nn.py 532.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
H
heqiaozhi 已提交
64
    'data_norm',
X
Xin Pan 已提交
65 66 67 68 69 70
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
71
    'sequence_unpad',
X
Xin Pan 已提交
72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
78 79
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
80 81
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
82
    'sequence_slice',
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
95
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
96 97 98 99 100
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
101
    'group_norm',
D
dengkaipeng 已提交
102
    'spectral_norm',
X
Xin Pan 已提交
103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
111
    'lod_append',
X
Xin Pan 已提交
112 113 114 115 116
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
117
    'roi_align',
X
Xin Pan 已提交
118 119 120 121
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
122
    'resize_trilinear',
123
    'resize_nearest',
X
Xin Pan 已提交
124
    'gather',
125
    'gather_nd',
X
Xin Pan 已提交
126
    'scatter',
127 128
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
129 130 131 132
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
133
    'selu',
X
Xin Pan 已提交
134 135
    'log',
    'crop',
136
    'crop_tensor',
X
Xin Pan 已提交
137
    'rank_loss',
M
minqiyang 已提交
138
    'margin_rank_loss',
X
Xin Pan 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
155
    'unique',
156
    'unique_with_counts',
X
Xin Pan 已提交
157 158 159 160 161 162 163 164 165 166
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
167 168
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
169 170 171 172 173 174
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
175
    'strided_slice',
X
Xin Pan 已提交
176
    'shape',
Z
zhoukunsheng 已提交
177
    'rank',
Z
zhoukunsheng 已提交
178
    'size',
X
Xin Pan 已提交
179 180 181 182 183 184 185 186 187 188
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
189
    'space_to_depth',
W
whs 已提交
190
    'affine_grid',
S
sneaxiy 已提交
191
    'sequence_reverse',
192
    'sequence_topk_avg_pooling',
193
    'affine_channel',
B
barrierye 已提交
194
    'similarity_focus',
M
minqiyang 已提交
195
    'hash',
D
dengkaipeng 已提交
196
    'grid_sampler',
G
gmcather 已提交
197 198
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
199
    'bilinear_tensor_product',
C
chengduo 已提交
200 201
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
202
    'lstm',
S
shippingwang 已提交
203
    'shuffle_channel',
204
    'temporal_shift',
S
sneaxiy 已提交
205
    'py_func',
206
    'psroi_pool',
207
    'prroi_pool',
H
heqiaozhi 已提交
208
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
209
    'huber_loss',
D
dengkaipeng 已提交
210
    'kldiv_loss',
Z
zhaozhehao 已提交
211
    'tree_conv',
C
ceci3 已提交
212
    'npair_loss',
R
ruri 已提交
213
    'pixel_shuffle',
214
    'fsp_matrix',
H
heqiaozhi 已提交
215
    'continuous_value_model',
Z
zhoukunsheng 已提交
216
    'where',
Z
zhoukunsheng 已提交
217
    'sign',
218
    'deformable_conv',
219
    'unfold',
C
cjt222 已提交
220
    'deformable_roi_pooling',
A
Aurelius84 已提交
221
    'match_matrix_tensor',
J
Jiawei Wang 已提交
222
    'filter_by_instag',
K
Kevin 已提交
223
    'var_conv_2d',
224
    'shard_index',
H
huangjun12 已提交
225
    'hard_swish',
Y
Yu Yang 已提交
226 227
]

J
jerrywgz 已提交
228 229
kIgnoreIndex = -100

Y
Yu Yang 已提交
230 231 232 233 234 235 236

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
237
       name=None):
Y
Yu Yang 已提交
238
    """
239
    **Fully Connected Layer**
Y
Yu Yang 已提交
240

241
    This function creates a fully connected layer in the network. It can take
242
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
243
    Args in detail). It creates a variable called weights for each input tensor,
244 245 246 247
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
248
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
249 250
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
251

252
    When the input is single tensor:
C
caoying03 已提交
253

254 255 256 257 258
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
259 260 261

    .. math::

262
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
263 264 265

    In the above equation:

266 267 268
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
269
    * :math:`b`: The bias parameter created by this layer (if needed).
270
    * :math:`Act`: The activation function.
C
caoying03 已提交
271
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
291
    Args:
R
ranqiu 已提交
292 293 294 295 296 297 298 299 300 301
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
302
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
303 304 305 306
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
307 308
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
309 310
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
311

312
    Returns:
F
fengjiayi 已提交
313
        Variable: The transformation result.
314 315

    Raises:
C
caoying03 已提交
316
        ValueError: If rank of the input tensor is less than 2.
317 318 319 320

    Examples:
        .. code-block:: python

321
          import paddle.fluid as fluid
322
          # when input is single tensor
F
fengjiayi 已提交
323
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
324
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
325 326 327 328 329

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
330
    """
C
caoying03 已提交
331
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
332 333 334 335

    dtype = helper.input_dtype()

    mul_results = []
336 337
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
338 339 340
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
341

Y
Yu Yang 已提交
342
        w = helper.create_parameter(
343
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
344
        tmp = helper.create_variable_for_type_inference(dtype)
345
        helper.append_op(
346 347 348
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
349
            outputs={"Out": tmp},
M
mozga-intel 已提交
350 351
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
352 353 354 355
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
356
    else:
X
Xin Pan 已提交
357
        pre_bias = helper.create_variable_for_type_inference(dtype)
358
        helper.append_op(
359 360 361
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
362
            attrs={"use_mkldnn": False})
363 364 365 366
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
367 368


H
HaoRen 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


455 456 457
def embedding(input,
              size,
              is_sparse=False,
458
              is_distributed=False,
459 460 461
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
462
    """
463 464
    **Embedding Layer**

465
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
466 467
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
468 469 470

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
471 472

    Args:
473
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
474
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
475 476 477 478
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
479
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
480 481 482 483 484 485 486 487
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
488

489 490 491
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
492

493 494
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
495

B
bdzhuxiaoning 已提交
496 497 498
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
499 500 501
    """

    helper = LayerHelper('embedding', **locals())
502
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
503 504
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
505 506
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
507
    tmp = helper.create_variable_for_type_inference(dtype)
508 509
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
510 511 512 513 514
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
515 516 517
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
518
            'remote_prefetch': remote_prefetch,
519 520
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
521 522 523
    return tmp


H
hutuxian 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


W
wopeizl 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
588

W
wopeizl 已提交
589 590 591 592 593 594 595 596 597 598 599
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
600

W
wopeizl 已提交
601 602 603 604
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
605

W
wopeizl 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
642
            
643
            import paddle.fluid as fluid
644 645
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
646
            hidden_dim = 512
647 648 649 650 651 652
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
653
                                           bias_attr=False)
654

W
wopeizl 已提交
655 656 657
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
658
    assert in_dygraph_mode(
659
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
703 704


P
phlrain 已提交
705 706 707 708 709 710
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
711
         dropout_prob=0.0,
P
phlrain 已提交
712 713 714 715 716
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
717
    """
P
phlrain 已提交
718
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
719 720

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
721
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
722 723
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
724
    .. math::
M
minqiyang 已提交
725 726 727 728 729 730 731

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
732
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
733 734 735 736

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
737 738

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
739 740 741 742 743 744
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
745 746 747
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
748
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
749

M
minqiyang 已提交
750
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
751 752 753 754 755
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
756
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
757 758 759 760 761
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
762
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
763 764
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
765 766
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
767 768 769 770 771 772
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
773
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
774

L
liuhongyu 已提交
775 776

    Returns:
M
minqiyang 已提交
777 778
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
779
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
780

H
haowang101779990 已提交
781 782 783 784
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
785
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
786 787
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
788
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
789 790 791 792


    Examples:
        .. code-block:: python
793
            
794 795 796
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

797 798 799 800 801
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
802 803 804 805 806 807
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
808 809 810 811 812
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
813 814 815 816
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
817 818 819
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
879 880 881 882 883 884 885 886 887 888
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
889
                  proj_activation='tanh',
890
                  dtype='float32',
X
xuezhong 已提交
891 892 893 894 895
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
896 897 898
    """
    **Dynamic LSTMP Layer**

899 900 901 902 903 904
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
905 906 907 908 909

    The formula is as follows:

    .. math::

910
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
911

912
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
913

914
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
915

916
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
917

918
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
919

920
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
921

922
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
923

Y
Yibing Liu 已提交
924 925 926 927 928 929
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
930
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
931
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
932
          bias vector).
Y
Yibing Liu 已提交
933 934 935
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
936
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
937
    * :math:`h`: The hidden state.
938
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
939 940
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
941
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
942
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
943
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
944 945
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
946 947 948 949

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
950

Y
Yibing Liu 已提交
951 952 953 954 955 956 957 958 959 960 961 962
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
963
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
964 965
                               hidden-hidden weight and projection weight.

966 967
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
968 969
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
970 971
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
972
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
973 974 975 976 977

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
978
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
979 980 981 982 983 984
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
985
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
986 987 988
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
989
                                - The shape is (1 x 7D).
C
chengduo 已提交
990 991 992 993 994

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
995 996 997 998 999 1000 1001 1002 1003
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
1004
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
1005 1006
                              default "tanh".
        proj_activation(str): The activation for projection output.
1007
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
1008
                              default "tanh".
Y
Yibing Liu 已提交
1009
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
1010 1011
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
1023 1024

    Returns:
1025 1026 1027 1028
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
1029 1030

    Examples:
1031

Y
Yibing Liu 已提交
1032 1033
        .. code-block:: python

1034
            import paddle.fluid as fluid
1035 1036 1037 1038
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
1039
            hidden_dim, proj_dim = 512, 256
1040
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
1041
                                     act=None, bias_attr=None)
1042 1043 1044
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
1045 1046 1047 1048
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
1049
    """
1050

L
lujun 已提交
1051
    assert in_dygraph_mode(
1052 1053
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
1054
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
1055
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1056
    size = size // 4
Y
Yibing Liu 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1067 1068 1069 1070 1071 1072
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1088

X
xuezhong 已提交
1089 1090 1091 1092 1093
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1094 1095
    helper.append_op(
        type='lstmp',
1096
        inputs=inputs,
Y
Yibing Liu 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1106 1107
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1117 1118 1119 1120 1121 1122 1123
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1124 1125
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1126
    """
1127
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1128

1129 1130 1131
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1132

G
guosheng 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1142

G
guosheng 已提交
1143
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1144

Q
Qiao Longfei 已提交
1145 1146 1147

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1160
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1161 1162
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1163 1164 1165 1166
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1167
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1168 1169

    Args:
1170 1171
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1172
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1173
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1174 1175
            is the hidden size.
        size(int): The dimension of the gru cell.
1176
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1177 1178
            hidden-hidden weight matrix. Note:

1179
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1180
              :math:`D` is the hidden size.
1181
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1182
              The first part are weights of the update gate and reset gate with
1183
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1184
              candidate hidden state with shape :math:`(D \\times D)`.
1185 1186 1187 1188 1189

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1190
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1191
            the bias in the update gate, reset gate and candidate calculations.
1192 1193 1194
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1195 1196
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1197
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1198 1199 1200
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1201
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1202
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1203 1204 1205 1206
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1207 1208

    Returns:
G
guosheng 已提交
1209
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1210
            and sequence length is the same with the input.
1211

G
guosheng 已提交
1212
    Examples:
1213

G
guosheng 已提交
1214 1215
        .. code-block:: python

1216 1217
            import paddle.fluid as fluid

1218 1219 1220 1221
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1222
            hidden_dim = 512
1223
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1224
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1225 1226
    """

L
lujun 已提交
1227
    assert in_dygraph_mode(
1228 1229
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1230 1231 1232 1233 1234 1235 1236
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1237
    batch_size = input.shape[0]
G
guosheng 已提交
1238
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1239
    if h_0:
G
guosheng 已提交
1240
        assert h_0.shape == (
Y
Yancey 已提交
1241 1242 1243
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1244

X
Xin Pan 已提交
1245 1246 1247 1248
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1262 1263
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1264 1265 1266 1267
        })
    return hidden


Y
Yu Yang 已提交
1268 1269 1270
def gru_unit(input,
             hidden,
             size,
1271 1272
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1273
             activation='tanh',
Q
Qiao Longfei 已提交
1274 1275
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1276
    """
1277 1278 1279
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1280
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1281
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1282

1283 1284
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1285

1286
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1287

1288
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1305 1306

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1307 1308 1309
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1310 1311
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1312 1313
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1314 1315 1316
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1317 1318 1319

    Args:
        input (Variable): The fc transformed input value of current step.
1320
        hidden (Variable): The hidden value of gru unit from previous step.
1321
        size (integer): The input dimension value.
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1336
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1337
            the bias in the update gate, reset gate and candidate calculations.
1338 1339 1340
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1341 1342
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1343 1344 1345 1346
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1347

1348 1349 1350 1351 1352 1353
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1378
    size = size // 3
Y
Yu Yang 已提交
1379 1380

    # create weight
1381 1382
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1383

X
Xin Pan 已提交
1384 1385 1386
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1387
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1388
    # create bias
1389
    if helper.bias_attr:
Y
Yu Yang 已提交
1390 1391 1392
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1393
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1394 1395 1396

    helper.append_op(
        type='gru_unit',
1397
        inputs=inputs,
Y
Yu Yang 已提交
1398 1399 1400 1401 1402 1403
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1404 1405
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1406 1407 1408 1409 1410
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1411
@templatedoc()
1412
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
1413 1414 1415 1416 1417 1418 1419 1420
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
1421
        Length(${length_type}): ${length_comment}
1422
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
1423 1424

