
                                           labels. Default: `False`.
M
minqiyang 已提交
1317 1318
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1319
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1320 1321 1322 1323 1324

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1325 1326 1327 1328 1329
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1330 1331 1332 1333 1334 1335

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1336
    """
F
fengjiayi 已提交
1337
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1338
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1339 1340 1341 1342 1343
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1344 1345
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1346 1347 1348
    return out


F
fengjiayi 已提交
1349
def square_error_cost(input, label):
Y
Yu Yang 已提交
1350
    """
1351 1352
    **Square error cost layer**

1353 1354
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1369 1370
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1371 1372

    Returns:
G
guosheng 已提交
1373
        Variable: The tensor variable storing the element-wise squared error \
1374
                  difference of input and label.
1375 1376 1377 1378 1379 1380 1381 1382

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1383
    """
F
fengjiayi 已提交
1384
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1385
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1386 1387 1388 1389 1390 1391
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1392
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1393
    helper.append_op(
F
fengjiayi 已提交
1394 1395
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1396 1397 1398
    return square_out


Y
yi.wu 已提交
1399
@templatedoc()
Y
Yu Yang 已提交
1400 1401 1402 1403
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1404
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1405
    """
Y
yi.wu 已提交
1406
    **Chunk Evaluator**
Y
yi.wu 已提交
1407

Y
yangyaming 已提交
1408
    This function computes and outputs the precision, recall and
1409
    F1-score of chunk detection.
Y
yi.wu 已提交
1410

Y
yi.wu 已提交
1411 1412 1413 1414 1415 1416 1417 1418
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1419

Y
yi.wu 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1445

Y
yi.wu 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1470
    Args:
1471 1472 1473 1474 1475
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1476

Y
yi.wu 已提交
1477
    Returns:
Y
update  
yi.wu 已提交
1478 1479 1480
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1481

Y
yi.wu 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1494
    """
F
fengjiayi 已提交
1495
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1496 1497

    # prepare output
X
Xin Pan 已提交
1498 1499 1500 1501 1502 1503 1504
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1505 1506 1507 1508 1509 1510 1511 1512

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1513 1514 1515 1516
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1517 1518 1519
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1520 1521
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1522
        })
1523 1524
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1525 1526


1527
@templatedoc()
Y
Yu Yang 已提交
1528 1529 1530 1531 1532 1533 1534
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1535 1536
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1537 1538 1539 1540
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1541 1542 1543 1544 1545 1546 1547

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1561

1562 1563
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1564 1565 1566 1567 1568 1569 1570
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1571
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1582
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1583 1584 1585 1586 1587 1588
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1589
def sequence_softmax(input, use_cudnn=False, name=None):
1590 1591 1592
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1593
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1610 1611 1612
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1613

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1625 1626
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1627
    softmax_out = helper.create_variable_for_type_inference(dtype)
1628 1629 1630 1631 1632 1633 1634 1635
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1636
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1637
    """
1638
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1639
    has the same shape as the input.
Q
qiaolongfei 已提交
1640

1641 1642 1643 1644 1645 1646
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1647
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1648 1649 1650 1651 1652 1653 1654

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1655
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1656 1657 1658 1659 1660 1661 1662 1663

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1664 1665 1666
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1679 1680
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1681
    softmax_out = helper.create_variable_for_type_inference(dtype)
1682 1683 1684 1685 1686 1687 1688 1689
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1690 1691 1692
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1693 1694
           stride=1,
           padding=0,
1695
           dilation=1,
Y
Yu Yang 已提交
1696 1697 1698
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1699
           use_cudnn=True,
1700 1701
           act=None,
           name=None):
Y
Yu Yang 已提交
1702
    """
C
chengduoZH 已提交
1703
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1704 1705
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1706
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1707 1708 1709 1710 1711 1712 1713
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1714 1715 1716
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1717

1718
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1719

C
chengduoZH 已提交
1720 1721
    .. math::

C
refine  
chengduoZH 已提交
1722
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1723

T
tensor-tang 已提交
1724
    Where:
C
chengduoZH 已提交
1725

1726 1727 1728 1729 1730
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1731
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1732 1733 1734

    Example:

1735 1736
        - Input:

W
weixing02 已提交
1737
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1738

W
weixing02 已提交
1739
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1740

1741
        - Output:
T
tensor-tang 已提交
1742

W
weixing02 已提交
1743
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1744

C
chengduoZH 已提交
1745
        Where
1746 1747

        .. math::
C
chengduoZH 已提交
1748

W
weixing02 已提交
1749 1750
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1751 1752

    Args:
1753
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1754
        num_filters(int): The number of filter. It is as same as the output
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1783 1784
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1785 1786
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1787
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1788
            will be named automatically. Default: None
C
chengduoZH 已提交
1789 1790

    Returns:
G
guosheng 已提交
1791
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1792 1793
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1794
    Raises:
1795 1796
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1797

C
chengduoZH 已提交
1798 1799 1800
    Examples:
        .. code-block:: python

1801 1802
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1803 1804 1805
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1806
    assert param_attr is not False, "param_attr should not be False here."
1807
    l_type = 'conv2d'
X
xzl 已提交
1808 1809
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1810
        l_type = 'depthwise_conv2d'
1811 1812 1813 1814

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1815 1816 1817 1818 1819
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1820
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1821

C
chengduoZH 已提交
1822 1823 1824
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1825
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1826

C
chengduoZH 已提交
1827 1828
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1829 1830

    input_shape = input.shape
M
minqiyang 已提交
1831
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1832 1833

    def _get_default_param_initializer():
C
chengduo 已提交
1834 1835
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1836 1837 1838 1839 1840 1841 1842 1843
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1844
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1860
    helper.append_op(
1861
        type=l_type,
Y
Yu Yang 已提交
1862 1863 1864 1865 1866
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1867 1868 1869
        attrs={
            'strides': stride,
            'paddings': padding,
1870
            'dilations': dilation,
C
chengduoZH 已提交
1871
            'groups': groups,
1872
            'use_cudnn': use_cudnn,
1873
            'use_mkldnn': False,
C
chengduoZH 已提交
1874
        })
Y
Yu Yang 已提交
1875 1876 1877 1878 1879 1880

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1898 1899 1900 1901 1902 1903
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1913 1914
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1915 1916 1917
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1918
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1944
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1945 1946
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1947
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1948 1949
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1950
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1951 1952
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1953
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1954 1955 1956 1957 1958 1959
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1970 1971
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1972 1973
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1974
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1975
            will be named automatically. Default: None.
C
chengduoZH 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1988 1989
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1990 1991 1992
    """

    l_type = 'conv3d'
C
chengduo 已提交
1993
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2004
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2018 2019 2020
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2021 2022 2023 2024 2025 2026 2027 2028
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2029
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2044
            'use_mkldnn': False
C
chengduoZH 已提交
2045 2046
        })

2047
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2048 2049 2050 2051

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2052
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2053
    """
Y
yangyaming 已提交
2054 2055 2056
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2068
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2069 2070 2071 2072 2073
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2074
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2075 2076 2077 2078 2079 2080 2081

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2082 2083
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2084

L
Luo Tao 已提交
2085 2086
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2087
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2088
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2089
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2090 2091 2092 2093 2094 2095 2096

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2097

Y
yangyaming 已提交
2098
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2099 2100 2101 2102 2103
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2104 2105
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2106
    """
F
fengjiayi 已提交
2107
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2108
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2109 2110
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2111 2112 2113 2114 2115 2116

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2117 2118
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2119

Y
yangyaming 已提交
2120 2121 2122 2123 2124
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2125 2126 2127
    return pool_out


C
add doc  
chengduoZH 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2147
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2148 2149 2150 2151 2152
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2153
def sequence_first_step(input):
L
Luo Tao 已提交
2154
    """
L
Luo Tao 已提交
2155
    This function gets the first step of sequence.
L
Luo Tao 已提交
2156 2157 2158 2159

    .. code-block:: text

       x is a 1-level LoDTensor:
2160
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2161 2162 2163 2164 2165
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2166
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2167
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2168

L
Luo Tao 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2178

Y
yangyaming 已提交
2179
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2180 2181 2182
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2183 2184 2185
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2186
def sequence_last_step(input):
L
Luo Tao 已提交
2187
    """
L
Luo Tao 已提交
2188
    This function gets the last step of sequence.
L
Luo Tao 已提交
2189 2190 2191 2192

    .. code-block:: text

       x is a 1-level LoDTensor:
2193
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2194 2195 2196 2197 2198
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2199
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2200
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2201

L
Luo Tao 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2211

Y
yangyaming 已提交
2212
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2213 2214 2215
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2216 2217 2218
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2219 2220 2221 2222
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2223
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2224 2225 2226 2227 2228
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2229

Y
Yibing Liu 已提交
2230 2231
	- Case:

2232
            Given the input Variable **input**:
2233

2234 2235 2236
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2237

2238
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2239

2240
            the output Variable will be
2241

2242 2243 2244
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2245 2246

    NOTE: The first dimension size of **input**, **offset** and **length**
2247
          should be equal. The **offset** should start from 0.
2248

