Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
23aebf0e
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
23aebf0e
编写于
8月 01, 2018
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update softmax layer comment
上级
e7d8e16a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
10 addition
and
7 deletion
+10
-7
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+10
-7
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
23aebf0e
...
...
@@ -1313,13 +1313,16 @@ def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
def
softmax
(
input
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
name
=
None
):
"""
The input of the softmax layer is a 2-D tensor with shape N x K (N is the
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.
The input of the softmax operator is a tensor of any rank. The output tensor
has the same shape as the input.
For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
values in the range [0, 1] that add up to 1.
The input tensor will first be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is as same as the last dimension of the input
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
of the input tensor's last dimension) vector of arbitrary real values to a
K-dimensional vector of real values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
...
...
@@ -1327,7 +1330,7 @@ def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
exponential values of all the other dimensions is the output of the softmax
operator.
For each row :math:`i` and each column :math:`j` in
Input(X)
, we have:
For each row :math:`i` and each column :math:`j` in
the matrix
, we have:
.. math::
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录