    Returns:
D
dzhwinter 已提交
1425 1426 1427
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1428

J
JesseyXujin 已提交
1429 1430 1431
    Examples:
        .. code-block:: python

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data = fluid.layers.data(name='input_data', shape=[10], dtype='float32', lod_level=1)
                label = fluid.layers.data(name='label', shape=[1], dtype='int', lod_level=1)
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data2 = fluid.layers.data(name='input_data2', shape=[10,10], dtype='float32')
                label2 = fluid.layers.data(name='label2', shape=[10,1], dtype='int')
                label_length = fluid.layers.data(name='length', shape=[1], dtype='int')
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
1472
                     name='crfw',
1473 1474 1475 1476 1477 1478
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
1479

1480 1481 1482 1483 1484 1485 1486 1487
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
            ll=np.array([[3,3,4,2]])
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}

            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
1488 1489 1490 1491
            
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
Y
yuyang18 已提交
1492
    """
Y
Yu Yang 已提交
1493 1494 1495 1496 1497 1498
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1499 1500 1501 1502 1503 1504 1505 1506
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
1507 1508 1509 1510 1511 1512 1513
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
        this_inputs['length'] = [length]
Y
Yu Yang 已提交
1514 1515
    helper.append_op(
        type='linear_chain_crf',
1516
        inputs=this_inputs,
Y
Yu Yang 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1527 1528 1529 1530
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1531

W
wopeizl 已提交
1532 1533
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1534

W
wopeizl 已提交
1535
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1536

W
wopeizl 已提交
1537
        label(${label_type}): ${label_comment}
1538

W
wopeizl 已提交
1539 1540
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1541

W
wopeizl 已提交
1542 1543
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1544

1545
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1546 1547 1548 1549 1550 1551 1552
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1553 1554 1555 1556 1557 1558 1559 1560
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1561
                "Transition": transition,
W
wopeizl 已提交
1562 1563
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1564

W
wopeizl 已提交
1565
    return viterbi_path
Y
Yu Yang 已提交
1566 1567


Y
yi.wu 已提交
1568
@templatedoc()
F
fengjiayi 已提交
1569
def cos_sim(X, Y):
Y
Yu Yang 已提交
1570
    """
Y
yi.wu 已提交
1571 1572 1573
    ${comment}

    Args:
1574 1575
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1576

Y
yi.wu 已提交
1577
    Returns:
1578
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1579 1580 1581 1582

    Examples:
        .. code-block:: python

1583
            import paddle.fluid as fluid
L
lvmengsi 已提交
1584 1585 1586
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1587
    """
F
fengjiayi 已提交
1588
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1589 1590 1591
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1602 1603 1604 1605 1606
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1607
            dropout_implementation="downgrade_in_infer"):
1608 1609 1610 1611 1612
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1613
    training. The dropout operator randomly sets (according to the given dropout
1614 1615 1616
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1617 1618
    dropout op can be removed from the program to make the program more efficient.

1619
    Args:
1620 1621
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1622 1623 1624 1625 1626 1627 1628
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1629 1630
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1631
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1632 1633

                                           - train: out = input * mask
C
ceci3 已提交
1634
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1635 1636 1637

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1638
                                        2. upscale_in_train, upscale the outcome at training time
1639

H
haowang101779990 已提交
1640 1641
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1642

H
haowang101779990 已提交
1643 1644
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1645

M
minqiyang 已提交
1646

1647
    Returns:
1648
        Variable: A tensor variable is the shape with `x`.
1649 1650

    Examples:
1651

1652 1653
        .. code-block:: python

1654
            import paddle.fluid as fluid
1655 1656
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1657 1658
    """

F
fengjiayi 已提交
1659
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1660 1661
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1662
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1663 1664 1665 1666

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1667 1668 1669 1670 1671
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1672 1673 1674 1675
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1676
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1677
            'dropout_implementation': dropout_implementation,
1678
        })
1679 1680 1681
    return out


J
jerrywgz 已提交
1682
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1683
    """
Y
Yibing Liu 已提交
1684 1685
    **Cross Entropy Layer**

1686 1687 1688
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1689 1690

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1691
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1692

Y
Yibing Liu 已提交
1693
        .. math::
Y
yangyaming 已提交
1694

Y
Yibing Liu 已提交
1695 1696 1697
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1698 1699
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1700 1701 1702 1703 1704

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1705
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1706 1707 1708
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1709 1710
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1711
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1712

Y
Yibing Liu 已提交
1713
    Args:
Y
yangyaming 已提交
1714
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1715 1716 1717 1718
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1719
        label (Variable|list): the ground truth which is a 2-D tensor. When
1720 1721 1722 1723
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1724
        soft_label (bool): a flag indicating whether to
1725
                                           interpretate the given labels as soft
1726
                                           labels. Default: `False`.
M
minqiyang 已提交
1727 1728
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1729
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1730 1731 1732 1733 1734

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1735 1736 1737
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1738

H
haowang101779990 已提交
1739 1740
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1741

H
haowang101779990 已提交
1742 1743
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1744 1745 1746 1747

    Examples:
        .. code-block:: python

1748
          import paddle.fluid as fluid
L
lvmengsi 已提交
1749 1750 1751 1752
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1753
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1754
    """
S
sneaxiy 已提交
1755 1756
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1757
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1758
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1759 1760 1761 1762 1763
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1764 1765
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1766 1767 1768
    return out


S
sneaxiy 已提交
1769 1770 1771 1772
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1773
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1774 1775 1776 1777 1778
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1779
                 'MatchX': [match_x],
S
sneaxiy 已提交
1780 1781 1782 1783 1784
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1785
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1786
    """
1787
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1788

1789
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1790
    The loss at a given point in one session is defined as:
1791 1792 1793

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1794 1795

    Learn more details by reading paper <session-based recommendations with recurrent
1796
    neural networks>.
F
frankwhzhang 已提交
1797

1798 1799 1800 1801 1802 1803
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1804 1805
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1806 1807 1808
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1809 1810 1811
    Examples:
        .. code-block:: python

1812 1813 1814 1815 1816 1817 1818
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1819
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1820
    """
1821 1822 1823 1824 1825
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1826
                'Label': [label]},
1827 1828 1829 1830
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1831
def square_error_cost(input, label):
Y
Yu Yang 已提交
1832
    """
1833 1834
    **Square error cost layer**

1835 1836
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1851 1852
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1853 1854

    Returns:
G
guosheng 已提交
1855
        Variable: The tensor variable storing the element-wise squared error \
1856
                  difference of input and label.
1857 1858 1859 1860

    Examples:
        .. code-block:: python

1861
          import paddle.fluid as fluid
R
ruri 已提交
1862 1863 1864
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1865

Y
Yu Yang 已提交
1866
    """
F
fengjiayi 已提交
1867
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1868
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1869 1870 1871 1872 1873 1874
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1875
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1876
    helper.append_op(
F
fengjiayi 已提交
1877 1878
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1879 1880 1881
    return square_out


Y
yi.wu 已提交
1882
@templatedoc()
Y
Yu Yang 已提交
1883 1884 1885 1886
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1887 1888
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1889
    """
Y
yi.wu 已提交
1890
    **Chunk Evaluator**
Y
yi.wu 已提交
1891

Y
yangyaming 已提交
1892
    This function computes and outputs the precision, recall and
1893
    F1-score of chunk detection.
Y
yi.wu 已提交
1894

M
minqiyang 已提交
1895
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1896
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1897 1898 1899 1900 1901 1902

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1903

Y
yi.wu 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1929

Y
yi.wu 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1954
    Args:
1955 1956 1957 1958 1959
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1960
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1961

Y
yi.wu 已提交
1962
    Returns:
Y
update  
yi.wu 已提交
1963 1964 1965
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1966

Y
yi.wu 已提交
1967 1968 1969
    Examples:
        .. code-block:: python

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1981
            crf = fluid.layers.linear_chain_crf(
1982
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1983
            crf_decode = fluid.layers.crf_decoding(
1984
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1985 1986 1987 1988 1989
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1990
    """
F
fengjiayi 已提交
1991
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1992 1993

    # prepare output
X
Xin Pan 已提交
1994 1995 1996 1997 1998 1999 2000
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
2001

2002 2003 2004 2005 2006
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
2007 2008
    helper.append_op(
        type="chunk_eval",
2009
        inputs=this_input,
Y
Yu Yang 已提交
2010 2011 2012
        outputs={
            "Precision": [precision],
            "Recall": [recall],
2013 2014 2015 2016
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
2017 2018 2019
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
2020 2021
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
2022
        })
2023 2024
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
2025 2026


2027
@templatedoc()
Y
Yu Yang 已提交
2028 2029 2030 2031
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
2032 2033
                  padding=True,
                  padding_start=None,
Y
Yu Yang 已提交
2034 2035
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
2036 2037
                  act=None,
                  name=None):
Y
Yu Yang 已提交
2038
    """
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
    The sequence_conv receives input sequences with variable length and other convolutional
    configuration parameters for the filter and stride to apply the convolution operation.
    It fills all-zero padding data on both sides of the sequence by default to ensure that
    the output is the same length as the input. You can customize the padding behavior by
    configuring the parameter :attr:`padding\_start`.
    
    **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.

    .. code-block:: text

            Here we'll illustrate the details of the padding operation:
            For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
            Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
            Besides, for the sake of simplicity, we assume M=1 and N=2.
            X = [[a1, a2;
                  b1, b2;
                  c1, c2]
                 [d1, d2]]

            This is to say that input (X) has 4 words and the dimension of each word
            representation is 2.

            * Case1:

                If padding_start is -1 and filter_size is 3.
                The length of padding data is calculated as follows:
                up_pad_len = max(0, -padding_start) = 1
                down_pad_len = max(0, filter_size + padding_start - 1) = 1

                The output of the input sequence after padding is:
                data_aftet_padding = [[0,  0,  a1, a2, b1, b2;
                                       a1, a2, b1, b2, c1, c2;
                                       b1, b2, c1, c2, 0,  0 ]
                                      [0,  0,  d1, d2, 0,  0 ]]

                It will be multiplied by the filter weight to get the final output.
2075 2076 2077

    Args:
        input (Variable): ${x_comment}
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
        num_filters (int): the number of filters.
        filter_size (int): the height of filter, the width is hidden size by default.
        filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
        padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
            future. Currently, it will always pad input to make sure the length of the output is
            the same as input whether :attr:`padding` is set true or false. Because the length of
            input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
            result to not be computed correctly. These padding data will not be trainable or updated
            while trainnig. 
        padding_start (int|None): It is used to indicate the start index for padding the input
            sequence, which can be negative. The negative number means to pad
            :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
            The positive number means to skip :attr:`padding_start` time-steps of each instance,
            and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
            at the end of the sequence to ensure that the output is the same length as the input.
            If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
            on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
            is padded at the end of each input sequence.
C
chengduo 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
2109

2110 2111
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
2112 2113

    Examples:
2114

B
bdzhuxiaoning 已提交
2115 2116 2117
        .. code-block:: python

             import paddle.fluid as fluid
2118

B
bdzhuxiaoning 已提交
2119
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
2120
             x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
Y
Yu Yang 已提交
2121 2122
    """

L
lujun 已提交
2123
    assert not in_dygraph_mode(), (
2124
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
2125 2126 2127 2128 2129
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
2130
    pre_bias = helper.create_variable_for_type_inference(dtype)
2131 2132
    if padding_start is None:
        padding_start = -int(filter_size // 2)
Y
Yu Yang 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
2143 2144
            'contextStart': padding_start,
            'contextLength': filter_size,
Y
Yu Yang 已提交
2145 2146 2147 2148 2149
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
2150
def sequence_softmax(input, use_cudnn=False, name=None):
2151 2152 2153
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
2154
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2171 2172 2173
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2174

2175 2176 2177 2178 2179 2180 2181
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2182
             import paddle.fluid as fluid
2183 2184 2185 2186
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2187
    assert not in_dygraph_mode(), (
2188
        "sequence layer is not supported in dygraph mode yet.")
2189 2190
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2191
    softmax_out = helper.create_variable_for_type_inference(dtype)
2192 2193 2194 2195 2196 2197 2198 2199
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2200
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2201
    """
2202
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2203
    has the same shape as the input.
Q
qiaolongfei 已提交
2204

D
dengkaipeng 已提交
2205
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2206
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2207
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2208 2209 2210
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2211
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2212
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2213 2214 2215 2216 2217 2218 2219

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2220
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2221 2222 2223 2224 2225 2226 2227 2228

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2229 2230
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2231 2232
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2233 2234 2235
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2236 2237 2238 2239 2240 2241 2242 2243

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2244 2245
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2246
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2247
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2248
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2249 2250
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2251 2252

    """
2253 2254
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2255
    softmax_out = helper.create_variable_for_type_inference(dtype)
2256 2257 2258 2259
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2260 2261
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2262 2263 2264
    return softmax_out