Y
Yibing Liu 已提交
2249
    Args:
2250
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2251
                         sequences.
Y
Yibing Liu 已提交
2252 2253 2254 2255 2256 2257
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2258
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2269
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2270 2271 2272 2273
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2274
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2289
@templatedoc()
Y
Yu Yang 已提交
2290
def pool2d(input,
C
chengduoZH 已提交
2291 2292
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2293 2294
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2295
           global_pooling=False,
C
chengduoZH 已提交
2296
           use_cudnn=True,
2297
           ceil_mode=False,
2298 2299
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2300
    """
F
fengjiayi 已提交
2301
    ${comment}
2302 2303

    Args:
2304 2305 2306
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2307
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2308
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2309 2310
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2311
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2312 2313 2314 2315 2316 2317
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2318 2319 2320
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2321
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2322
                        layer will be named automatically.
2323
        exclusive (bool): Whether to exclude padding points in average pooling
2324
                          mode, default is true
F
fengjiayi 已提交
2325

2326
    Returns:
F
fengjiayi 已提交
2327
        Variable: The pooling result.
F
fengjiayi 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2341 2342 2343 2344
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2345
                            global_pooling=False)
Y
Yu Yang 已提交
2346 2347 2348 2349 2350
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2351

C
chengduoZH 已提交
2352 2353 2354 2355 2356
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2357 2358 2359 2360
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2361 2362
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2363

C
Add doc  
chengduoZH 已提交
2364
    l_type = 'pool2d'
2365 2366

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2367
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2368
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2369 2370

    helper.append_op(
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2382 2383
            "use_mkldnn": False,
            "exclusive": exclusive,
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2397 2398
           name=None,
           exclusive=True):
2399 2400
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2401
    pooling configurations mentioned in input parameters.
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2414
        exclusive (bool): Whether to exclude padding points in average pooling
2415
                          mode, default is true
2416

2417
    Returns:
2418
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2419 2420 2421 2422 2423
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2424

C
chengduoZH 已提交
2425 2426 2427 2428 2429
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2430 2431 2432
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2433

C
chengduoZH 已提交
2434 2435
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2436

2437 2438
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2439
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2440
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2441 2442

    helper.append_op(
2443
        type=l_type,
Y
Yu Yang 已提交
2444 2445 2446 2447 2448 2449 2450
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2451
            "paddings": pool_padding,
2452
            "use_cudnn": use_cudnn,
2453
            "ceil_mode": ceil_mode,
2454 2455
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2468
               data_layout='NCHW',
Y
Yang Yang 已提交
2469
               in_place=False,
2470 2471
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2472
               moving_variance_name=None,
2473
               do_model_average_for_mean_and_var=False,
2474 2475
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2476
    """
Q
qiaolongfei 已提交
2477 2478 2479 2480
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2481

Q
qiaolongfei 已提交
2482
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2483

Q
qiaolongfei 已提交
2484 2485
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2486 2487 2488
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2501

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2515
    Args:
Q
qiaolongfei 已提交
2516
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2517 2518 2519 2520
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2521 2522 2523 2524 2525 2526 2527 2528
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2529
        data_layout(string, default NCHW): NCHW|NHWC
2530
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2531 2532 2533 2534
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2535
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2536
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2537 2538 2539 2540 2541
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2542 2543

    Returns:
Q
qiaolongfei 已提交
2544
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2545 2546 2547 2548 2549 2550 2551

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2552
    """
C
chengduo 已提交
2553
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2574 2575 2576
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2577 2578

    bias = helper.create_parameter(
2579
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2580 2581 2582
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2583

2584 2585
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2586 2587 2588
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2589
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2590
        shape=param_shape,
2591 2592 2593 2594 2595 2596 2597
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2598
            trainable=False,
W
wanghaoshuang 已提交
2599
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2600
        shape=param_shape,
2601 2602
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2603 2604 2605 2606 2607 2608

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2609 2610 2611 2612
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2613

X
Xin Pan 已提交
2614 2615
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2633 2634 2635 2636
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2637
            "use_mkldnn": False,
2638 2639
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2640
        })
Y
Yu Yang 已提交
2641 2642 2643 2644

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2645
@templatedoc()
G
guosheng 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2656
    ${comment}
G
guosheng 已提交
2657 2658 2659

    The formula is as follows:

Y
yuyang18 已提交
2660
    ..  math::
G
guosheng 已提交
2661 2662 2663 2664 2665 2666 2667

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2668 2669 2670 2671 2672 2673 2674 2675
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2676

G
guosheng 已提交
2677 2678
    Args:
        input(Variable): The input tensor variable.
2679
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2680
            normalization. Default True.
2681
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2682 2683
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2684
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2685
            Default 1.
2686
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2687
            division by zero. Default 1e-05.
G
guosheng 已提交
2688
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2689 2690
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2691 2692
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2693
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2694 2695
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2696
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2697
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2698
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2699 2700 2701
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2702 2703

    Returns:
Y
yuyang18 已提交
2704
        ${y_comment}
G
guosheng 已提交
2705 2706 2707

    Examples:

Y
yuyang18 已提交
2708 2709 2710
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2726
    if shift:
G
guosheng 已提交
2727 2728 2729 2730 2731 2732
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2733 2734 2735 2736 2737
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2831 2832 2833 2834
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2835 2836 2837
                     padding=0,
                     stride=1,
                     dilation=1,
2838
                     groups=None,
C
caoying03 已提交
2839
                     param_attr=None,
2840
                     bias_attr=None,
C
chengduoZH 已提交
2841
                     use_cudnn=True,
2842
                     act=None,
C
caoying03 已提交
2843
                     name=None):
Y
Yu Yang 已提交
2844
    """
2845 2846 2847 2848 2849 2850 2851 2852
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2853 2854
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2855 2856 2857
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2858 2859 2860 2861 2862

    For each input :math:`X`, the equation is:

    .. math::

2863
        Out = \sigma (W \\ast X + b)
2864

2865
    Where:
2866 2867 2868

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2869 2870 2871 2872
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2873

2874 2875 2876 2877
    Example:

        - Input:

2878
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2879

2880
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2881 2882 2883

        - Output:

2884
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2885 2886

        Where
Y
Yu Yang 已提交
2887

2888 2889
        .. math::

2890 2891 2892 2893
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2894 2895

    Args:
2896 2897 2898 2899
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2900 2901 2902 2903
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2932
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2933 2934 2935
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2936
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2937
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2938 2939

    Returns:
2940
        Variable: The tensor variable storing the convolution transpose result.
2941 2942

    Raises:
2943 2944
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2945 2946 2947 2948

    Examples:
       .. code-block:: python

2949 2950
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2951
    """
C
chengduo 已提交
2952
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2953 2954 2955 2956 2957 2958 2959 2960
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2961 2962 2963
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2964 2965 2966
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2967

C
chengduoZH 已提交
2968 2969
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2970

Y
Yu Yang 已提交
2971 2972 2973 2974 2975
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2976

Y
Yu Yang 已提交
2977 2978
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2979

C
chengduoZH 已提交
2980
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2981
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2982
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2983
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2984
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2985 2986 2987
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2988

2989 2990 2991 2992 2993 2994 2995
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2996
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2997
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2998

Y
Yu Yang 已提交
2999 3000 3001
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3002
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3003
    helper.append_op(
3004
        type=op_type,
Y
Yu Yang 已提交
3005 3006
        inputs={'Input': [input],
                'Filter': [img_filter]},
3007
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3008
        attrs={
3009
            'output_size': output_size,
3010 3011 3012 3013 3014
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3015 3016
        })

3017 3018 3019
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3020 3021


3022
def conv3d_transpose(input,
Y
Yu Yang 已提交
3023 3024 3025
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3026 3027 3028
                     padding=0,
                     stride=1,
                     dilation=1,
3029
                     groups=None,
C
caoying03 已提交
3030
                     param_attr=None,
3031
                     bias_attr=None,
C
chengduoZH 已提交
3032
                     use_cudnn=True,
3033
                     act=None,
C
caoying03 已提交
3034
                     name=None):
Y
Yu Yang 已提交
3035
    """
3036
    **Convlution3D transpose layer**
3037

3038
    The convolution3D transpose layer calculates the output based on the input,
3039
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3040 3041 3042 3043 3044 3045
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3046 3047 3048
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3049 3050 3051 3052 3053

    For each input :math:`X`, the equation is:

    .. math::

3054
        Out = \sigma (W \\ast X + b)
3055 3056 3057

    In the above equation:

3058 3059
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3060 3061 3062 3063
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3064

3065 3066 3067 3068
    Example:

        - Input:

3069
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3070

3071
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3072 3073 3074

        - Output:

3075
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3076 3077

        Where
Y
Yu Yang 已提交
3078

3079 3080
        .. math::

3081 3082 3083
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3084 3085

    Args:
3086
        input(Variable): The input image with [N, C, D, H, W] format.
3087 3088 3089
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3090
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3091 3092
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3093
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3094 3095 3096
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3097 3098
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3099
        stride(int|tuple): The stride size. If stride is a tuple, it must
3100 3101
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3102
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3103 3104 3105
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3106 3107 3108 3109 3110
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3120 3121
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3122 3123
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3124 3125
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3126 3127

    Returns:
3128
        Variable: The tensor variable storing the convolution transpose result.
3129 3130

    Raises:
3131 3132
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3133 3134 3135 3136

    Examples:
       .. code-block:: python

3137 3138
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3139
    """
C
chengduo 已提交
3140
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3141 3142
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3143
    if not isinstance(input, Variable):
3144
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3145 3146
    input_channel = input.shape[1]

3147 3148 3149
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3150

C
chengduoZH 已提交
3151 3152 3153
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3154 3155 3156 3157 3158 3159
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3160 3161 3162
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3163

3164
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3165
                         padding[0] - 1) // dilation[0] + 1
3166
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3167
                         padding[1] - 1) // dilation[1] + 1
3168
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3169
                         padding[2] - 1) // dilation[2] + 1
3170
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3171
    else:
3172 3173
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3174

3175
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3176
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3177 3178 3179
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3180
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3181
    helper.append_op(
3182
        type=l_type,
Y
Yu Yang 已提交
3183 3184
        inputs={'Input': [input],
                'Filter': [img_filter]},
3185
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3186 3187 3188 3189
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3190
            'groups': groups,
C
chengduoZH 已提交
3191 3192
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3193

3194 3195
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3196
    return out
Y
yangyaming 已提交
3197 3198


Y
yangyaming 已提交
3199
def sequence_expand(x, y, ref_level=-1, name=None):
3200
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3201 3202 3203 3204
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3205 3206 3207 3208 3209

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3210
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3211
                x.data = [[a], [b], [c], [d]]
3212 3213 3214
                x.dims = [4, 1]

            y is a LoDTensor:
3215 3216
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3217

Y
yangyaming 已提交
3218
            ref_level: 0
3219

Y
yangyaming 已提交
3220
            then output is a 1-level LoDTensor:
3221
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3222
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3223 3224 3225 3226
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3227
                x.data = [[a], [b], [c]]
3228 3229 3230
                x.dims = [3, 1]

            y is a LoDTensor:
3231
                y.lod = [[2, 0, 3]]
3232

Y
yangyaming 已提交
3233
            ref_level: -1
3234

Y
yangyaming 已提交
3235 3236 3237
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3238 3239 3240
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3241 3242
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3243
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3244
                        will be named automatically.
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3255
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3256
    """
Y
yangyaming 已提交
3257
    helper = LayerHelper('sequence_expand', input=x, **locals())
3258
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3259
    tmp = helper.create_variable_for_type_inference(dtype)
3260
    helper.append_op(
Y
yangyaming 已提交
3261 3262 3263 3264 3265
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3266
    return tmp
3267 3268


C
chengduo 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3325
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3326 3327 3328 3329 3330 3331 3332 3333
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3334
@templatedoc()
3335
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3336 3337 3338 3339 3340
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3341 3342 3343
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3344
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3345 3346 3347 3348
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3349 3350 3351
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3352

F
fengjiayi 已提交
3353
    Returns:
M
minqiyang 已提交
3354
        Variable: The padded sequence batch and the original lengths before
3355
                  padding. All sequences has the same length.
M
minqiyang 已提交
3356

F
fengjiayi 已提交
3357 3358 3359 3360 3361 3362 3363
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3364
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3365
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3366 3367 3368 3369 3370
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3371 3372
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3373 3374 3375 3376

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3377 3378 3379 3380 3381 3382
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3383 3384
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3385
        attrs={'padded_length': maxlen})
3386
    return out, length
F
fengjiayi 已提交
3387 3388


3389
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3390
    """
3391
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3392

3393 3394
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3395 3396 3397 3398 3399 3400 3401 3402 3403
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3404 3405 3406
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3407
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3408 3409 3410 3411 3412 3413

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3414
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3415 3416 3417 3418 3419 3420

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3421 3422
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3437
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3449 3450 3451 3452 3453 3454 3455 3456 3457
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3458 3459
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3460 3461 3462

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3463 3464

    This layer does the search in beams for one time step. Specifically, it
3465 3466 3467 3468 3469 3470
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3471

3472 3473 3474 3475 3476 3477 3478 3479
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3480

3481
    Args:
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3507

3508
    Returns:
3509 3510
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3511 3512 3513 3514

    Examples:
        .. code-block:: python

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3532 3533 3534 3535
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3536 3537 3538
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3539 3540 3541 3542 3543

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3544
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3562 3563 3564 3565 3566 3567 3568
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3569

3570 3571 3572 3573 3574 3575 3576 3577 3578
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3579

3580 3581 3582 3583 3584 3585
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3586

3587 3588 3589 3590 3591 3592 3593 3594
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3595 3596
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3612 3613 3614 3615
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3616
              param_attr=None,
C
caoying03 已提交
3617 3618
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3619 3620 3621 3622
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3623
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3624

3625
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3626

3627
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3628

3629
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3630 3631 3632

            h_t & = o_t tanh(c_t)

3633 3634 3635 3636 3637 3638
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3639 3640 3641

        .. math::

3642
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3643 3644 3645 3646 3647 3648 3649 3650

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3651
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3652 3653

    Args:
Y
yangyaming 已提交
3654 3655 3656 3657 3658 3659
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3660
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3673 3674
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3675 3676

    Returns:
Y
yangyaming 已提交
3677
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3678 3679

    Raises:
3680 3681 3682 3683
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3684 3685 3686 3687 3688 3689

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3690
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3691
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3692
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3709
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3710 3711 3712 3713
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3714 3715
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3716 3717 3718
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3719
    size = cell_t_prev.shape[1]
3720
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3721 3722
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3723
                param_attr=param_attr,
3724
                bias_attr=bias_attr)
Y
yangyaming 已提交
3725
    dtype = x_t.dtype
X
Xin Pan 已提交
3726 3727
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3728 3729 3730 3731 3732 3733 3734 3735 3736

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3737
    return h, c
G
guosheng 已提交
3738 3739


C
caoying03 已提交
3740
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3741
    """
Y
yangyaming 已提交
3742
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3743 3744 3745

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3746
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3747 3748
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3749 3750
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3751
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3752
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3753
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3754 3755
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3756 3757 3758

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3759

G
guosheng 已提交
3760 3761 3762 3763 3764 3765
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3766
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3767 3768 3769 3770
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3771 3772 3773 3774

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3775
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3776 3777 3778
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3779 3780
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3781
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3782 3783
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3784 3785 3786 3787 3788
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3789
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3790 3791 3792 3793
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3794 3795


C
caoying03 已提交
3796
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3797
    """
Y
Yibing Liu 已提交
3798
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3799 3800 3801

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3802 3803 3804
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3805
            must be in the range :math:`[-rank(input), rank(input))`. If
3806
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3807
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3808 3809
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3810
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3811
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3812
                       will be named automatically.
G
guosheng 已提交
3813 3814

    Returns:
Y
Yibing Liu 已提交
3815
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3816

G
guosheng 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3827 3828
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3829 3830 3831 3832 3833 3834 3835

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3836 3837
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3838
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3839 3840
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3841 3842 3843 3844 3845
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3846
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3847 3848 3849 3850
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3851 3852


C
caoying03 已提交
3853
def reduce_max(input, dim=None, keep_dim=False, name=None):
3854
    """
Y
yangyaming 已提交
3855
    Computes the maximum of tensor elements over the given dimension.
3856 3857 3858

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3859
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3860 3861 3862
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3863
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3864 3865
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3866
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3867 3868
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3869 3870 3871

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3872

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3884 3885 3886 3887 3888 3889 3890

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3891 3892
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3893
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3894 3895
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3896 3897 3898 3899 3900
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3901
            'dim': dim if dim != None else [0],
3902 3903 3904 3905 3906 3907
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3908
def reduce_min(input, dim=None, keep_dim=False, name=None):
3909
    """
Y
yangyaming 已提交
3910
    Computes the minimum of tensor elements over the given dimension.
3911 3912 3913

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3914
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3915 3916 3917
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3918
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3919 3920
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3921
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3922 3923
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3924 3925 3926

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3927

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3939 3940 3941 3942 3943 3944 3945

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3946 3947
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3948
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3949 3950
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3951 3952 3953 3954 3955
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3956
            'dim': dim if dim != None else [0],
3957 3958 3959 3960
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3961 3962


3963 3964 3965 3966 3967 3968
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3969
        dim (list|int|None): The dimensions along which the product is performed. If
3970 3971
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3972 3973
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3974 3975 3976
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3977
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3978
            layer will be named automatically.
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3993
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3994
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3995 3996 3997 3998 3999 4000 4001

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4002 4003
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4004
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4005 4006
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4007 4008 4009 4010 4011
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4012
            'dim': dim if dim != None else [0],
4013 4014 4015 4016 4017 4018
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4019
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4020
    """
C
caoying03 已提交
4021
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4022 4023 4024

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4025 4026 4027 4028 4029
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4030
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4031
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4032
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4033 4034
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4035 4036