Y
Yu Yang 已提交
2265 2266 2267
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2268 2269
           stride=1,
           padding=0,
2270
           dilation=1,
Y
Yu Yang 已提交
2271 2272 2273
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2274
           use_cudnn=True,
2275 2276
           act=None,
           name=None):
Y
Yu Yang 已提交
2277
    """
C
chengduoZH 已提交
2278
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2279 2280
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2281
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2282 2283 2284 2285 2286 2287
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
2288
    for more details.
2289 2290 2291
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2292

2293
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2294

C
chengduoZH 已提交
2295 2296
    .. math::

C
refine  
chengduoZH 已提交
2297
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2298

T
tensor-tang 已提交
2299
    Where:
C
chengduoZH 已提交
2300

2301 2302 2303 2304 2305
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2306
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2307 2308 2309

    Example:

2310 2311
        - Input:

W
weixing02 已提交
2312
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2313

W
weixing02 已提交
2314
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2315

2316
        - Output:
T
tensor-tang 已提交
2317

W
weixing02 已提交
2318
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2319

C
chengduoZH 已提交
2320
        Where
2321 2322

        .. math::
C
chengduoZH 已提交
2323

W
weixing02 已提交
2324 2325
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2326 2327

    Args:
2328
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2329
        num_filters(int): The number of filter. It is as same as the output
2330
            image channel.
2331
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2347 2348 2349 2350 2351
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2352
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2353 2354 2355 2356 2357
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2358 2359
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2360 2361
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2362
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2363
            will be named automatically. Default: None
C
chengduoZH 已提交
2364 2365

    Returns:
G
guosheng 已提交
2366
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2367 2368
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2369
    Raises:
2370 2371
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2372

C
chengduoZH 已提交
2373 2374 2375
    Examples:
        .. code-block:: python

2376
          import paddle.fluid as fluid
2377 2378
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2379 2380 2381
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2382
    assert param_attr is not False, "param_attr should not be False here."
2383
    l_type = 'conv2d'
X
xzl 已提交
2384 2385
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2386
        l_type = 'depthwise_conv2d'
2387 2388 2389 2390

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2391 2392 2393 2394 2395
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2396
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2397

C
chengduoZH 已提交
2398 2399 2400
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2401
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2402

C
chengduoZH 已提交
2403 2404
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2405 2406

    input_shape = input.shape
M
minqiyang 已提交
2407
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2408 2409

    def _get_default_param_initializer():
C
chengduo 已提交
2410 2411
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2412 2413 2414 2415 2416 2417 2418 2419
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2420
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2421 2422

    helper.append_op(
2423
        type=l_type,
Y
Yu Yang 已提交
2424 2425 2426 2427 2428
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2429 2430 2431
        attrs={
            'strides': stride,
            'paddings': padding,
2432
            'dilations': dilation,
C
chengduoZH 已提交
2433
            'groups': groups,
2434
            'use_cudnn': use_cudnn,
2435
            'use_mkldnn': False,
2436
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2437
        })
Y
Yu Yang 已提交
2438 2439 2440 2441 2442 2443

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2461 2462 2463 2464 2465 2466
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2476 2477
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2478 2479 2480
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2481
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2504
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2505 2506
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2507
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2508 2509
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2510
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2511 2512
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2513
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2514 2515
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2516
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2517 2518 2519 2520 2521 2522
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2533 2534
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2535 2536
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2537
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2538
            will be named automatically. Default: None.
C
chengduoZH 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2551
          import paddle.fluid as fluid
2552 2553
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2554 2555 2556
    """

    l_type = 'conv3d'
C
chengduo 已提交
2557
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2568
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2582 2583 2584
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2585 2586 2587 2588 2589 2590 2591 2592
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2593
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2608
            'use_mkldnn': False
C
chengduoZH 已提交
2609 2610
        })

2611
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2612 2613 2614 2615

    return helper.append_activation(pre_act)


2616
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2617
    """
Y
yangyaming 已提交
2618 2619 2620
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2631 2632
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2633 2634 2635 2636
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2637
         out.dim = [4, 1]
2638
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2639 2640

       for different pool_type:
2641 2642 2643
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2644
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2645 2646 2647 2648 2649
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2650

L
Luo Tao 已提交
2651
    Args:
2652
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2653
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2654
            It supports average, sum, sqrt and max.
2655 2656
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2657 2658 2659 2660 2661 2662 2663

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2664

2665 2666
             import paddle.fluid as fluid

Y
yangyaming 已提交
2667
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2668 2669 2670 2671 2672
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2673 2674
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2675
    """
L
lujun 已提交
2676
    assert not in_dygraph_mode(), (
2677
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2678
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2679
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2680 2681
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2682 2683 2684 2685 2686 2687

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2688 2689 2690 2691 2692
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2693

Y
yangyaming 已提交
2694 2695 2696 2697 2698
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2699 2700 2701
    return pool_out


C
add doc  
chengduoZH 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2718 2719 2720 2721
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2722
    """
L
lujun 已提交
2723
    assert not in_dygraph_mode(), (
2724
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2725
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2726
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2727 2728 2729 2730 2731
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2732
def sequence_first_step(input):
L
Luo Tao 已提交
2733
    """
L
Luo Tao 已提交
2734
    This function gets the first step of sequence.
L
Luo Tao 已提交
2735 2736 2737 2738

    .. code-block:: text

       x is a 1-level LoDTensor:
2739
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2740 2741 2742 2743 2744
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2745
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2746
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2747

L
Luo Tao 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2757

2758
             import paddle.fluid as fluid
Y
yangyaming 已提交
2759
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2760 2761 2762
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2763 2764 2765
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2766
def sequence_last_step(input):
L
Luo Tao 已提交
2767
    """
L
Luo Tao 已提交
2768
    This function gets the last step of sequence.
L
Luo Tao 已提交
2769 2770 2771 2772

    .. code-block:: text

       x is a 1-level LoDTensor:
2773
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2774 2775 2776 2777 2778
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2779
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2780
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2781

L
Luo Tao 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2791

2792
             import paddle.fluid as fluid
Y
yangyaming 已提交
2793
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2794 2795 2796
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2797 2798 2799
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2800 2801 2802 2803
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2804
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2805 2806 2807 2808 2809
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2810

H
haowang101779990 已提交
2811
              - Case:
Y
Yibing Liu 已提交
2812

2813
            Given the input Variable **input**:
2814

2815 2816 2817
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2818

2819
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2820

2821
            the output Variable will be
2822

2823 2824 2825
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2826

M
minqiyang 已提交
2827
    Note:
H
haowang101779990 已提交
2828
          The first dimension size of **input**, **offset** and **length**
2829
          should be equal. The **offset** should start from 0.
2830

Y
Yibing Liu 已提交
2831
    Args:
2832
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2833
                         sequences.
Y
Yibing Liu 已提交
2834 2835 2836 2837 2838 2839
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2840
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2841 2842 2843 2844 2845

    Examples:

        .. code-block:: python

2846
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2847 2848 2849 2850 2851
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2852
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2853 2854
                                                   length=length)
    """
L
lujun 已提交
2855
    assert not in_dygraph_mode(), (
2856
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2857 2858
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2859
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2874
@templatedoc()
Y
Yu Yang 已提交
2875
def pool2d(input,
C
chengduoZH 已提交
2876 2877
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2878 2879
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2880
           global_pooling=False,
C
chengduoZH 已提交
2881
           use_cudnn=True,
2882
           ceil_mode=False,
2883 2884
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2885
    """
F
fengjiayi 已提交
2886
    ${comment}
2887 2888

    Args:
2889 2890 2891
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2892
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2893
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2894 2895
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2896
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2897 2898 2899 2900 2901 2902
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2903 2904 2905
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2906
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2907
                        layer will be named automatically.
2908
        exclusive (bool): Whether to exclude padding points in average pooling
2909
                          mode, default is true
F
fengjiayi 已提交
2910

2911
    Returns:
F
fengjiayi 已提交
2912
        Variable: The pooling result.
F
fengjiayi 已提交
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2923
          import paddle.fluid as fluid
F
fengjiayi 已提交
2924 2925
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2926
          pool2d = fluid.layers.pool2d(
2927 2928 2929 2930
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2931
                            global_pooling=False)
Y
Yu Yang 已提交
2932 2933 2934 2935 2936
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2937

C
chengduoZH 已提交
2938 2939 2940 2941 2942
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2943 2944 2945 2946
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2947 2948
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2949

C
Add doc  
chengduoZH 已提交
2950
    l_type = 'pool2d'
2951 2952

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2953
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2954
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2955 2956

    helper.append_op(
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2968 2969
            "use_mkldnn": False,
            "exclusive": exclusive,
2970 2971 2972 2973 2974
        })

    return pool_out


D
dengkaipeng 已提交
2975
@templatedoc()
2976 2977 2978 2979 2980 2981 2982 2983
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2984 2985
           name=None,
           exclusive=True):
2986
    """
2987
    ${comment}
2988 2989

    Args:
D
dengkaipeng 已提交
2990 2991 2992 2993 2994
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2995 2996 2997 2998 2999
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
3000 3001 3002 3003 3004 3005 3006
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
3007
        exclusive (bool): Whether to exclude padding points in average pooling
3008
                          mode, default is true
3009

3010
    Returns:
3011
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
3012 3013 3014 3015 3016

    Examples:

        .. code-block:: python

3017
          import paddle.fluid as fluid
D
dengkaipeng 已提交
3018 3019 3020 3021 3022 3023 3024 3025
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
3026 3027 3028 3029 3030
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
3031

C
chengduoZH 已提交
3032 3033 3034 3035 3036
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

3037 3038 3039
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
3040

C
chengduoZH 已提交
3041 3042
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
3043

3044 3045
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3046
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3047
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
3048 3049

    helper.append_op(
3050
        type=l_type,
Y
Yu Yang 已提交
3051 3052 3053 3054 3055 3056 3057
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
3058
            "paddings": pool_padding,
3059
            "use_cudnn": use_cudnn,
3060
            "ceil_mode": ceil_mode,
3061 3062
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
3063 3064 3065 3066 3067
        })

    return pool_out


3068 3069 3070 3071 3072 3073 3074
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3075 3076 3077 3078 3079 3080 3081
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
3082

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
3096 3097 3098 3099 3100 3101 3102 3103 3104

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3105 3106
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
3121
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
3122
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
3123
          # of input data into m * n grids averagely and performs poolings in each
3124 3125
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3126
          #
3127 3128 3129 3130 3131 3132 3133 3134
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
3135
          import paddle.fluid as fluid
3136 3137
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
3138
          pool_out = fluid.layers.adaptive_pool2d(
3139 3140
                            input=data,
                            pool_size=[3, 3],
3141
                            pool_type='avg')
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3152
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3178
    return (pool_out, mask) if require_index else pool_out
3179 3180 3181 3182 3183 3184 3185 3186 3187


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3188 3189 3190 3191 3192 3193 3194
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3195

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3213 3214 3215

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3216 3217 3218
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3219
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3220
            it must contain three integers, (Depth, Height, Width).
3221
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3222 3223
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3238 3239
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3240
          # of input data into l * m * n grids averagely and performs poolings in each
3241 3242
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3243
          #
3244 3245 3246 3247 3248 3249 3250 3251 3252
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3253
          #                 output[:, :, i, j, k] =
3254 3255
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3256 3257 3258

          import paddle.fluid as fluid

3259
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3260 3261
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3262
                            input=data,
D
dengkaipeng 已提交
3263
                            pool_size=[3, 3, 3],
3264
                            pool_type='avg')
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3275
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3301
    return (pool_out, mask) if require_index else pool_out
3302 3303


Y
Yu Yang 已提交
3304 3305 3306 3307 3308 3309 3310
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3311
               data_layout='NCHW',
Y
Yang Yang 已提交
3312
               in_place=False,
3313 3314
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3315
               moving_variance_name=None,
3316
               do_model_average_for_mean_and_var=False,
3317 3318
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3319
    """
Q
qiaolongfei 已提交
3320 3321 3322 3323
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3324

Q
qiaolongfei 已提交
3325
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3326

Q
qiaolongfei 已提交
3327 3328
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3329 3330 3331
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3344

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
3358 3359 3360 3361
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

3362
    Args:
Q
qingqing01 已提交
3363
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3364
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3365 3366 3367 3368 3369 3370 3371 3372 3373
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3374 3375
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3376 3377 3378
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3379 3380
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3381 3382 3383
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3384
        data_layout(string, default NCHW): NCHW|NHWC
3385
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3386 3387
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3388 3389 3390
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3391
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3392 3393
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3394
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3395
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3396 3397 3398 3399 3400
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3401 3402

    Returns:
Q
qiaolongfei 已提交
3403
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3404 3405 3406 3407 3408

    Examples:

        .. code-block:: python

3409
            import paddle.fluid as fluid
L
lvmengsi 已提交
3410
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3411 3412
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3413
    """
C
chengduo 已提交
3414
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3415 3416 3417
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3418 3419 3420 3421
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3440
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3441

3442 3443
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3444 3445 3446
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3447
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3448
        shape=param_shape,
W
Wu Yi 已提交
3449
        dtype=dtype)
3450 3451 3452 3453 3454 3455
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3456
            trainable=False,
W
wanghaoshuang 已提交
3457
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3458
        shape=param_shape,
W
Wu Yi 已提交
3459
        dtype=dtype)
3460
    variance.stop_gradient = True
Y
Yu Yang 已提交
3461 3462 3463 3464 3465 3466

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3467 3468 3469 3470
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3471