    Returns:
D
dzhwinter 已提交
4037
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4038 4039 4040 4041 4042 4043 4044 4045 4046

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4047 4048
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4064
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4078 4079 4080 4081 4082 4083 4084 4085 4086


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4087
    .. math::
4088 4089

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4090 4091 4092 4093 4094

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4095
        x(Variable|list): The input tensor to l2_normalize layer.
4096
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4097 4098
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4099
        epsilon(float): The epsilon value is used to avoid division by zero, \
4100
            the defalut value is 1e-10.
4101
        name(str|None): A name for this layer(optional). If set None, the layer \
4102
            will be named automatically.
C
caoying03 已提交
4103 4104

    Returns:
4105
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4106 4107

    Examples:
4108

C
caoying03 已提交
4109 4110
        .. code-block:: python

4111 4112 4113 4114
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4115 4116
    """

F
fengjiayi 已提交
4117 4118
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4119 4120
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4121 4122
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4123
    helper.append_op(
4124 4125 4126 4127
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4128
        attrs={
4129 4130
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4131 4132
        })
    return out
4133 4134


S
sneaxiy 已提交
4135
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4136
    """
Y
ying 已提交
4137 4138 4139 4140
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4141

C
chengduoZH 已提交
4142
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4143
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4144

4145 4146 4147 4148 4149
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4150
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4151

C
chengduoZH 已提交
4152
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4153
      performs in the following way.
G
guosheng 已提交
4154

4155
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4156
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4157
        last two dimensions and a batched matrix multiply supporting broadcast
4158
        applies on the two tensors.
G
guosheng 已提交
4159

Y
ying 已提交
4160 4161
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4162
    removed after matrix multiplication.
G
guosheng 已提交
4163 4164 4165

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4166 4167 4168
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4169
        alpha (float): The scale of output. Default 1.0.
4170
        name(str|None): A name for this layer(optional). If set None, the layer
4171
            will be named automatically.
G
guosheng 已提交
4172 4173

    Returns:
4174
        Variable: The product Tensor variable.
G
guosheng 已提交
4175

G
guosheng 已提交
4176 4177 4178
    Examples:
        .. code-block:: python

4179
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4180 4181
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4182

4183 4184
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4185

4186 4187
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4188

4189 4190
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4191 4192 4193 4194

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4195 4196
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4197

Y
ying 已提交
4198
            # x: [M], y: [N]
4199
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4200
    """
Y
ying 已提交
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4213
            y_shape = y_shape + [1]
Y
ying 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4230
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4231
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4232
    helper.append_op(
4233 4234 4235 4236
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4237 4238 4239
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4240
            'alpha': float(alpha),
S
sneaxiy 已提交
4241
        })
4242
    return out
4243 4244


4245
def topk(input, k, name=None):
Q
qingqing01 已提交
4246 4247 4248 4249
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4250
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4251 4252 4253 4254 4255 4256
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4278 4279 4280
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4281
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4282
                 of input.
4283
        name(str|None): A name for this layer(optional). If set None, the layer
4284
                       will be named automatically.
F
fengjiayi 已提交
4285
                       Default: None
Q
qingqing01 已提交
4286 4287

    Returns:
4288 4289 4290
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4291
        within the last dimension of input.
Q
qingqing01 已提交
4292

F
fengjiayi 已提交
4293 4294
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4295 4296 4297 4298 4299 4300 4301

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4302 4303
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4315
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4316
    """
Y
ying 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4326

Y
ying 已提交
4327
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4328

4329
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4330 4331
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4332
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4333

4334
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4335 4336
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4337

4338 4339 4340
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4341
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4342
                          the length of reference string.
4343
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4344
                                     calculating edit distance.
4345
        name (str): The name of this layer. It is optional.
4346

W
wanghaoshuang 已提交
4347
    Returns:
W
wanghaoshuang 已提交
4348
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4349 4350 4351 4352

    Examples:
        .. code-block:: python

T
tink2123 已提交
4353 4354
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4355
            cost = fluid.layers.edit_distance(input=x,label=y)
4356
    """
4357
    helper = LayerHelper("edit_distance", **locals())
4358

4359
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4360
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4361 4362
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4363 4364 4365 4366 4367

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4368
            attrs={"tokens": ignored_tokens})
4369 4370 4371 4372 4373
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4374
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4375
            attrs={"tokens": ignored_tokens})
4376 4377
        label = erased_label

4378
    # edit distance op
X
Xin Pan 已提交
4379 4380
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4381 4382 4383 4384
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4385 4386
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4387 4388
        attrs={"normalized": normalized})

4389
    return edit_distance_out, sequence_num
4390 4391 4392 4393 4394


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4395

Y
ying 已提交
4396 4397 4398 4399
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4417
        input.lod = [[4, 4]]
W
whs 已提交
4418 4419
      
        Computation:
4420

W
whs 已提交
4421 4422 4423 4424 4425 4426
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4427 4428 4429 4430 4431

        output.data = [[2],
                       [1],
                       [3]]

4432
        output.lod = [[2, 1]]
4433

W
whs 已提交
4434

4435 4436
    Args:

Y
ying 已提交
4437 4438 4439 4440 4441 4442 4443 4444 4445
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4446
        name (str): The name of this layer. It is optional.
4447 4448

    Returns:
W
whs 已提交
4449 4450 4451 4452
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4453 4454 4455 4456 4457

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4458

4459
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4460
    """
4461
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4462
    _, topk_indices = topk(input, k=1)
4463 4464

    # ctc align op
X
Xin Pan 已提交
4465
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4466 4467 4468
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4469
        outputs={"Output": [ctc_out]},
4470 4471
        attrs={"merge_repeated": True,
               "blank": blank})
4472
    return ctc_out
4473 4474


W
Wu Yi 已提交
4475
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4476
    """
4477 4478
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4479
    to compute Connectionist Temporal Classification (CTC) loss.
4480 4481
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4482 4483 4484
    input tensor.

    Args:
4485
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4486 4487 4488 4489
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4490
       label (Variable): The ground truth of variable-length sequence,
4491 4492 4493
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4494 4495
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4496 4497 4498
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4499
         follewed by a mean_op.
W
Wu Yi 已提交
4500
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4501 4502

    Returns:
4503 4504
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4505 4506

    Examples:
4507

W
wanghaoshuang 已提交
4508
        .. code-block:: python
4509

4510 4511 4512
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4513 4514

    """
F
fengjiayi 已提交
4515
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4516 4517
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4518 4519 4520 4521 4522 4523
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4524 4525 4526 4527 4528
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4529
    return loss_out
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4545 4546 4547
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4548 4549 4550 4551 4552
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4553

4554
            out.lod  = [[0, 1, 3]]
4555 4556 4557 4558

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4559 4560 4561 4562 4563 4564 4565
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4566 4567 4568

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4569 4570

    Returns:
4571

4572 4573 4574 4575 4576
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4577
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4578
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4579 4580
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4581
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4582 4583 4584 4585 4586 4587
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4588 4589


4590 4591 4592 4593
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4594 4595 4596 4597 4598 4599
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4600
        num_neg_samples=None,
4601 4602 4603
        name=None,
        sampler="uniform",
        custom_dist=None,
4604 4605
        seed=0,
        is_sparse=False):
4606 4607 4608 4609 4610 4611 4612
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4613 4614
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4615
            sample is 1.0.
C
chengduo 已提交
4616 4617 4618 4619 4620 4621 4622 4623 4624
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4625
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4626 4627
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4628 4629 4630
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4631
        custom_dist (float[]): A float[] with size=num_total_classes.
4632 4633 4634 4635
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4636
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4637

4638
    Returns:
Y
Yibing Liu 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4666 4667 4668 4669 4670 4671 4672 4673 4674

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4675

4676
    """
Y
Yang Yu 已提交
4677 4678 4679
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4680 4681

    dim = input.shape[1]
Y
Yang Yu 已提交
4682 4683 4684 4685 4686 4687
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4688
    inputs = {}
C
chengduo 已提交
4689 4690 4691 4692 4693 4694 4695
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4696 4697 4698
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4699

4700 4701 4702 4703
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4704 4705 4706 4707 4708 4709 4710

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4763 4764 4765 4766
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4767 4768 4769 4770 4771
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4772 4773
    attrs = {
        'num_total_classes': int(num_total_classes),
4774 4775
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4776 4777
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4778
    }
Y
Yang Yu 已提交
4779 4780 4781

    helper.append_op(
        type='nce',
C
chengduo 已提交
4782
        inputs=inputs,
Y
Yang Yu 已提交
4783 4784 4785 4786 4787 4788
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4789
    return cost / (num_neg_samples + 1)
4790 4791


C
chengduo 已提交
4792 4793
def hsigmoid(input,
             label,
4794
             num_classes,
C
chengduo 已提交
4795 4796
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4797
             name=None,
4798 4799 4800
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4801
             is_sparse=False):
W
weixing02 已提交
4802 4803
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4804
    process of language model. This operator organizes the classes into a
4805 4806
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4807 4808 4809 4810 4811 4812
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4813
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4814
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4815

4816 4817 4818 4819 4820 4821 4822 4823 4824
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4825
    Args:
M
minqiyang 已提交
4826
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4827 4828 4829 4830
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4831 4832 4833
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4845 4846 4847 4848 4849 4850 4851
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4852
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4853 4854
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4855 4856

    Returns:
J
JiabinYang 已提交
4857
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4858 4859 4860 4861 4862

    Examples:

        .. code-block:: python

G
guosheng 已提交
4863 4864 4865
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4866 4867 4868 4869
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4870 4871
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4872
    dim = input.shape[1]
4873
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4874 4875 4876
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4877 4878 4879 4880
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4881 4882
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4883 4884 4885
    else:
        pass

J
JiabinYang 已提交
4886 4887
    weights = None

4888
    if not is_custom:
J
JiabinYang 已提交
4889 4890 4891 4892 4893 4894 4895 4896
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4897
            shape=[num_classes, dim],
J
JiabinYang 已提交
4898 4899
            is_bias=False,
            dtype=input.dtype)
4900 4901 4902
    inputs = {
        "X": input,
        "W": weights,
4903 4904
        "PTable": path_table,
        "PathCode": path_code,
4905 4906
        "Label": label
    }
W
weixing02 已提交
4907
    if helper.bias_attr:
4908
        if not is_custom:
J
JiabinYang 已提交
4909 4910
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4911
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4912 4913 4914 4915 4916 4917
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4918
                shape=[num_classes, 1],
J
JiabinYang 已提交
4919 4920 4921
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4922 4923
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4924
        inputs=inputs,
W
weixing02 已提交
4925 4926
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4927 4928
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4929 4930 4931
    return out


Y
fix ci.  
ying 已提交
4932
def transpose(x, perm, name=None):
Y
ying 已提交
4933 4934 4935 4936 4937 4938 4939
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4940 4941 4942
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4943 4944 4945 4946 4947 4948 4949

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4950
            # use append_batch_size=False to avoid prepending extra
4951
            # batch size in shape
4952
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4953
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4954
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4955 4956
    """

Y
fix ci.  
ying 已提交
4957
    if len(perm) != len(x.shape):
Y
ying 已提交
4958 4959 4960
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4961 4962 4963 4964 4965 4966
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4967 4968

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4969 4970
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4971
    helper.append_op(
4972
        type='transpose2',
Y
fix ci.  
ying 已提交
4973
        inputs={'X': [x]},
4974 4975
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4976 4977
        attrs={'axis': perm})
    return out
4978 4979


4980 4981 4982 4983 4984 4985 4986
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4987
    """
4988 4989 4990 4991 4992 4993 4994
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5023 5024 5025 5026 5027 5028 5029 5030 5031
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5032 5033 5034
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5035 5036 5037 5038 5039
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5067 5068 5069
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5082
            output.dims = {8, 8}
5083

5084
            output.lod = [[4, 4]]
5085

D
dzhwinter 已提交
5086
     Examples:
5087 5088 5089

        .. code-block:: python

5090 5091
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5092 5093

    """
W
wanghaoshuang 已提交
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5104 5105 5106 5107 5108 5109 5110
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5111
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5112
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5113
    helper.append_op(
5114
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5115
    return out
5116 5117


Y
yuyang18 已提交
5118
@templatedoc()
5119
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5120 5121
    """
    ${comment}
5122 5123

    Args:
Y
yuyang18 已提交
5124
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5125 5126
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5127 5128 5129 5130 5131
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5132
        ${out_comment}.
5133 5134

    Examples:
Y
yuyang18 已提交
5135 5136 5137 5138
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5139 5140 5141 5142 5143 5144
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5145
    out = helper.create_variable_for_type_inference(dtype)
5146 5147 5148 5149 5150
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5151
    return helper.append_activation(out)
5152 5153


Y
yuyang18 已提交
5154
@templatedoc()
5155 5156
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5157 5158 5159 5160 5161 5162 5163
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5164 5165

    Args:
Y
yuyang18 已提交
5166 5167
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5168 5169

    Returns:
Y
yuyang18 已提交
5170
        ${out_comment}.
5171 5172
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5173 5174 5175 5176 5177

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5178
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5179 5180 5181 5182 5183 5184
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5185 5186


5187 5188 5189
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5190
                               ignore_index=kIgnoreIndex,
5191 5192
                               numeric_stable_mode=False,
                               return_softmax=False):
5193 5194
    """
    **Softmax With Cross Entropy Operator.**
5195

5196 5197 5198 5199
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5200

5201 5202 5203
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5204

5205 5206 5207
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5208

5209
    The equation is as follows:
5210

5211
    1) Hard label (one-hot label, so every sample has exactly one class)
5212

5213 5214 5215 5216
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5217

5218 5219 5220
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5221

5222 5223 5224 5225
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5226 5227 5228
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5229

S
sneaxiy 已提交
5230 5231 5232 5233 5234 5235 5236 5237
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5238 5239 5240 5241 5242 5243 5244 5245
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5246 5247
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5248
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5249 5250 5251
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5252 5253 5254
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5255
                                    stable algorithm. Default: False
5256
        return_softmax (bool): A flag indicating whether to return the softmax
5257
                               along with the cross entropy loss. Default: False
5258

5259
    Returns:
5260 5261 5262 5263
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5264
                              2-D tensor with shape [N x K].
5265 5266 5267 5268 5269 5270 5271

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5272 5273
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5274 5275
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5276 5277
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5278 5279 5280 5281 5282 5283
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5284 5285 5286 5287 5288
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5289 5290 5291 5292

    if return_softmax:
        return loss, softmax

5293 5294 5295 5296 5297
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5298 5299
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5300
    For each instance, it computes the smooth L1 loss element by element first
5301
    and then sums all the losses. So the shape of ouput Variable is
5302
    [batch_size, 1].
5303

5304 5305
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5306
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5307
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5308
            L1 loss op with same shape as :attr:`x`.
5309
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5310 5311
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5312
            by this tensor element by element.
5313
        outside_weight (Variable|None): A tensor with rank at least 2. This
5314 5315
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5316
            element by element.
5317
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5318 5319
           scalar with default value 1.0.

5320
    Returns:
5321
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5322 5323 5324 5325 5326

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5327 5328
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5329
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5330
            out = fluid.layers.smooth_l1(x=fc, y=label)
5331
    """
5332

5333
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5334 5335
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5348 5349 5350 5351


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5352
    This layer creates the one-hot representations for input indices.
5353 5354

    Args:
Y
Yibing Liu 已提交
5355 5356
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5357 5358

    Returns:
Y
Yibing Liu 已提交
5359
        Variable: The one-hot representations of input.
5360 5361

    Examples:
C
caoying03 已提交
5362
        .. code-block:: python
5363

Y
Yibing Liu 已提交
5364 5365
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5366 5367
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5368
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5369 5370 5371 5372 5373 5374
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5375 5376


Y
Yu Yang 已提交
5377
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5378
    """
Y
yi.wu 已提交
5379 5380 5381
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5382 5383 5384 5385 5386 5387

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5388 5389
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5390 5391 5392 5393 5394 5395

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5396 5397
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5398 5399
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5400 5401 5402 5403 5404
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5405
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5406
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5407 5408
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5409 5410
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5411 5412 5413
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5414 5415


5416
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5417
    """
C
caoying03 已提交
5418 5419
    Gives a new shape to the input Tensor without changing its data.

5420 5421 5422 5423 5424
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5425

5426
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5427

5428 5429 5430 5431
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5432
    2. 0 means the actual dimension value is going to be copied from the
5433 5434 5435 5436
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5437 5438

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5439
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5440
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5441

5442
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5443 5444
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5445 5446
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5447
    dimensions.
C
caoying03 已提交
5448

5449
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5450 5451 5452 5453
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5454 5455

    Args:
5456
        x(variable): The input tensor.
C
caoying03 已提交
5457 5458
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5459 5460 5461 5462 5463
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5464 5465
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5466 5467 5468 5469 5470 5471 5472
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5473
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5474

5475
    Returns:
G
guosheng 已提交
5476 5477 5478 5479
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5480

X
Xin Pan 已提交
5481 5482 5483
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5484 5485
    Examples:
        .. code-block:: python
G
guosheng 已提交
5486

5487
            data = fluid.layers.data(
5488
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5489
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5490
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5491 5492 5493
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5494
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5495 5496 5497 5498 5499
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5500

5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5516
    helper = LayerHelper("reshape2", **locals())
5517 5518
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5519
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5520
    helper.append_op(
5521
        type="reshape2",
X
Xin Pan 已提交
5522
        inputs=inputs,
D
dzhwinter 已提交
5523
        attrs={"shape": shape},
5524 5525
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5526

D
dzhwinter 已提交
5527
    return helper.append_activation(out)
5528

5529

5530
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5531
    """
M
minqiyang 已提交
5532 5533 5534
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5535
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5536

Y
Yibing Liu 已提交
5537 5538
    Examples:
    Case 1:
M
minqiyang 已提交
5539
      Given
Y
Yibing Liu 已提交
5540 5541 5542 5543 5544 5545 5546 5547
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5548
        and
Y
Yibing Liu 已提交
5549 5550 5551
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5552