X
Xin Pan 已提交
3472 3473
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3491 3492 3493 3494
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3495
            "data_layout": data_layout,
X
Xin Pan 已提交
3496
            "use_mkldnn": False,
3497 3498
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3499
        })
Y
Yu Yang 已提交
3500 3501 3502 3503

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3555 3556
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3557

3558 3559
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3625
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3626 3627 3628 3629

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3630
@templatedoc()
G
guosheng 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3641
    ${comment}
G
guosheng 已提交
3642 3643 3644

    The formula is as follows:

Y
yuyang18 已提交
3645
    ..  math::
G
guosheng 已提交
3646 3647 3648 3649 3650 3651 3652

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3653 3654 3655 3656 3657 3658 3659 3660
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3661

G
guosheng 已提交
3662 3663
    Args:
        input(Variable): The input tensor variable.
3664
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3665
            normalization. Default True.
3666
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3667 3668
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3669
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3670
            Default 1.
3671
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3672
            division by zero. Default 1e-05.
G
guosheng 已提交
3673
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3674 3675
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3676 3677
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3678
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3679 3680
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3681
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3682
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3683
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3684 3685 3686
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3687 3688

    Returns:
Y
yuyang18 已提交
3689
        ${y_comment}
G
guosheng 已提交
3690 3691 3692

    Examples:

3693
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3694 3695 3696
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3697
    """
L
lujun 已提交
3698
    assert in_dygraph_mode(
L
lujun 已提交
3699
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3714
    if shift:
G
guosheng 已提交
3715 3716 3717 3718 3719 3720
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3721 3722 3723 3724 3725
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3753
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3775
        >>> import paddle.fluid as fluid
D
Dun 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3802 3803
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3821
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3822 3823 3824
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3825
    This layer calculates the spectral normalization value of weight parameters of
3826
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3827
    Parameters. Calculations are showed as follows.
3828

D
dengkaipeng 已提交
3829 3830 3831
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3832
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3845
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3846 3847 3848 3849

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3850

D
dengkaipeng 已提交
3851
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3852 3853
                

D
dengkaipeng 已提交
3854 3855 3856 3857
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3858 3859 3860
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3861 3862 3863
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3864
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3865 3866

    Examples:
K
Kaipeng Deng 已提交
3867
       .. code-block:: python
D
dengkaipeng 已提交
3868

K
Kaipeng Deng 已提交
3869 3870 3871 3872 3873
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3874 3875
    """
    helper = LayerHelper('spectral_norm', **locals())
3876
    dtype = weight.dtype
D
dengkaipeng 已提交
3877 3878 3879

    # create intput and parameters
    inputs = {'Weight': weight}
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3898 3899

    # create output
3900
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3901 3902

    helper.append_op(
3903
        type="spectral_norm",
D
Dun 已提交
3904
        inputs=inputs,
3905 3906 3907 3908 3909 3910
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3911

3912
    return out
D
Dun 已提交
3913 3914


Y
Yu Yang 已提交
3915 3916 3917 3918
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3919 3920 3921
                     padding=0,
                     stride=1,
                     dilation=1,
3922
                     groups=None,
C
caoying03 已提交
3923
                     param_attr=None,
3924
                     bias_attr=None,
C
chengduoZH 已提交
3925
                     use_cudnn=True,
3926
                     act=None,
C
caoying03 已提交
3927
                     name=None):
Y
Yu Yang 已提交
3928
    """
3929 3930 3931 3932 3933 3934 3935 3936
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3937
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3938
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3939 3940 3941
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3942 3943 3944 3945 3946

    For each input :math:`X`, the equation is:

    .. math::

3947
        Out = \sigma (W \\ast X + b)
3948

3949
    Where:
3950 3951 3952

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3953 3954 3955 3956
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3957

3958 3959 3960 3961
    Example:

        - Input:

3962
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3963

3964
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3965 3966 3967

        - Output:

3968
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3969 3970

        Where
Y
Yu Yang 已提交
3971

3972 3973
        .. math::

3974 3975
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3985 3986

    Args:
3987 3988 3989 3990
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3991 3992 3993 3994
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4023
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
4024 4025 4026
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4027
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
4028
            will be named automatically. Default: True.
Y
Yu Yang 已提交
4029 4030

    Returns:
4031
        Variable: The tensor variable storing the convolution transpose result.
4032 4033

    Raises:
4034 4035
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4036 4037 4038 4039

    Examples:
       .. code-block:: python

4040
          import paddle.fluid as fluid
4041 4042
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4043
    """
C
chengduo 已提交
4044
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
4045 4046 4047 4048 4049 4050 4051 4052
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
4053 4054 4055
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
4056 4057 4058
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
4059

C
chengduoZH 已提交
4060 4061
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
4062

Y
Yu Yang 已提交
4063 4064 4065 4066 4067
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
4068

Y
Yu Yang 已提交
4069 4070
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
4071

C
chengduoZH 已提交
4072
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4073
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
4074
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4075
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
4076
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
4077 4078 4079
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
4080

4081 4082 4083 4084 4085 4086 4087
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
4088
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4089
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
4090

Y
Yu Yang 已提交
4091 4092 4093
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4094
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4095
    helper.append_op(
4096
        type=op_type,
Y
Yu Yang 已提交
4097 4098
        inputs={'Input': [input],
                'Filter': [img_filter]},
4099
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4100
        attrs={
4101
            'output_size': output_size,
4102 4103 4104 4105 4106
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
4107 4108
        })

4109 4110 4111
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
4112 4113


4114
def conv3d_transpose(input,
Y
Yu Yang 已提交
4115 4116 4117
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4118 4119 4120
                     padding=0,
                     stride=1,
                     dilation=1,
4121
                     groups=None,
C
caoying03 已提交
4122
                     param_attr=None,
4123
                     bias_attr=None,
C
chengduoZH 已提交
4124
                     use_cudnn=True,
4125
                     act=None,
C
caoying03 已提交
4126
                     name=None):
Y
Yu Yang 已提交
4127
    """
4128
    **Convlution3D transpose layer**
4129

4130
    The convolution3D transpose layer calculates the output based on the input,
4131
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
4132 4133 4134 4135 4136
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
4137
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4138 4139 4140
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4141 4142 4143 4144 4145

    For each input :math:`X`, the equation is:

    .. math::

4146
        Out = \sigma (W \\ast X + b)
4147 4148 4149

    In the above equation:

4150 4151
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
4152 4153 4154 4155
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4156

4157 4158 4159 4160
    Example:

        - Input:

4161
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4162

4163
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4164 4165 4166

        - Output:

4167
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4168 4169

        Where
Y
Yu Yang 已提交
4170

4171 4172
        .. math::

4173 4174 4175
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4176 4177

    Args:
4178
        input(Variable): The input image with [N, C, D, H, W] format.
4179 4180 4181
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4182
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4183 4184
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4185
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4186 4187 4188
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4189 4190
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4191
        stride(int|tuple): The stride size. If stride is a tuple, it must
4192 4193
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4194
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4195 4196 4197
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4198 4199 4200 4201 4202
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4203 4204 4205 4206 4207 4208 4209 4210 4211
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4212 4213
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4214 4215
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4216 4217
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4218 4219

    Returns:
4220
        Variable: The tensor variable storing the convolution transpose result.
4221 4222

    Raises:
4223 4224
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4225 4226 4227 4228

    Examples:
       .. code-block:: python

4229
          import paddle.fluid as fluid
4230 4231
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4232
    """
C
chengduo 已提交
4233
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4234 4235
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4236
    if not isinstance(input, Variable):
4237
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4238 4239
    input_channel = input.shape[1]

4240 4241 4242
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4243

C
chengduoZH 已提交
4244 4245 4246
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4247 4248 4249 4250 4251 4252
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4253 4254 4255
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4256

4257
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4258
                         padding[0] - 1) // dilation[0] + 1
4259
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4260
                         padding[1] - 1) // dilation[1] + 1
4261
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4262
                         padding[2] - 1) // dilation[2] + 1
4263
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4264
    else:
4265 4266
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4267

4268
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4269
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4270 4271 4272
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4273
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4274
    helper.append_op(
4275
        type=l_type,
Y
Yu Yang 已提交
4276 4277
        inputs={'Input': [input],
                'Filter': [img_filter]},
4278
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4279 4280 4281 4282
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4283
            'groups': groups,
C
chengduoZH 已提交
4284 4285
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4286

4287 4288
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4289
    return out
Y
yangyaming 已提交
4290 4291


Y
yangyaming 已提交
4292
def sequence_expand(x, y, ref_level=-1, name=None):
4293
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4294 4295 4296 4297
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4298 4299 4300 4301 4302

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4303
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4304
                x.data = [[a], [b], [c], [d]]
4305 4306 4307
                x.dims = [4, 1]

            y is a LoDTensor:
4308 4309
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4310

Y
yangyaming 已提交
4311
            ref_level: 0
4312

Y
yangyaming 已提交
4313
            then output is a 1-level LoDTensor:
4314
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4315
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4316 4317 4318 4319
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4320
                x.data = [[a], [b], [c]]
4321 4322 4323
                x.dims = [3, 1]

            y is a LoDTensor:
4324
                y.lod = [[2, 0, 3]]
4325

Y
yangyaming 已提交
4326
            ref_level: -1
4327

Y
yangyaming 已提交
4328 4329 4330
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4331 4332 4333
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4334 4335
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4336
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4337
                        will be named automatically.
4338 4339 4340 4341 4342 4343

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4344
	
4345
            import paddle.fluid as fluid
4346
            import paddle.fluid.layers as layers
4347 4348 4349
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4350
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4351
    """
L
lujun 已提交
4352
    assert not in_dygraph_mode(), (
4353
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4354
    helper = LayerHelper('sequence_expand', input=x, **locals())
4355
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4356
    tmp = helper.create_variable_for_type_inference(dtype)
4357
    helper.append_op(
Y
yangyaming 已提交
4358 4359 4360 4361 4362
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4363
    return tmp
4364 4365


C
chengduo 已提交
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4414 4415
            
            import paddle.fluid as fluid
4416
            import paddle.fluid.layers as layers
C
chengduo 已提交
4417 4418 4419 4420 4421 4422

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4423
    assert not in_dygraph_mode(), (
4424
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4425 4426
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4427
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4428 4429 4430 4431 4432 4433 4434 4435
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4436
@templatedoc()
4437
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4438 4439 4440 4441 4442
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4443 4444 4445
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4446
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4447 4448 4449 4450
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4451 4452 4453
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4454

F
fengjiayi 已提交
4455
    Returns:
M
minqiyang 已提交
4456
        Variable: The padded sequence batch and the original lengths before
4457
                  padding. All sequences has the same length.
M
minqiyang 已提交
4458

F
fengjiayi 已提交
4459 4460 4461
    Examples:
        .. code-block:: python

4462
            import paddle.fluid as fluid
F
fengjiayi 已提交
4463 4464 4465 4466
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4467
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4468
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4469 4470 4471
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4472
    assert not in_dygraph_mode(), (
4473
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4474 4475
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4476 4477
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4478 4479 4480 4481

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4482 4483 4484 4485 4486 4487
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4488 4489
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4490
        attrs={'padded_length': maxlen})
4491
    return out, length
F
fengjiayi 已提交
4492 4493


4494
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4495
    """
4496
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4497

4498 4499
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4509 4510 4511
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4512
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4513 4514 4515 4516 4517 4518

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4519
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4520 4521 4522 4523 4524 4525

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4526 4527
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4528 4529 4530 4531 4532 4533 4534

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4535
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4536 4537 4538 4539 4540
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4541
    assert not in_dygraph_mode(), (
4542
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4543 4544
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4545
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4557 4558 4559 4560 4561 4562 4563
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4564
                is_accumulated=True,
4565 4566
                name=None,
                return_parent_idx=False):
4567
    """
4568 4569
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4570 4571 4572

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4573 4574

    This layer does the search in beams for one time step. Specifically, it
4575 4576 4577
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4589 4590 4591 4592

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4593

4594
    Args:
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4618 4619
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4620 4621
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4622 4623 4624 4625
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4626

4627
    Returns:
4628 4629 4630 4631
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4632 4633 4634 4635

    Examples:
        .. code-block:: python

4636 4637
            import paddle.fluid as fluid

4638 4639 4640
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4653
                axis=0)
4654
            selected_ids, selected_scores = fluid.layers.beam_search(
4655 4656 4657 4658 4659 4660 4661
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4662
    helper = LayerHelper('beam_search', **locals())
4663 4664 4665 4666 4667 4668
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4669

X
Xin Pan 已提交
4670 4671 4672
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4673 4674 4675 4676 4677
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4678 4679 4680

    helper.append_op(
        type='beam_search',
4681
        inputs=inputs,
Q
Qiao Longfei 已提交
4682 4683 4684
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4685
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4686 4687 4688 4689 4690 4691
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4692
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4693
        })
4694 4695 4696 4697
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4698 4699


4700 4701 4702 4703 4704 4705 4706
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4707

4708 4709 4710 4711 4712 4713 4714 4715 4716
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4717

4718 4719 4720 4721 4722 4723
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4724

4725 4726
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4727

4728 4729
            import paddle.fluid as fluid

4730 4731
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4732 4733 4734
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4735 4736 4737
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4738 4739
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4755 4756 4757 4758
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4759
              param_attr=None,
C
caoying03 已提交
4760 4761
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4762 4763 4764 4765
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4766
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4767