Y
Yibing Liu 已提交
5553
    Args:
5554
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5555
        axes (list): List of integers, indicating the dimensions to be squeezed.
5556
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5557 5558 5559 5560 5561 5562 5563 5564

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5565
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5566 5567
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5568 5569
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5570
    helper.append_op(
5571
        type="squeeze2",
5572
        inputs={"X": input},
Y
Yibing Liu 已提交
5573
        attrs={"axes": axes},
5574 5575
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5576

5577 5578 5579
    return out


5580
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5581
    """
M
minqiyang 已提交
5582 5583 5584
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5585

M
minqiyang 已提交
5586 5587
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5588
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5589

Y
Yibing Liu 已提交
5590
    Args:
5591
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5592
        axes (list): List of integers, indicating the dimensions to be inserted.
5593
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5594 5595 5596 5597 5598 5599 5600 5601

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5602
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5603 5604
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5605 5606
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5607
    helper.append_op(
5608
        type="unsqueeze2",
5609
        inputs={"X": input},
Y
Yibing Liu 已提交
5610
        attrs={"axes": axes},
5611 5612
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5613

5614 5615
    return out

5616

Y
yangyaming 已提交
5617
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5618
    """
Y
Yibing Liu 已提交
5619
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5620 5621 5622 5623
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5624
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5625 5626 5627 5628 5629 5630

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5631
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5632 5633 5634
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5635
            target_lod: [4, 2]
Y
yangyaming 已提交
5636 5637

            then we get a 1-level LoDTensor:
5638
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5639 5640 5641 5642 5643 5644
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5645
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5646 5647 5648 5649
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5650
                y.data = [[2, 4]]
Y
yangyaming 已提交
5651 5652 5653
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5654
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5655 5656 5657 5658 5659 5660
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5661
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5662 5663 5664 5665
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5666
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5667 5668 5669 5670
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5671
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5672 5673 5674 5675 5676
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5677
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5678
                           from :attr:`y`.
Y
yangyaming 已提交
5679
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5680
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5681 5682

    Returns:
Y
Yibing Liu 已提交
5683
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5684 5685

    Raises:
Y
Yibing Liu 已提交
5686
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5687 5688 5689 5690 5691 5692 5693 5694 5695

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5696
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5722
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5751 5752
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5765 5766 5767
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5781 5782 5783 5784


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5785
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5786
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5787

G
guosheng 已提交
5788 5789 5790 5791
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5814
                         The length of :attr:paddings must be
G
guosheng 已提交
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5825

G
guosheng 已提交
5826 5827 5828 5829 5830 5831
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5832
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5833 5834 5835 5836 5837 5838 5839
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5840 5841


C
chengduo 已提交
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5912
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5913 5914 5915 5916 5917 5918 5919 5920 5921
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5922 5923 5924 5925 5926 5927 5928
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5929 5930
    called label-smoothing regularization (LSR).

5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5954
                              be :math:`(1, class\_num)`.
5955 5956
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5957
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5977
    smooth_label = helper.create_variable_for_type_inference(dtype)
5978 5979 5980 5981 5982 5983 5984
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5985 5986


W
wopeizl 已提交
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6023 6024


J
jerrywgz 已提交
6025 6026 6027 6028 6029 6030
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6031 6032
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6049 6050 6051
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6052 6053 6054 6055 6056 6057
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6058
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6099 6100
        .. code-block:: python

W
whs 已提交
6101 6102 6103 6104
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6105
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6106 6107 6108 6109 6110 6111
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6112 6113


6114 6115 6116 6117
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6118 6119
                 resample='BILINEAR',
                 actual_shape=None):
6120
    """
Q
qiaolongfei 已提交
6121
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6122

6123
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6124 6125 6126
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6127

6128
        'BILINEAR' : Bilinear interpolation
6129
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6130

6131
    Args:
6132
        input (Variable): The input tensor of image resize layer,
6133 6134
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6135
        out_shape(list|tuple|Variable|None): Output shape of image resize
6136 6137
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6138
        scale(float|None): The multiplier for the input height or width.
6139 6140 6141
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6142 6143
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6144
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6145
                       currently.
6146
                       Default: 'BILINEAR'
6147 6148 6149
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6150
                                :attr:`out_shape` and :attr:`scale` specifying
6151 6152 6153 6154 6155 6156 6157
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6158 6159
                                constructing stage.
                                Default: None
6160 6161

    Returns:
Q
update  
qiaolongfei 已提交
6162 6163
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6164

6165 6166 6167
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6168
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6169 6170 6171 6172
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6173 6174 6175
    Examples:
        .. code-block:: python

6176
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6177
    """
6178 6179 6180 6181
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6182 6183
    if resample not in resample_methods:
        raise ValueError(
6184
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6185
        )
6186
    resample_type = resample_methods[resample]
6187
    if out_shape is None and scale is None:
6188
        raise ValueError("One of out_shape and scale must not be None.")
6189
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6190
    dtype = helper.input_dtype()
6191 6192 6193 6194

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6195 6196 6197
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6198
    if out_shape is not None:
6199 6200 6201 6202
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6203
            inputs['OutSize'] = out_shape
6204 6205 6206 6207 6208 6209 6210 6211
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6212 6213 6214 6215
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6216 6217 6218 6219 6220
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6221
    out = helper.create_variable_for_type_inference(dtype)
6222
    helper.append_op(
6223
        type='{}_interp'.format(resample_type),
6224
        inputs=inputs,
6225
        outputs={"Out": out},
6226 6227 6228
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6229
    return out
F
stash  
fengjiayi 已提交
6230 6231


6232
@templatedoc(op_type="bilinear_interp")
6233 6234 6235 6236 6237
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6238
    """
6239 6240
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6241 6242
    in priority order.

6243 6244 6245 6246
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6247 6248
    again in the other direction.

6249
    For details of bilinear interpolation, please refer to Wikipedia:
6250
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6251 6252 6253 6254 6255

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6256

Y
yuyang18 已提交
6257 6258 6259 6260 6261
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6262 6263 6264
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6265
                                :attr:`out_shape` and :attr:`scale` specifying
6266 6267 6268 6269 6270 6271 6272
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6273 6274
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6275 6276 6277

    Returns:
        ${out_comment}.
6278 6279 6280 6281 6282

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6283 6284
    """

6285
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6286 6287


6288
@templatedoc(op_type="nearest_interp")
6289 6290 6291 6292 6293
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6294
    """
6295
    Resize input by performing nearest neighbor interpolation in both the
6296 6297
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6298 6299
    out_shape and scale in priority order.

6300
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6301
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6302 6303 6304 6305 6306

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6307

Y
yuyang18 已提交
6308 6309 6310 6311 6312
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6313 6314 6315
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6316
                                :attr:`out_shape` and :attr:`scale` specifying
6317 6318 6319 6320 6321 6322 6323
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6324 6325
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6326 6327 6328

    Returns:
        ${out_comment}.
6329 6330 6331 6332 6333

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6334 6335
    """

6336
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6337 6338 6339 6340


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6341 6342 6343
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6344 6345 6346 6347 6348 6349 6350
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6351
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6352

6353
    Returns:
Q
update  
qiaolongfei 已提交
6354
        Variable: The output is a 4-D tensor of the shape
6355
        (num_batches, channls, out_h, out_w).
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6366 6367 6368
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6369 6370 6371
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6372 6373
def gather(input, index):
    """
Q
qiaolongfei 已提交
6374 6375
    **Gather Layer**

6376
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6377 6378 6379 6380
    of X indexed by `index` and concatenate them together.

    .. math::

6381
        Out = X[Index]
W
whs 已提交
6382 6383 6384 6385 6386 6387 6388


    .. code-block:: text


                Given:

6389 6390
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6401
        input (Variable): The source input with rank>=1.
W
whs 已提交
6402 6403 6404 6405 6406 6407
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6408

W
whs 已提交
6409 6410 6411 6412 6413 6414
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6415
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6416 6417 6418 6419 6420 6421 6422 6423
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6455
    out = helper.create_variable_for_type_inference(dtype)
6456 6457 6458 6459 6460 6461 6462 6463 6464
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6515
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6516 6517 6518 6519 6520 6521 6522 6523 6524
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6538

6539 6540 6541
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6542
    """
F
stash  
fengjiayi 已提交
6543
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6544
    dtype = x.dtype
X
Xin Pan 已提交
6545
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6546
    if seed is None:
6547
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6548
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6549
    if isinstance(seed, int):
F
fengjiayi 已提交
6550 6551 6552 6553 6554
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6555 6556 6557 6558
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6559
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6560 6561
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6562 6563
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6564
    return out
W
whs 已提交
6565 6566


6567
def log(x, name=None):
W
wanghaoshuang 已提交
6568 6569 6570 6571 6572
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6573
        Out = \\ln(x)
W
wanghaoshuang 已提交
6574 6575

    Args:
6576
        x (Variable): Input tensor.
6577 6578
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6579 6580 6581 6582 6583 6584 6585 6586

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6587
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6588 6589
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6590
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6591
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6592
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6593 6594 6595
    return out


6596
def relu(x, name=None):
W
wanghaoshuang 已提交
6597 6598
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6599
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6600 6601 6602 6603
    the tensor elementwise.

    .. math::

6604
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6605 6606

    Args:
6607
        x (Variable): The input tensor.
6608 6609
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6610 6611 6612 6613 6614 6615 6616 6617

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6618
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6619 6620
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6621
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6622
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6623
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6624
    return out
6625 6626


C
chengduo 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6668 6669 6670
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6671 6672 6673 6674
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6675
    .. math::
6676 6677

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6678

6679
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6680 6681 6682 6683 6684
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6685
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6686
                           Its shape should be the same as input.
6687
        num_classes (int): The possible number of labels.
W
whs 已提交
6688 6689 6690 6691

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6692
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6693 6694 6695 6696

    Examples:

        .. code-block:: python
6697

W
whs 已提交
6698 6699 6700 6701
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6702 6703 6704
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6705 6706
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6707 6708
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6709
        outputs={
W
whs 已提交
6710 6711 6712
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6713 6714 6715
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6790
            isinstance(shape, Variable)):
6791 6792 6793 6794 6795
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6796
    out = helper.create_variable_for_type_inference(x.dtype)
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6814 6815


W
whs 已提交
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6833

W
whs 已提交
6834
              out_shape = [2, 3, 5, 5]
6835

W
whs 已提交
6836
          Step 1:
6837

W
whs 已提交
6838 6839 6840
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6841

W
whs 已提交
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6912
            isinstance(out_shape, Variable)):
W
whs 已提交
6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6934 6935 6936 6937 6938 6939 6940 6941
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6942

6943 6944
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6945

6946 6947 6948 6949
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6950

6951 6952 6953 6954 6955
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6956 6957 6958

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6994
    out = helper.create_variable_for_type_inference("float32")
6995 6996 6997 6998 6999 7000 7001 7002

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7003 7004


M
minqiyang 已提交
7005 7006
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7007
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7008
    which compares left score and right score passed in.
M
minqiyang 已提交
7009
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7010 7011 7012 7013 7014 7015

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7016
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7017 7018
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7019
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7020 7021 7022
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7023
       Variable: The ranking loss.
M
minqiyang 已提交
7024
    Raises:
M
minqiyang 已提交
7025
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7026 7027 7028 7029 7030 7031 7032
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7033
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7034 7035 7036 7037 7038 7039
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7040 7041
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
7067

W
whs 已提交
7068 7069
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
7070

W
whs 已提交
7071
      Case 0:
M
minqiyang 已提交
7072

W
whs 已提交
7073 7074 7075
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
7076

W
whs 已提交
7077 7078 7079
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7080

W
whs 已提交
7081
      Case 1:
M
minqiyang 已提交
7082

W
whs 已提交
7083 7084
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
7085

W
whs 已提交
7086 7087 7088
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7089

W
whs 已提交
7090
      Case 2:
M
minqiyang 已提交
7091

W
whs 已提交
7092 7093
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
7094

W
whs 已提交
7095 7096 7097
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7098 7099


W
whs 已提交
7100 7101
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7102
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7126
    out = helper.create_variable_for_type_inference(dtype)
7127 7128 7129 7130 7131 7132 7133 7134 7135
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7136
    helper.append_op(
7137
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7138 7139 7140 7141

    return out


7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7154 7155 7156 7157 7158

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7159 7160
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7161 7162
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7163
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7184 7185 7186 7187 7188

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7189 7190
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7191 7192
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7193
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7214 7215 7216 7217 7218

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7219 7220
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7221 7222
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7223
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7245 7246 7247 7248 7249

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7250
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7251
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7252 7253
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7254
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7277 7278 7279 7280 7281

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7282 7283
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7284 7285
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7286
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7308 7309 7310 7311 7312

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7313 7314
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7315 7316
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7317
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7318 7319 7320 7321 7322 7323 7324 7325
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7326 7327 7328 7329
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7330
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7331 7332 7333

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7334 7335
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7336 7337 7338 7339
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7340
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7341
                       will be named automatically.
J
jerrywgz 已提交
7342 7343 7344 7345 7346 7347 7348 7349

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7350
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7364
        attr=helper.param_attr,
J
jerrywgz 已提交
7365 7366 7367 7368
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7369
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7370 7371 7372 7373 7374 7375 7376 7377 7378
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7389
    Returns:
7390
        output(${out_type}): ${out_comment}
7391 7392 7393 7394 7395 7396 7397

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7398 7399
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7400
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7419
    Returns:
7420
        output(${out_type}): ${out_comment}
7421 7422 7423 7424 7425 7426 7427

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7428 7429
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7430
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7448
    Returns:
7449
        output(${out_type}): ${out_comment}
7450 7451 7452 7453 7454 7455 7456

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7457 7458
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7459
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7460 7461 7462 7463 7464 7465 7466 7467
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7481

7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7492 7493
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7509
        ValueError: If axis is not in range [0, rank(x)].
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7526 7527
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7528
    helper.append_op(
7529
        type='flatten2',
7530
        inputs={"X": x},
7531 7532
        outputs={'Out': out,
                 'XShape': x_shape},
7533 7534
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7535 7536


C
chenweihang 已提交
7537
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7538
    """
C
chenweihang 已提交
7539
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7540
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7541 7542
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7543

C
chenweihang 已提交
7544 7545 7546 7547
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7548
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7549 7550 7551 7552 7553 7554
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7555
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7556 7557 7558
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7559 7560 7561
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7573 7574
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7575 7576 7577 7578 7579 7580
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7581
    return out
7582

7583

S
sneaxiy 已提交
7584 7585 7586 7587 7588 7589 7590 7591 7592
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7593

S
sneaxiy 已提交
7594
    .. math::
7595

S
sneaxiy 已提交
7596 7597 7598
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7599
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7600 7601 7602 7603
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7604 7605 7606
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7607 7608
    Returns:
        Variable: The output sequence mask.
7609

S
sneaxiy 已提交
7610 7611
    """

Q
qingqing01 已提交
7612
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7613
    if name is None:
X
Xin Pan 已提交
7614
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7615
    else:
X
Xin Pan 已提交
7616
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7617

Q
qingqing01 已提交
7618 7619 7620
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7621 7622
        outputs={'Y': out},
        attrs={
7623
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7624 7625 7626
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7627 7628


X
Xin Pan 已提交
7629
def stack(x, axis=0):
S
sneaxiy 已提交
7630 7631 7632 7633
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7634 7635 7636 7637 7638 7639 7640

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7641
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7642
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7643 7644

    Args:
7645
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7646
        axis (int|None): The axis along which all inputs are stacked.
7647

S
sneaxiy 已提交
7648 7649
    Returns:
        Variable: The stacked variable.
7650

S
sneaxiy 已提交
7651 7652
    """

X
Xin Pan 已提交
7653 7654 7655 7656 7657 7658
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7659
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7660
    helper.append_op(
S
sneaxiy 已提交
7661 7662
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7663

X
Xin Pan 已提交
7664
    return out
D
dzhwinter 已提交
7665 7666 7667 7668 7669 7670 7671


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7672

D
dzhwinter 已提交
7673 7674 7675
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7676
    raised.
D
dzhwinter 已提交
7677 7678

    Args:
M
minqiyang 已提交
7679
        x (Variable): Input variable.
D
dzhwinter 已提交
7680 7681
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7682

D
dzhwinter 已提交
7683 7684
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7685

D
dzhwinter 已提交
7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7697
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7698 7699 7700 7701 7702 7703 7704 7705

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7718

W
whs 已提交
7719 7720 7721 7722
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7723

W
whs 已提交
7724
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7725

W
whs 已提交
7726
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7727

W
whs 已提交
7728 7729 7730 7731
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7732

W
whs 已提交
7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7749
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7750 7751 7752 7753 7754 7755
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7756 7757


G
fix  
gongweibao 已提交
7758 7759 7760
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7761
@templatedoc()
G
fix  
gongweibao 已提交
7762 7763 7764 7765 7766 7767 7768 7769 7770
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7771
    ${comment}
G
fix  
gongweibao 已提交
7772 7773

    Args:
G
gongweibao 已提交
7774 7775 7776
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7777
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7778 7779 7780
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7781 7782
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7783
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7784

7785 7786 7787 7788 7789
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7790 7791 7792
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7793
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7810 7811


G
gongweibao 已提交
7812
@templatedoc()
X
Xin Pan 已提交
7813
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7814
    """
G
gongweibao 已提交
7815
    ${comment}
G
fix  
gongweibao 已提交
7816 7817

    Args:
G
gongweibao 已提交
7818 7819 7820 7821
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7822 7823 7824
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7825
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7826

7827 7828 7829 7830
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7831 7832 7833
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7834
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7835 7836 7837 7838 7839 7840 7841 7842 7843 7844
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7845
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7846 7847 7848 7849 7850
        })

    return out


G
gongweibao 已提交
7851
@templatedoc()
G
fix  
gongweibao 已提交
7852
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7853
    """
G
gongweibao 已提交
7854
    ${comment}
G
fix  
gongweibao 已提交
7855 7856