4768
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4769

4770
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4771

4772
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4773 4774 4775

            h_t & = o_t tanh(c_t)

4776 4777 4778 4779 4780 4781
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4782 4783 4784

        .. math::

4785
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4786 4787 4788 4789 4790 4791 4792 4793

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4794
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4795 4796

    Args:
Y
yangyaming 已提交
4797 4798 4799 4800 4801 4802
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4803
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4816 4817
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4818 4819

    Returns:
Y
yangyaming 已提交
4820
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4821 4822

    Raises:
4823 4824 4825 4826
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4827 4828 4829 4830 4831

    Examples:

        .. code-block:: python

4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4859
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4860 4861 4862 4863
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4864 4865
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4866 4867 4868
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4869
    size = cell_t_prev.shape[1]
4870
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4871 4872
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4873
                param_attr=param_attr,
4874
                bias_attr=bias_attr)
Y
yangyaming 已提交
4875
    dtype = x_t.dtype
X
Xin Pan 已提交
4876 4877
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4878 4879 4880 4881 4882 4883 4884 4885 4886

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4887
    return h, c
G
guosheng 已提交
4888 4889


C
caoying03 已提交
4890
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4891
    """
Y
yangyaming 已提交
4892
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4893 4894 4895

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4896
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4897 4898
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4899 4900
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4901
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4902
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4903
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4904 4905
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4906 4907 4908

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4909

G
guosheng 已提交
4910 4911 4912
    Examples:
        .. code-block:: python

4913
            import paddle.fluid as fluid
G
guosheng 已提交
4914 4915 4916
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4917
            # Each example is followed by the corresponding output tensor.
4918
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4919 4920 4921 4922
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4923

4924
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4925 4926
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4927
            # Each example is followed by the corresponding output tensor.
4928 4929 4930
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4931

G
guosheng 已提交
4932 4933
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4934
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4935 4936
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4937 4938 4939 4940 4941
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4942
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4943 4944 4945 4946
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4947 4948


C
caoying03 已提交
4949
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4950
    """
Y
Yibing Liu 已提交
4951
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4952 4953 4954

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4955 4956 4957
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4958
            must be in the range :math:`[-rank(input), rank(input))`. If
4959
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4960
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4961 4962
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4963
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4964
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4965
                       will be named automatically.
G
guosheng 已提交
4966 4967

    Returns:
Y
Yibing Liu 已提交
4968
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4969

G
guosheng 已提交
4970 4971 4972
    Examples:
        .. code-block:: python

4973
            import paddle.fluid as fluid
G
guosheng 已提交
4974 4975 4976 4977
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4978
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4979 4980 4981
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4982
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4983

4984
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4985 4986 4987
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4988 4989 4990
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4991 4992
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4993
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4994 4995
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4996 4997 4998 4999 5000
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5001
            'dim': dim if dim != None else [0],
G
guosheng 已提交
5002 5003 5004 5005
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
5006 5007


C
caoying03 已提交
5008
def reduce_max(input, dim=None, keep_dim=False, name=None):
5009
    """
Y
yangyaming 已提交
5010
    Computes the maximum of tensor elements over the given dimension.
5011 5012 5013

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5014
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
5015 5016 5017
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5018
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5019 5020
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5021
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5022 5023
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5024 5025 5026

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5027

5028 5029 5030
    Examples:
        .. code-block:: python

5031
            import paddle.fluid as fluid
5032 5033 5034 5035
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5036
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5037 5038 5039 5040
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
5041

5042
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5043 5044 5045
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5046 5047 5048
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
5049 5050
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
5051
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5052 5053
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5054 5055 5056 5057 5058
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5059
            'dim': dim if dim != None else [0],
5060 5061 5062 5063 5064 5065
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5066
def reduce_min(input, dim=None, keep_dim=False, name=None):
5067
    """
Y
yangyaming 已提交
5068
    Computes the minimum of tensor elements over the given dimension.
5069 5070 5071

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5072
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
5073 5074 5075
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5076
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5077 5078
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5079
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5080 5081
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5082 5083 5084

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5085

5086 5087 5088
    Examples:
        .. code-block:: python

5089
            import paddle.fluid as fluid
5090 5091 5092 5093
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5094
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5095 5096 5097 5098
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
5099

5100
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5101 5102 5103
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5104 5105 5106
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
5107 5108
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
5109
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5110 5111
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5112 5113 5114 5115 5116
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5117
            'dim': dim if dim != None else [0],
5118 5119 5120 5121
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5122 5123


5124 5125 5126 5127 5128 5129
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5130
        dim (list|int|None): The dimensions along which the product is performed. If
5131 5132
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5133 5134
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5135 5136 5137
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
5138
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
5139
            layer will be named automatically.
5140 5141 5142 5143 5144 5145 5146

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

5147
            import paddle.fluid as fluid
5148 5149 5150 5151
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5152
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5153 5154 5155
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5156
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5157
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5158

5159
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5160 5161 5162
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5163 5164 5165
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5166 5167
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5168
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5169 5170
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5171 5172 5173 5174 5175
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5176
            'dim': dim if dim != None else [0],
5177 5178 5179 5180 5181 5182
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5183 5184
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5185
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5205
        
5206
            import paddle.fluid as fluid
5207 5208 5209
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5210 5211 5212
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5213 5214 5215 5216 5217 5218 5219
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5240
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5260

5261
            import paddle.fluid as fluid
5262 5263 5264
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5265 5266 5267
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5268 5269 5270 5271 5272 5273 5274
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5289 5290 5291 5292 5293
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5294
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5295
    """
C
caoying03 已提交
5296
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5297 5298 5299

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5300 5301 5302 5303 5304
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5305
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5306
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5307
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5308 5309
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5310 5311

    Returns:
D
dzhwinter 已提交
5312
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5313 5314 5315 5316

    Examples:
        .. code-block:: python

5317 5318 5319 5320 5321 5322
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5323
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5324 5325 5326 5327 5328 5329 5330 5331
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5332 5333 5334 5335 5336 5337 5338 5339
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5340
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5341 5342 5343
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5344
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5358 5359 5360 5361 5362 5363 5364 5365 5366


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5367
    .. math::
5368 5369

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5370 5371 5372 5373 5374

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5375
        x(Variable|list): The input tensor to l2_normalize layer.
5376
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5377 5378
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5379
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5380
            the default value is 1e-12.
5381
        name(str|None): A name for this layer(optional). If set None, the layer \
5382
            will be named automatically.
C
caoying03 已提交
5383 5384

    Returns:
5385
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5386 5387

    Examples:
5388

C
caoying03 已提交
5389 5390
        .. code-block:: python

5391
            import paddle.fluid as fluid
5392 5393 5394 5395
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5396 5397
    """

F
fengjiayi 已提交
5398 5399
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5400 5401
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5402 5403
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5404
    helper.append_op(
5405 5406 5407 5408
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5409
        attrs={
5410 5411
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5412 5413
        })
    return out
5414 5415


S
sneaxiy 已提交
5416
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5417
    """
Y
ying 已提交
5418 5419 5420 5421
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5422

C
chengduoZH 已提交
5423
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5424
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5425

5426 5427 5428 5429 5430
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5431
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5432

C
chengduoZH 已提交
5433
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5434
      performs in the following way.
G
guosheng 已提交
5435

5436
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5437
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5438
        last two dimensions and a batched matrix multiply supporting broadcast
5439
        applies on the two tensors.
G
guosheng 已提交
5440

Y
ying 已提交
5441 5442
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5443
    removed after matrix multiplication.
G
guosheng 已提交
5444 5445 5446

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5447 5448 5449
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5450
        alpha (float): The scale of output. Default 1.0.
5451
        name(str|None): A name for this layer(optional). If set None, the layer
5452
            will be named automatically.
G
guosheng 已提交
5453 5454

    Returns:
石晓伟 已提交
5455
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5456

G
guosheng 已提交
5457 5458 5459
    Examples:
        .. code-block:: python

5460
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5461
            # x: [B, ..., M, K], y: [B, ..., K, N]
5462
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5463

5464
            # x: [B, M, K], y: [B, K, N]
5465
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5466

5467
            # x: [B, M, K], y: [K, N]
5468
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5469

5470
            # x: [M, K], y: [K, N]
5471
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5472 5473

            # x: [B, M, K], y: [K]
5474
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5475

5476
            # x: [K], y: [K]
5477
            # fluid.layers.matmul(x, y)  # out: [1]
5478

Y
ying 已提交
5479
            # x: [M], y: [N]
5480 5481
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5482
            import paddle.fluid as fluid
5483 5484 5485
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5486
    """
Y
ying 已提交
5487 5488 5489 5490 5491 5492 5493

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5494
            y_shape = y_shape + [1]
Y
ying 已提交
5495 5496 5497 5498 5499 5500 5501

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5502 5503
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5504

C
chengduo 已提交
5505
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5506
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5507 5508 5509
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5510
                if dim_x != y_shape[i]:
C
chengduo 已提交
5511 5512
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5513 5514 5515

    __check_input(x, y)

5516
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5517
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5518
    helper.append_op(
5519 5520 5521 5522
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5523 5524 5525
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5526
            'alpha': float(alpha),
S
sneaxiy 已提交
5527
        })
5528
    return out
5529 5530


5531
def topk(input, k, name=None):
Q
qingqing01 已提交
5532 5533 5534 5535
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5536
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5537 5538 5539 5540 5541 5542
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5564 5565 5566
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5567
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5568
                 of input.
5569
        name(str|None): A name for this layer(optional). If set None, the layer
5570
                       will be named automatically.
F
fengjiayi 已提交
5571
                       Default: None
Q
qingqing01 已提交
5572 5573

    Returns:
5574 5575 5576
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5577
        within the last dimension of input.
Q
qingqing01 已提交
5578

F
fengjiayi 已提交
5579 5580
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5581 5582 5583 5584

    Examples:
        .. code-block:: python

5585
            import paddle.fluid as fluid
5586 5587
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5588 5589 5590
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5591 5592
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5593 5594 5595 5596 5597 5598
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5599 5600
    helper.append_op(
        type="top_k",
W
whs 已提交
5601
        inputs=inputs,
Q
qingqing01 已提交
5602 5603
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5604
        attrs=attrs)
Q
qingqing01 已提交
5605 5606 5607 5608 5609
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5610 5611 5612 5613 5614 5615
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5616
    """
R
ruri 已提交
5617
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5618 5619 5620 5621 5622 5623 5624 5625
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5626

Y
ying 已提交
5627
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5628

5629
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5630
    the total number denoted by `batch_size`, and the separation is specified
5631 5632
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5633

5634
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5635 5636
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5637

5638
    Args:
5639 5640
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5641
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5642
                          the length of reference string.
5643
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5644
                                     calculating edit distance.
5645 5646
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5647

W
wanghaoshuang 已提交
5648
    Returns:
5649 5650 5651
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5652 5653 5654

    Examples:
        .. code-block:: python
5655
            
R
ruri 已提交
5656 5657
            import paddle.fluid as fluid

5658 5659 5660 5661
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5662

5663 5664 5665 5666 5667 5668 5669 5670
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5671

5672
    """
5673
    helper = LayerHelper("edit_distance", **locals())
5674

5675
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5676
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5677 5678
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5679 5680 5681 5682 5683

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5684
            attrs={"tokens": ignored_tokens})
5685 5686 5687 5688 5689
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5690
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5691
            attrs={"tokens": ignored_tokens})
5692 5693
        label = erased_label

5694 5695 5696 5697 5698
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5699
    # edit distance op
X
Xin Pan 已提交
5700 5701
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5702 5703
    helper.append_op(
        type="edit_distance",
5704
        inputs=this_inputs,
5705 5706
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5707 5708
        attrs={"normalized": normalized})

5709
    return edit_distance_out, sequence_num
5710 5711 5712 5713 5714


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5715

Y
ying 已提交
5716 5717 5718 5719
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5737
        input.lod = [[4, 4]]
M
minqiyang 已提交
5738

W
whs 已提交
5739
        Computation:
5740

W
whs 已提交
5741 5742 5743 5744 5745 5746
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5747 5748 5749 5750 5751

        output.data = [[2],
                       [1],
                       [3]]

5752
        output.lod = [[2, 1]]
5753

W
whs 已提交
5754

5755 5756
    Args:

Y
ying 已提交
5757 5758 5759 5760 5761 5762 5763 5764 5765
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5766
        name (str): The name of this layer. It is optional.
5767 5768

    Returns:
H
haowang101779990 已提交
5769 5770 5771
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5772
                  LoD [[]] and dims [1, 1].
5773 5774 5775 5776

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5777
            import paddle.fluid as fluid
5778 5779
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5780
    """
5781
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5782
    _, topk_indices = topk(input, k=1)
5783 5784

    # ctc align op
X
Xin Pan 已提交
5785
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5786 5787 5788
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5789
        outputs={"Output": [ctc_out]},
5790 5791
        attrs={"merge_repeated": True,
               "blank": blank})
5792
    return ctc_out
5793 5794


5795 5796 5797 5798 5799 5800
def warpctc(input,
            label,
            blank=0,
            norm_by_times=False,
            input_length=None,
            label_length=None):
W
wanghaoshuang 已提交
5801
    """
5802 5803
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5804
    to compute Connectionist Temporal Classification (CTC) loss.
5805 5806
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5807 5808 5809
    input tensor.

    Args:
5810
       input (Variable): The unscaled probabilities of variable-length sequences,
5811 5812 5813
         which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
         information. When it is a 2-D LodTensor, it's shape is 
         [Lp, num_classes + 1], where Lp is the sum of all input
W
wanghaoshuang 已提交
5814
         sequences' length and num_classes is the true number of classes.
5815 5816 5817 5818
         (not including the blank label). When it is a 3-D Tensor, it's shape 
         is [max_logit_length, batch_size, num_classes + 1],
         where max_logit_length is the length of the longest
         input logit sequence.
5819
       label (Variable): The ground truth of variable-length sequence,
5820 5821 5822
         which is a 2-D Tensor with LoD information or a 2-D Tensor without
         LoD information. When it is a 2-D LoDTensor or 2-D Tensor, 
         it is of the shape [Lg, 1], where Lg is th sum of all labels' length.
5823
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5824 5825
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5826 5827 5828
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5829
         follewed by a mean_op.
5830 5831 5832 5833
       input_length(Variable): The length for each input sequence if it is 
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
       label_length(Variable): The length for each label sequence if it is
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
W
wanghaoshuang 已提交
5834 5835

    Returns:
5836 5837
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5838 5839 5840

    Examples:
        .. code-block:: python
5841

5842
            # using LoDTensor
B
Bai Yifan 已提交
5843
            import paddle.fluid as fluid
5844 5845 5846
            import numpy as np
            
            label = fluid.layers.data(name='label', shape=[12, 1],
B
Bai Yifan 已提交
5847
                                      dtype='float32', lod_level=1)
5848 5849 5850
            predict = fluid.layers.data(name='predict', 
                                        shape=[11, 8],
                                        dtype='float32',lod_level=1)
5851
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5852

5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
            # using Tensor
            input_length = fluid.layers.data(name='logits_length', shape=[11],
                                         dtype='int64')
            label_length = fluid.layers.data(name='labels_length', shape=[12],
                                         dtype='int64')
            target = fluid.layers.data(name='target', shape=[12, 1],
                                       dtype='int32')
            # length of the longest logit sequence
            max_seq_length = 4
            # number of logit sequences
            batch_size = 4
            output = fluid.layers.data(name='output', 
                                       shape=[max_seq_length, batch_size, 8],
                                       dtype='float32')
            loss = fluid.layers.warpctc(input=output,label=target,
                                        input_length=input_length,
                                        label_length=label_length)

W
wanghaoshuang 已提交
5871
    """
F
fengjiayi 已提交
5872
    helper = LayerHelper('warpctc', **locals())
5873 5874 5875 5876 5877
    this_inputs = {'Logits': [input], 'Label': [label]}
    if input_length and label_length:
        this_inputs['LogitsLength'] = [input_length]
        this_inputs['LabelLength'] = [label_length]

X
Xin Pan 已提交
5878 5879
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
5880

W
wanghaoshuang 已提交
5881 5882
    helper.append_op(
        type='warpctc',
5883
        inputs=this_inputs,
W
wanghaoshuang 已提交
5884 5885
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5886 5887 5888 5889
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
        })
W
wanghaoshuang 已提交
5890
    return loss_out
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5906 5907 5908
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5909 5910 5911 5912 5913
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5914

5915
            out.lod  = [[0, 1, 3]]
5916 5917 5918 5919

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5920 5921 5922 5923 5924 5925 5926
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5927 5928 5929

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5930 5931

    Returns:
5932

5933 5934 5935 5936 5937
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5938 5939 5940
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5941
    """
L
lujun 已提交
5942
    assert not in_dygraph_mode(), (
5943
        "sequence layer is not supported in dygraph mode yet.")
5944
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5945
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5946 5947 5948 5949 5950 5951
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5952 5953


5954 5955 5956 5957
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5958 5959 5960 5961 5962 5963
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5964
        num_neg_samples=None,
5965 5966 5967
        name=None,
        sampler="uniform",
        custom_dist=None,
5968 5969
        seed=0,
        is_sparse=False):
5970 5971 5972 5973 5974 5975 5976
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5977 5978
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5979
            sample is 1.0.
C
chengduo 已提交
5980 5981 5982 5983 5984 5985 5986 5987 5988
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5989
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5990 5991
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5992 5993 5994
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5995
        custom_dist (float[]): A float[] with size=num_total_classes.
5996 5997 5998 5999
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
6000
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
6001

6002
    Returns:
Y
Yibing Liu 已提交
6003 6004 6005 6006 6007 6008
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
6043
    """
Y
Yang Yu 已提交
6044 6045 6046
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
6047 6048

    dim = input.shape[1]
Y
Yang Yu 已提交
6049 6050 6051 6052 6053 6054
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
6055
    inputs = {}
C
chengduo 已提交
6056 6057 6058 6059 6060 6061 6062
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
6063 6064 6065
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
6066

6067 6068 6069 6070
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
6071 6072 6073 6074 6075 6076 6077

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
6078 6079
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
6080
        custom_dist_len = num_total_classes
6081 6082 6083 6084 6085 6086
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
6087
            if normal_prob - 1.0 > 0:
6088
                bigs.append((i, normal_prob))
6089
            elif 1.0 - normal_prob > 0:
6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
6105
            if big_left - 1.0 > 0:
6106
                bigs.append((big_idx, big_left))
6107
            elif 1.0 - big_left > 0:
6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
6137 6138 6139 6140
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

6141 6142 6143 6144 6145
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

6146 6147 6148 6149
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6150

Y
Yang Yu 已提交
6151 6152
    attrs = {
        'num_total_classes': int(num_total_classes),
6153 6154
        'num_neg_samples': num_neg_samples,
        'seed': seed,
6155
        'sampler': sampler,
6156 6157
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
6158
    }
Y
Yang Yu 已提交
6159 6160 6161

    helper.append_op(
        type='nce',
C
chengduo 已提交
6162
        inputs=inputs,
Y
Yang Yu 已提交
6163 6164 6165 6166 6167 6168
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
6169
    return cost / (num_neg_samples + 1)
6170 6171


C
chengduo 已提交
6172 6173
def hsigmoid(input,
             label,
6174
             num_classes,
C
chengduo 已提交
6175 6176
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
6177
             name=None,
6178 6179 6180
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
6181
             is_sparse=False):
W
weixing02 已提交
6182 6183
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
6184
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
6185
    complete binary tree, or you can use is_custom to pass your own tree to
6186
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
6187 6188 6189 6190 6191 6192
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6193
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6194
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6195

6196 6197
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6198 6199 6200 6201
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6202
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6203
       related to the same batch of inputs.
6204

W
weixing02 已提交
6205
    Args:
M
minqiyang 已提交
6206
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6207 6208 6209 6210
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6211 6212
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6213
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6225
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6226
            it should be in leaf -> root order
M
minqiyang 已提交
6227 6228 6229
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6230
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6231
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6232
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6233
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6234
             of W and input will be sparse.
W
weixing02 已提交
6235 6236

    Returns:
J
JiabinYang 已提交
6237
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6238 6239 6240 6241 6242

    Examples:

        .. code-block:: python

6243
            import paddle.fluid as fluid
G
guosheng 已提交
6244 6245 6246
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6247 6248 6249 6250
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6251 6252
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6253
    dim = input.shape[1]
6254
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6255 6256 6257
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6258 6259 6260 6261 6262 6263 6264 6265 6266
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6267
    if (is_custom) and (path_code is None):
6268
        raise ValueError("path_code should not be None with custom tree")
6269
    elif (is_custom) and (path_table is None):
6270
        raise ValueError("path_table should not be None with custom tree")
6271
    elif (is_custom) and (num_classes is None):
6272
        raise ValueError("num_classes should not be None with custom tree")
6273 6274 6275
    else:
        pass

J
JiabinYang 已提交
6276
    weights = None
6277 6278 6279 6280
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6281
    if not is_custom:
J
JiabinYang 已提交
6282 6283 6284 6285 6286 6287 6288 6289
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6290
            shape=[num_classes, dim],
J
JiabinYang 已提交
6291 6292
            is_bias=False,
            dtype=input.dtype)
6293 6294 6295
    inputs = {
        "X": input,
        "W": weights,
6296
        "PathTable": path_table,
6297
        "PathCode": path_code,
6298 6299
        "Label": label
    }
W
weixing02 已提交
6300
    if helper.bias_attr:
6301
        if not is_custom:
J
JiabinYang 已提交
6302 6303
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6304
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6305 6306 6307 6308 6309 6310
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6311
                shape=[num_classes, 1],
J
JiabinYang 已提交
6312 6313 6314
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6315 6316
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6317
        inputs=inputs,
W
weixing02 已提交
6318
        outputs={"Out": out,
6319 6320 6321 6322 6323 6324 6325
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6326 6327 6328
    return out


Y
fix ci.  
ying 已提交
6329
def transpose(x, perm, name=None):
Y
ying 已提交
6330 6331 6332 6333 6334 6335 6336
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6337 6338 6339
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6340 6341 6342 6343 6344 6345 6346

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6347
            # use append_batch_size=False to avoid prepending extra
6348
            # batch size in shape
6349
            import paddle.fluid as fluid
6350
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6351
                            dtype='float32', append_batch_size=False)
6352
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6353 6354
    """

Y
fix ci.  
ying 已提交
6355
    if len(perm) != len(x.shape):
Y
ying 已提交
6356 6357
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6358
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6359 6360 6361 6362 6363 6364
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6365 6366

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6367 6368
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6369
    helper.append_op(
6370
        type='transpose2',
Y
fix ci.  
ying 已提交
6371
        inputs={'X': [x]},
6372 6373
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6374 6375
        attrs={'axis': perm})
    return out
6376 6377


6378 6379 6380 6381 6382 6383 6384
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6385
    """
6386 6387 6388 6389 6390 6391 6392
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6421 6422 6423 6424 6425 6426 6427 6428 6429
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6430 6431 6432
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6433 6434 6435 6436 6437
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6465 6466 6467
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6480
            output.dims = {8, 8}
6481

6482
            output.lod = [[4, 4]]
6483

T
Tink_Y 已提交
6484
    Examples:
6485 6486 6487

        .. code-block:: python

B
Bai Yifan 已提交
6488 6489 6490
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6491
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6492 6493
                input=data, stride=[1, 1], filter_size=[2, 2])

6494 6495

    """
L
lujun 已提交
6496
    assert not in_dygraph_mode(), (
6497
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6508
    inputs = {"X": input}
6509
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6510 6511 6512 6513 6514
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6515
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6516
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6517
    helper.append_op(
6518
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6519
    return out
6520 6521


Y
yuyang18 已提交
6522
@templatedoc()
6523
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6524 6525
    """
    ${comment}
6526 6527

    Args:
Y
yuyang18 已提交
6528
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6529 6530
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6531 6532 6533 6534 6535
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6536
        ${out_comment}.
6537 6538

    Examples:
Y
yuyang18 已提交
6539 6540 6541 6542
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6543 6544 6545 6546 6547 6548
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6549
    out = helper.create_variable_for_type_inference(dtype)
6550 6551 6552 6553 6554
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6555
    return helper.append_activation(out)
6556 6557


Y
yuyang18 已提交
6558
@templatedoc()
6559 6560
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6561 6562
    ${comment}

L
lujun 已提交
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6606 6607

    Args:
Y
yuyang18 已提交
6608 6609
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6610 6611

    Returns:
Y
yuyang18 已提交
6612
        ${out_comment}.
6613 6614
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6615 6616 6617 6618 6619

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6620
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6621 6622 6623 6624 6625 6626
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6627 6628


6629 6630 6631
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6632
                               ignore_index=kIgnoreIndex,
6633
                               numeric_stable_mode=True,
6634 6635
                               return_softmax=False,
                               axis=-1):
6636 6637
    """
    **Softmax With Cross Entropy Operator.**
6638

6639
    Cross entropy loss with softmax is used as the output layer extensively. This
6640 6641 6642
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6643

6644 6645 6646
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6647

6648 6649 6650 6651
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6652

6653
    The equation is as follows:
6654

6655
    1) Hard label (one-hot label, so every sample has exactly one class)
6656

6657 6658 6659 6660
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6661

6662 6663 6664
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6665

6666 6667 6668 6669
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6670 6671
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6672 6673

    .. math::
6674

H
haowang101779990 已提交
6675
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6676

H
haowang101779990 已提交
6677
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6678

H
haowang101779990 已提交
6679
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6680 6681 6682

    and then cross entropy loss is calculated by softmax and label.