    Args:
G
gongweibao 已提交
7857 7858 7859 7860
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7861
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7862 7863

    Returns:
G
gongweibao 已提交
7864
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7865

7866 7867 7868 7869 7870 7871 7872 7873 7874 7875
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7876 7877 7878
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7879
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7891
@templatedoc()
G
fix  
gongweibao 已提交
7892 7893 7894 7895 7896 7897 7898 7899 7900
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7901
    ${comment}
G
fix  
gongweibao 已提交
7902 7903

    Args:
G
gongweibao 已提交
7904 7905
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7906
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7907 7908 7909 7910
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7911
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7912 7913

    Returns:
G
gongweibao 已提交
7914
        out (Variable): ${out_comment}
7915 7916 7917 7918 7919 7920 7921 7922

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7923 7924 7925
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7926
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7945
@templatedoc()
X
Xin Pan 已提交
7946
def sum(x):
G
fix  
gongweibao 已提交
7947
    """
G
gongweibao 已提交
7948
    ${comment}
G
fix  
gongweibao 已提交
7949 7950

    Args:
G
gongweibao 已提交
7951
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7952 7953

    Returns:
G
gongweibao 已提交
7954
        out (Variable): ${out_comment}
7955 7956 7957 7958 7959 7960

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
7961 7962 7963
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7964 7965
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7966 7967 7968 7969
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7970
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7971 7972 7973 7974

    return out


G
gongweibao 已提交
7975
@templatedoc()
G
fix  
gongweibao 已提交
7976 7977
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7978
    ${comment}
G
fix  
gongweibao 已提交
7979 7980

    Args:
G
gongweibao 已提交
7981 7982 7983 7984
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7985 7986

    Returns:
G
gongweibao 已提交
7987
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7988

7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8000 8001 8002
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8003 8004
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8016
@templatedoc()
G
fix  
gongweibao 已提交
8017 8018
def shape(input):
    """
G
gongweibao 已提交
8019
    ${comment}
G
fix  
gongweibao 已提交
8020 8021

    Args:
G
gongweibao 已提交
8022
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8023 8024

    Returns:
G
gongweibao 已提交
8025
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8026

8027 8028 8029 8030 8031 8032
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8033 8034 8035
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8036 8037
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8038
    helper.append_op(
G
fix  
gongweibao 已提交
8039
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8040 8041

    return out
G
merge  
gongweibao 已提交
8042 8043


S
sneaxiy 已提交
8044 8045 8046 8047 8048 8049 8050 8051
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8052 8053
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8054
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8055 8056 8057
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8058

S
sneaxiy 已提交
8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8070
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8071 8072 8073 8074 8075 8076 8077 8078
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8079
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8080
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8081 8082 8083 8084 8085 8086

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8087
    if name is None:
X
Xin Pan 已提交
8088
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8089 8090 8091
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8092 8093 8094 8095 8096 8097 8098 8099 8100 8101

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8102
    return helper.append_activation(out)
S
sneaxiy 已提交
8103 8104


X
Xin Pan 已提交
8105
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8106 8107 8108
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8109
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8110 8111 8112
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8113
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8114 8115 8116
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8117
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8118 8119 8120
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8121
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8122 8123 8124
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8125
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8126 8127 8128
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8129
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8141 8142
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8143
        ])
M
minqiyang 已提交
8144 8145


8146
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8147 8148
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8149 8150
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8151 8152 8153

    if out is None:
        if name is None:
X
Xin Pan 已提交
8154
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8170
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8182 8183 8184 8185 8186 8187 8188 8189 8190

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8191 8192 8193 8194 8195 8196 8197
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8198
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8210 8211 8212 8213 8214 8215 8216 8217 8218

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8219 8220 8221 8222 8223 8224 8225
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8226
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8238 8239 8240 8241 8242 8243 8244 8245 8246

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8247 8248 8249 8250 8251 8252 8253
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8254
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8255 8256 8257 8258 8259 8260 8261 8262 8263 8264
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8265 8266 8267 8268 8269 8270 8271

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8272 8273 8274 8275
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8291 8292 8293 8294 8295 8296 8297

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8298 8299 8300 8301 8302
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8303 8304 8305 8306
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8330 8331 8332 8333 8334 8335 8336

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8337 8338 8339 8340 8341
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8342 8343 8344 8345
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8346 8347 8348 8349 8350 8351 8352 8353

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8372
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8402
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8403 8404 8405 8406 8407 8408 8409 8410 8411
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8412 8413
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8414 8415 8416 8417 8418 8419
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8420 8421 8422 8423
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8424 8425 8426 8427 8428 8429
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8430
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8431 8432 8433 8434 8435 8436 8437 8438 8439
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8440
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8441 8442 8443 8444 8445 8446 8447 8448
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8449
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8470
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8471 8472 8473 8474 8475 8476 8477 8478 8479 8480
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8481 8482


J
JiabinYang 已提交
8483
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8484
    """
J
JiabinYang 已提交
8485
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8486 8487 8488

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8489
    The attr blocksize indicates the input block size.
8490 8491

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8492
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8493 8494

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8495
    (but keeping all data)
J
JiabinYang 已提交
8496

J
JiabinYang 已提交
8497
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8498
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8499 8500 8501 8502 8503
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8504
    Args:
J
JiabinYang 已提交
8505
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8506
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8507 8508

    Returns:
J
JiabinYang 已提交
8509
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8510 8511

    Raises:
J
JiabinYang 已提交
8512
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8513 8514 8515 8516 8517 8518

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8519
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8520
                x=data, blocksize=2)
J
JiabinYang 已提交
8521 8522
    """

J
JiabinYang 已提交
8523
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8524

J
JiabinYang 已提交
8525 8526
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8527 8528

    if name is None:
J
JiabinYang 已提交
8529 8530
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8531 8532 8533 8534 8535
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8536
        type="space_to_depth",
J
JiabinYang 已提交
8537
        inputs={"X": x},
J
JiabinYang 已提交
8538
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8539
        outputs={"Out": out})
J
JiabinYang 已提交
8540 8541
    return out

J
JiabinYang 已提交
8542

S
sneaxiy 已提交
8543 8544
@templatedoc()
def sequence_reverse(x, name=None):
8545
    """
S
sneaxiy 已提交
8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8557
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8558 8559 8560 8561 8562 8563 8564 8565 8566 8567
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8568 8569


8570 8571 8572 8573 8574 8575
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8576

8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8596
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8609 8610


B
barrierye 已提交
8611
def similarity_focus(input, axis, indexes, name=None):
8612
    """
B
barrierye 已提交
8613
    SimilarityFocus Operator
B
barrierye 已提交
8614 8615

    Generate a similarity focus mask with the same shape of input using the following method:
8616 8617 8618
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8619
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8620 8621 8622 8623 8624 8625 8626
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8627
       each index.
B
barrierye 已提交
8628 8629 8630 8631
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8681
    Args:
8682
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8683
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8684
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8685
            1, 2 or 3.
B
barrierye 已提交
8686
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8687 8688

    Returns:
8689
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8690
            as the input.
8691

B
barrierye 已提交
8692 8693 8694
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8695 8696
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8709 8710 8711 8712 8713
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8714 8715 8716 8717 8718 8719 8720
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8721 8722


M
minqiyang 已提交
8723 8724
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8725 8726
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8727 8728
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8767
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8768
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8769 8770 8771 8772 8773 8774 8775 8776 8777

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8778 8779
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8780 8781
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8782 8783 8784 8785 8786 8787 8788
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8789 8790


D
dengkaipeng 已提交
8791
@templatedoc()
8792 8793
def grid_sampler(x, grid, name=None):
    """
8794
    This operation samples input X by using bilinear interpolation based on
8795
    flow field grid, which is usually gennerated by affine_grid. The grid of
8796 8797 8798 8799
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8800
    interpolation value of 4 nearest corner points.
8801 8802 8803 8804 8805 8806 8807 8808

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8809
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8839 8840

    Args:
8841 8842 8843
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8844 8845

    Returns:
8846
        out(Variable): Output of shape [N, C, H, W] data samples input X
8847 8848 8849 8850 8851 8852 8853 8854 8855
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8856 8857 8858 8859 8860 8861 8862 8863 8864
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8865
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8866 8867
    ipts = {'X': x, 'Grid': grid}

8868
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8869 8870 8871
    return out


G
gmcather 已提交
8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8966 8967 8968 8969 8970 8971 8972 8973 8974 8975


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8976
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8977

Q
Qiao Longfei 已提交
8978
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8979 8980 8981
    For example:

    .. math::
8982
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8983

Q
Qiao Longfei 已提交
8984
    In this formula:
8985 8986
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8987
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8988
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8989 8990 8991
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8992 8993
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8994 8995 8996
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8997
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8998
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8999
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9000 9001 9002 9003
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9004
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9005 9006 9007 9008

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9009
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9010 9011
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9012
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9013 9014 9015 9016

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9017
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)