6683
    Args:
6684 6685 6686 6687 6688 6689
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6690
        soft_label (bool): A flag to indicate whether to interpretate the given
6691
            labels as soft labels. Default False.
M
minqiyang 已提交
6692 6693
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6694 6695
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6696 6697
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6698 6699 6700 6701
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6702
                                    Note that the speed may be slower when use
6703
                                    stable algorithm. Default: True
6704
        return_softmax (bool): A flag indicating whether to return the softmax
6705
                               along with the cross entropy loss. Default: False
6706 6707 6708
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6709

6710
    Returns:
H
haowang101779990 已提交
6711 6712
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6713 6714 6715 6716
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6717 6718 6719 6720

    Examples:
        .. code-block:: python

6721 6722
            import paddle.fluid as fluid

6723 6724 6725
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6726 6727
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6728 6729
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6730 6731
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6732 6733 6734 6735 6736 6737
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6738 6739 6740
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6741 6742
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6743
        })
6744 6745 6746 6747

    if return_softmax:
        return loss, softmax

6748 6749 6750
    return loss


6751 6752 6753
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6754
                                       num_true=1,
6755
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6756 6757 6758
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6759
                                       seed=0):
X
xuezhong 已提交
6760 6761 6762 6763 6764
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6765
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6766 6767 6768 6769 6770 6771 6772 6773
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6774
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6775 6776 6777 6778 6779 6780 6781 6782
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6783
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6795
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6796 6797 6798 6799 6800
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6801
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6802
            logits.
X
xuezhong 已提交
6803 6804 6805 6806 6807
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6808 6809 6810
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6811 6812 6813 6814 6815 6816 6817
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6818 6819 6820
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6821
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6822
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6823
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6824
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6825 6826 6827 6828 6829 6830 6831 6832
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6833 6834
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6835 6836
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6837 6838 6839 6840 6841

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6842
            'Labels': label,
X
xuezhong 已提交
6843 6844
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6845 6846 6847 6848
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6849
            'SampledLabels': sampled_label,
6850 6851 6852
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6853 6854
        },
        attrs={
X
xuezhong 已提交
6855
            'use_customized_samples': use_customized_samples,
6856
            'uniq': True,
X
xuezhong 已提交
6857 6858 6859 6860
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6861 6862
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6863 6864 6865 6866 6867 6868
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6869 6870
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6871
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6872
                'Label': sampled_softlabel},
X
xuezhong 已提交
6873 6874 6875
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6876
            'soft_label': True,
X
xuezhong 已提交
6877 6878 6879
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6880
    return loss / num_true
X
xuezhong 已提交
6881 6882


6883 6884
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6885 6886
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6887
    For each instance, it computes the smooth L1 loss element by element first
6888
    and then sums all the losses. So the shape of ouput Variable is
6889
    [batch_size, 1].
6890

6891 6892
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6893
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6894
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6895
            L1 loss op with same shape as :attr:`x`.
6896
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6897 6898
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6899
            by this tensor element by element.
6900
        outside_weight (Variable|None): A tensor with rank at least 2. This
6901 6902
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6903
            element by element.
6904
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6905 6906
           scalar with default value 1.0.

6907
    Returns:
6908
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6909 6910 6911 6912

    Examples:
        .. code-block:: python

6913
            import paddle.fluid as fluid
6914
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6915 6916
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6917
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6918
            out = fluid.layers.smooth_l1(x=fc, y=label)
6919
    """
6920

6921
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6922 6923
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6934
        attrs={'sigma': sigma if sigma is not None else 1.0})
6935
    return loss
6936 6937


6938
def one_hot(input, depth, allow_out_of_range=False):
6939
    """
Y
Yibing Liu 已提交
6940
    This layer creates the one-hot representations for input indices.
6941 6942

    Args:
Y
Yibing Liu 已提交
6943 6944
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6945 6946 6947 6948
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
6949 6950

    Returns:
Y
Yibing Liu 已提交
6951
        Variable: The one-hot representations of input.
6952 6953

    Examples:
C
caoying03 已提交
6954
        .. code-block:: python
6955

6956
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6957 6958
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6959 6960
    """
    helper = LayerHelper("one_hot", **locals())
6961

X
Xin Pan 已提交
6962
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6973
            depth.stop_gradient = True
6974 6975
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6976 6977
    helper.append_op(
        type="one_hot",
6978 6979
        inputs=inputs,
        attrs=attrs,
6980 6981
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6982
    return one_hot_out
Y
Yu Yang 已提交
6983 6984


Y
Yu Yang 已提交
6985
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6986
    """
Y
yi.wu 已提交
6987 6988 6989
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6990 6991 6992 6993 6994 6995

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6996 6997
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6998 6999 7000 7001

    Examples:
        .. code-block:: python

7002
           import paddle.fluid as fluid
Y
yi.wu 已提交
7003
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
7004
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
7005 7006
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
7007 7008
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
7009 7010 7011 7012 7013
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
7014
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
7015
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
7016 7017
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
7018
            outputs={'Out': [counter]},
M
minqiyang 已提交
7019 7020
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
7021 7022 7023
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
7024 7025


7026
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
7027
    """
C
caoying03 已提交
7028 7029
    Gives a new shape to the input Tensor without changing its data.

7030
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
7031
    :attr:`shape` is a list of integer or tensor variable while :attr:`actual_shape` is a tensor
7032
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
7033
    if it is provided and it only contains integer, while :attr:`shape` still should be set correctly to
7034
    gurantee shape inference in compile-time.
C
caoying03 已提交
7035

7036
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
7037

7038 7039 7040 7041
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

7042
    2. 0 means the actual dimension value is going to be copied from the
7043 7044 7045 7046
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
7047 7048

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
7049
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
7050
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
7051

7052
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7053 7054
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
7055 7056
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
7057
    dimensions.
C
caoying03 已提交
7058

7059
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7060 7061 7062 7063
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
7064

7065 7066
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the future and only use :attr:`shape` instead.

C
caoying03 已提交
7067
    Args:
7068
        x(variable): The input tensor.
7069 7070 7071 7072
        shape(list|tuple|Variable): The new shape. At most one dimension of the new shape can
                     be -1. If :attr:`shape` is a list or tuple, it can contain Variable or not and
                     the shape of Variable must be [1].

7073 7074 7075 7076
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
7077 7078 7079 7080
                                than :attr:`shape(list|tuple)` but not :attr:`shape(Variable)`. \
                                This argument :attr:`actual_shape` will be removed in a future version. \
                                Instructions for updating: :attr:`actual_shape` is deprecated,
                                only use :attr:`shape` instead.
7081 7082
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
7083 7084 7085
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
7086
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
7087
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
7088

7089
    Returns:
G
guosheng 已提交
7090 7091 7092 7093
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
7094

X
Xin Pan 已提交
7095 7096 7097
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
7098 7099
    Examples:
        .. code-block:: python
G
guosheng 已提交
7100

7101
            import paddle.fluid as fluid
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            data_1 = fluid.layers.data(
                name='data_1', shape=[2, 4, 6], dtype='float32')
            reshaped_1 = fluid.layers.reshape(
                x=data_1, shape=[-1, 0, 3, 2], inplace=True)

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
C
caoying03 已提交
7115 7116
    """

7117 7118 7119
    if not isinstance(shape, (list, tuple, Variable)):
        raise TypeError(
            "Input shape must be an Variable or python list or tuple.")
7120

7121 7122
    if not isinstance(actual_shape, Variable) and (actual_shape is not None):
        raise TypeError("actual_shape should either be Variable or None.")
7123

7124
    helper = LayerHelper("reshape2", **locals())
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
    inputs = {"X": x}
    attrs = {}

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension in shape can be unknown.")
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The indice of 0s in shape can not exceed Rank(X).")
                else:
                    assert dim_size > 0, (
                        "Each dimension size given in shape must not be negtive "
                        "except one unknown dimension.")
        return attrs_shape

7168 7169 7170 7171
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
            if contain_var(shape):
                inputs['ShapeTensor'] = get_new_shape_tensor(shape)
            elif isinstance(actual_shape, Variable):
                actual_shape.stop_gradient = True
                inputs["Shape"] = actual_shape
7184

7185 7186
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
7187
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
7188
    helper.append_op(
7189
        type="reshape2",
X
Xin Pan 已提交
7190
        inputs=inputs,
7191
        attrs=attrs,
7192 7193
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
7194

D
dzhwinter 已提交
7195
    return helper.append_activation(out)
7196

7197

7198
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
7199
    """
M
minqiyang 已提交
7200 7201 7202
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
7203
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
7204

H
haowang101779990 已提交
7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7226

Y
Yibing Liu 已提交
7227
    Args:
7228
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7229
        axes (list): List of integers, indicating the dimensions to be squeezed.
7230
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7231 7232 7233 7234 7235 7236 7237

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7238
            import paddle.fluid as fluid
7239
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7240
            x = layers.data(name='x', shape=[5, 1, 10])
7241
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7242
    """
L
lujun 已提交
7243
    assert not in_dygraph_mode(), (
L
lujun 已提交
7244
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7245
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7246 7247
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7248
    helper.append_op(
7249
        type="squeeze2",
7250
        inputs={"X": input},
Y
Yibing Liu 已提交
7251
        attrs={"axes": axes},
7252 7253
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7254

7255 7256 7257
    return out


7258
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7259
    """
M
minqiyang 已提交
7260 7261 7262
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7263

M
minqiyang 已提交
7264
    For example:
H
haowang101779990 已提交
7265 7266 7267

    .. code-block:: text

M
minqiyang 已提交
7268
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7269
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7270

Y
Yibing Liu 已提交
7271
    Args:
7272
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7273
        axes (list): List of integers, indicating the dimensions to be inserted.
7274
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7275 7276 7277 7278 7279 7280 7281

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7282 7283 7284
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7285 7286
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7287 7288
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7289
    helper.append_op(
7290
        type="unsqueeze2",
7291
        inputs={"X": input},
Y
Yibing Liu 已提交
7292
        attrs={"axes": axes},
7293 7294
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7295

7296 7297
    return out

7298

Y
yangyaming 已提交
7299
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7300
    """
Y
Yibing Liu 已提交
7301
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7302 7303 7304 7305
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7306
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7307 7308 7309 7310 7311 7312

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7313
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7314 7315 7316
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7317
            target_lod: [4, 2]
Y
yangyaming 已提交
7318 7319

            then we get a 1-level LoDTensor:
7320
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7321 7322 7323 7324 7325 7326
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7327
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7328 7329 7330 7331
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7332
                y.data = [[2, 4]]
Y
yangyaming 已提交
7333 7334 7335
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7336
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7337 7338 7339 7340 7341 7342
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7343
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7344 7345 7346 7347
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7348
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7349 7350 7351 7352
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7353
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7354 7355 7356 7357
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7358
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7359
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7360
                           from :attr:`y`.
Y
yangyaming 已提交
7361
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7362
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7363 7364

    Returns:
Y
Yibing Liu 已提交
7365
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7366 7367

    Raises:
Y
Yibing Liu 已提交
7368
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7369 7370 7371 7372

    Examples:
        .. code-block:: python

7373
            import paddle.fluid as fluid
7374 7375 7376
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7377 7378
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7379
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7417
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7418 7419 7420 7421 7422 7423

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7424

7425 7426 7427 7428 7429 7430 7431 7432 7433 7434
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7435 7436 7437
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7438 7439
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7440 7441 7442 7443 7444 7445 7446 7447

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7448
    helper.append_op(
7449
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7450
    return out
D
dragonwarrior 已提交
7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7462
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7491
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7492 7493
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7506 7507 7508
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7522 7523 7524 7525


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7526
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7527
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7528

G
guosheng 已提交
7529
    Specifically, the number of values padded before the contents of :attr:`x`
7530
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7531
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7532
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7555
                         The length of :attr:paddings must be
G
guosheng 已提交
7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7566

G
guosheng 已提交
7567
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7568 7569
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7570 7571 7572 7573 7574
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7575
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7576 7577 7578 7579 7580 7581 7582
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7583 7584


C
chengduo 已提交
7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7616 7617
		And
            pad_value = -1,
C
chengduo 已提交
7618

T
Tink_Y 已提交
7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7649 7650 7651
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7652 7653 7654 7655 7656
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7657
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7658 7659 7660 7661 7662 7663 7664 7665 7666
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7667 7668 7669 7670 7671 7672 7673
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7674 7675
    called label-smoothing regularization (LSR).

7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7699
                              be :math:`(1, class\_num)`.
7700 7701
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7702
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7703 7704 7705 7706 7707 7708 7709 7710 7711
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7712
            
7713
            import paddle.fluid as fluid
7714
            import paddle.fluid.layers as layers
7715 7716 7717 7718 7719 7720 7721 7722 7723 7724

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7725
    smooth_label = helper.create_variable_for_type_inference(dtype)
7726 7727 7728 7729 7730 7731 7732
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7733 7734


W
wopeizl 已提交
7735 7736 7737 7738 7739 7740 7741
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7742 7743 7744 7745 7746
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7787 7788


J
jerrywgz 已提交
7789 7790 7791 7792 7793 7794
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7795 7796
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7797 7798 7799 7800 7801
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7802 7803 7804 7805 7806
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
7807 7808 7809 7810 7811 7812 7813 7814 7815 7816
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7817
            import paddle.fluid as fluid
J
jerrywgz 已提交
7818 7819 7820 7821
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7822 7823 7824
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7825 7826 7827 7828 7829 7830
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7831
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7872 7873
        .. code-block:: python

S
SunGaofeng 已提交
7874 7875 7876
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7877
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7878
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7879 7880
    """
    label = one_hot(label, depth=input.shape[-1])
7881
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7882 7883 7884 7885 7886 7887
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7888 7889


7890 7891 7892 7893
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7894
                 resample='BILINEAR',
7895 7896
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7897
                 align_mode=1):
7898
    """
Q
qiaolongfei 已提交
7899
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7900

K
Kaipeng Deng 已提交
7901 7902 7903
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w)
    or (num_batches, channels, in_d, in_h, in_w), and the resizing only applies 
    on the last two/three dimensions(depth, hight and width).
7904

7905 7906 7907
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

7908
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7909

7910
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7911

K
Kaipeng Deng 已提交
7912 7913
        'TRILINEAR' : Trilinear interpolation

7914
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7915

7916 7917 7918 7919 7920 7921 7922 7923 7924 7925
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
7926 7927 7928 7929 7930
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
7931
    Align_corners and align_mode are optinal parameters,the calculation method 
7932 7933 7934 7935
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7936
    .. code-block:: text
7937

T
Tink_Y 已提交
7938
        For scale:
7939
          
T
Tink_Y 已提交
7940
            if align_corners = True && out_size > 1 :
7941

T
Tink_Y 已提交
7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7953

T
Tink_Y 已提交
7954 7955
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7956

T
Tink_Y 已提交
7957 7958
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7959

T
Tink_Y 已提交
7960 7961
          else:
              align_corners = True
7962

T
Tink_Y 已提交
7963 7964
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7965

T
Tink_Y 已提交
7966 7967
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7968

T
Tink_Y 已提交
7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7979

T
Tink_Y 已提交
7980 7981 7982 7983
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7984

T
Tink_Y 已提交
7985 7986
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7987

K
Kaipeng Deng 已提交
7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
8010 8011 8012 8013 8014 8015
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
8016 8017 8018
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

8019 8020


8021
    Args:
8022
        input (Variable): The input tensor of image resize layer,
8023
                          This is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
8024 8025 8026
                          (num_batches, channels, in_h, in_w) or a
                          5-D tensor of the shape
                          (num_batches, channls, in_d, in_h, in_w).
8027
        out_shape(list|tuple|Variable|None): Output shape of image resize
8028 8029 8030 8031 8032 8033 8034
             layer, the shape is (out_h, out_w) when input is a 4-D tensor and is
             (out_d, out_h, out_w) when input is a 5-D tensor. Default: None. If 
             a list, each element can be an integer or a tensor Variable of shape: [1].
             If a tesnosr Variable, its dimensions size should be a 1.
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
8035
             Default: None.
8036 8037
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
8038 8039
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
8040 8041 8042
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8043
                                :attr:`out_shape` and :attr:`scale` specifying
8044 8045
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8046 8047 8048 8049 8050 8051
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8052
                                Default: None
8053 8054 8055 8056
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
8057
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
8058 8059
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
8060 8061

    Returns:
Q
update  
qiaolongfei 已提交
8062
        Variable: The output is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
8063 8064
        (num_batches, channls, out_h, out_w) or a 5-D tensor of the shape
        (num_batches, channels, out_d, out_h, out_w).
F
stash  
fengjiayi 已提交
8065

8066 8067 8068
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
8069 8070 8071 8072
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
8073
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
8074 8075
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
8076
        ValueError: scale should be greater than zero.
8077 8078
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
8079

8080 8081 8082
    Examples:
        .. code-block:: python

8083
            import paddle.fluid as fluid
8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.image_resize(input, out_shape=[12, dim1], resample="NEAREST")
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.image_resize(input, out_shape=shape_tensor, resample="NEAREST")
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.image_resize(input, out_shape=[4, 4], resample="NEAREST", actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.image_resize(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]

8110
    """
8111 8112
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
8113
        'TRILINEAR': 'trilinear',
8114 8115
        'NEAREST': 'nearest',
    }
8116 8117
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
8118 8119
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
8120
    resample_type = resample_methods[resample]
8121

K
Kaipeng Deng 已提交
8122 8123 8124 8125 8126
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

8127 8128 8129 8130 8131
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

8132
    if out_shape is None and scale is None:
8133
        raise ValueError("One of out_shape and scale must not be None.")
8134
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
8135
    dtype = helper.input_dtype()
8136 8137 8138 8139

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

8140
    inputs = {"X": input}
D
dengkaipeng 已提交
8141
    attrs = {
8142 8143 8144
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
8145 8146 8147 8148 8149
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

8150
    if out_shape is not None:
8151
        if isinstance(out_shape, Variable):
8152
            out_shape.stop_gradient = True
8153
            inputs['OutSize'] = out_shape
8154 8155
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
8156 8157
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
8186 8187 8188 8189
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
8190 8191 8192 8193 8194 8195 8196
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
8197 8198 8199 8200
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
8201 8202 8203 8204 8205 8206 8207 8208 8209
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
8210

8211
    else:
8212 8213 8214 8215 8216 8217 8218
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        if isinstance(scale, float):
            if scale <= 0:
                raise ValueError("scale should be greater than zero.")
            attrs['scale'] = float(scale)
8219

8220
    if isinstance(actual_shape, Variable):
8221 8222 8223 8224 8225
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
8226 8227 8228 8229
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
8230
    out = helper.create_variable_for_type_inference(dtype)
8231
    helper.append_op(
8232
        type='{}_interp'.format(resample_type),
8233
        inputs=inputs,
8234
        outputs={"Out": out},
D
dengkaipeng 已提交
8235
        attrs=attrs)
8236
    return out
F
stash  
fengjiayi 已提交
8237 8238


8239
@templatedoc(op_type="bilinear_interp")
8240 8241 8242 8243
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
8244 8245
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
8246
                    align_mode=1):
8247
    """
8248 8249
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
8250 8251
    in priority order.

8252 8253 8254
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

8255 8256 8257 8258
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
8259 8260
    again in the other direction.

8261
    For details of bilinear interpolation, please refer to Wikipedia:
8262
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
8263

T
tink2123 已提交
8264
    Align_corners and align_mode are optinal parameters,the calculation 
8265 8266 8267 8268
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8269
    .. code-block:: text
8270

T
Tink_Y 已提交
8271
        For scale:
8272
          
T
Tink_Y 已提交
8273
            if align_corners = True && out_size > 1 :
8274

T
Tink_Y 已提交
8275 8276 8277 8278 8279
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
8280

T
Tink_Y 已提交
8281 8282 8283 8284 8285 8286 8287 8288 8289 8290
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8291 8292


T
Tink_Y 已提交
8293
          else:
T
tink2123 已提交
8294

T
Tink_Y 已提交
8295 8296
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8297

T
Tink_Y 已提交
8298 8299
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8300 8301 8302



Y
yuyang18 已提交
8303
    Args:
8304 8305
        input(${x_type}): input should be a 4-D tensor of shape 
                          (num_batches, channels, in_h, in_w).
Y
yuyang18 已提交
8306

D
dengkaipeng 已提交
8307
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
8308 8309 8310
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
            element can be an integer or a tensor Variable with shape: [1]. If a 
            tensor Variable, its dimension size should be 1.
8311

8312
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8313
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8314
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8315
             Default: None.
Y
yuyang18 已提交
8316 8317

        name(str|None): The output variable name.
8318 8319 8320
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8321
                                :attr:`out_shape` and :attr:`scale` specifying
8322 8323
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8324 8325 8326 8327 8328 8329
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8330
                                Default: None
8331 8332
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
8333 8334

    Returns:
K
Kaipeng Deng 已提交
8335
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8336 8337 8338 8339

    Examples:
        .. code-block:: python

8340
            import paddle.fluid as fluid
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_bilinear(input, out_shape=[12, dim1])
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_bilinear(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_bilinear(input, out_shape=[4, 4], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_bilinear(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]
8366 8367
    """

8368 8369
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
8370 8371


K
Kaipeng Deng 已提交
8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
                     align_mode=1):
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

8385 8386 8387
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}



    Args:
8438 8439
        input(${x_type}): input should be a 5-D tensor of shape 
                          (num_batches, channls, in_d, in_h, in_w).
K
Kaipeng Deng 已提交
8440 8441

        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
8442 8443 8444
            layer, the shape is (out_d, out_h, out_w). Default: None. If a list, 
            each element can be  an integer or a tensor Variable with shape: [1]. If 
            a tensor Variable, its dimension size should be 1.
K
Kaipeng Deng 已提交
8445

8446
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.

        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8458 8459 8460 8461 8462 8463
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
K
Kaipeng Deng 已提交
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}

    Returns:
        A 5-D tensor in shape (num_batches, channels, out_d, out_h, out_w)

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500
            input = fluid.layers.data(name="input", shape=[3, 6, 9, 11], dtype="float32")
            # input.shape = [-1, 3, 6, 9, 11], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
            # out0.shape = [-1, 3, 12, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_trilinear(input, out_shape=[12, dim1, 4])
            # out1.shape = [-1, 3, 12, -1, 4]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[3], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_trilinear(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[3], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_trilinear(input, out_shape=[4, 4, 8], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4, 8]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_trilinear(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1, -1]

K
Kaipeng Deng 已提交
8501 8502 8503 8504 8505 8506
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
                        actual_shape, align_corners, align_mode)


8507
@templatedoc(op_type="nearest_interp")
8508 8509 8510 8511
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
8512 8513
                   actual_shape=None,
                   align_corners=True):
8514
    """
8515
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
8516 8517
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
8518 8519
    out_shape and scale in priority order.

8520 8521 8522
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

8523 8524
    Example:

T
Tink_Y 已提交
8525 8526 8527 8528 8529
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
8530

T
Tink_Y 已提交
8531 8532 8533 8534 8535 8536 8537 8538
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
8539
          
T
Tink_Y 已提交
8540 8541
          if:
              align_corners = False
8542

T
Tink_Y 已提交
8543 8544
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8545

T
Tink_Y 已提交
8546 8547
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8548

T
Tink_Y 已提交
8549 8550
          else:
              align_corners = True
8551

T
Tink_Y 已提交
8552 8553
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8554

T
Tink_Y 已提交
8555 8556
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8557 8558


8559
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8560
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8561 8562

    Args:
8563 8564
        input(${x_type}): input should be a 4-D tensor of shape 
                          (num_batches, channls, in_h, in_w).
Y
yuyang18 已提交
8565

D
dengkaipeng 已提交
8566
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
8567 8568 8569
            layer, the shape is (out_h, out_w). Default: None. If a list, each 
            element can be integer or a tensor Variable with shape: [1]. If a 
            tensor Variable, its dimension size should be 1.
8570

8571
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8572
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8573
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8574
             Default: None.
Y
yuyang18 已提交
8575 8576

        name(str|None): The output variable name.
8577 8578 8579
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8580
                                :attr:`out_shape` and :attr:`scale` specifying
8581 8582
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8583 8584 8585 8586 8587 8588
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8589
                                Default: None
8590
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
8591 8592

    Returns:
K
Kaipeng Deng 已提交
8593
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8594 8595 8596 8597

    Examples:
        .. code-block:: python

8598
            import paddle.fluid as fluid
8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_nearest(input, out_shape=[12, 12])
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_nearest(input, out_shape=[12, dim1])
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="resize_shape", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_nearest(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_nearest(input, out_shape=[4, 4], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_nearest(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]

8625 8626
    """

8627 8628
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
8629 8630 8631 8632


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8633 8634 8635
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8636 8637 8638 8639 8640 8641 8642
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8643
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8644

8645
    Returns:
Q
update  
qiaolongfei 已提交
8646
        Variable: The output is a 4-D tensor of the shape
8647
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8648 8649 8650 8651

    Examples:
        .. code-block:: python

8652
            import paddle.fluid as fluid
R
ruri 已提交
8653 8654
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8655 8656 8657 8658 8659 8660 8661 8662 8663 8664
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8665 8666 8667
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8668 8669 8670
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8671
def gather(input, index, overwrite=True):
W
whs 已提交
8672
    """
Q
qiaolongfei 已提交
8673 8674
    **Gather Layer**

8675
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8676 8677 8678 8679
    of X indexed by `index` and concatenate them together.

    .. math::

8680
        Out = X[Index]
W
whs 已提交
8681 8682 8683 8684 8685 8686 8687


    .. code-block:: text


                Given:

8688 8689
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8690 8691 8692 8693 8694 8695 8696 8697 8698 8699
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8700
        input (Variable): The source input with rank>=1.
W
whs 已提交
8701
        index (Variable): The index input with rank=1.
8702 8703 8704 8705 8706 8707
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8708 8709 8710 8711 8712

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8713

W
whs 已提交
8714 8715
        .. code-block:: python

8716
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8717 8718
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8719 8720 8721 8722
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8723
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8724 8725 8726 8727
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8728 8729
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8730 8731 8732
    return out


8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
        input (Variable): The source input
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[2, 2], dtype='int32')
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


8818
def scatter(input, index, updates, name=None, overwrite=True):
8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8836 8837 8838 8839
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8840 8841 8842 8843 8844 8845 8846 8847

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8848 8849 8850 8851 8852
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8853

8854
            output = fluid.layers.scatter(input, index, updates)
8855 8856 8857
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8858
    out = helper.create_variable_for_type_inference(dtype)
8859 8860 8861 8862 8863
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8864
        attrs={'overwrite': overwrite},
8865 8866 8867 8868
        outputs={"Out": out})
    return out


8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Variable. :attr:`ref` is a Tensor with rank :math:`R` 
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
        ref (Variable): The ref input.
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same type
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:]
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape and type as ref.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            ref = fluid.layers.data(name='ref', shape=[3, 5, 9, 10], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int32', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter_nd op. 
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Q
Qingsheng Li 已提交
8990 8991 8992 8993 8994 8995 8996 8997 8998
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8999

Q
Qingsheng Li 已提交
9000
    Given the following input:
H
haowang101779990 已提交
9001

Q
Qingsheng Li 已提交
9002
    .. code-block:: text
H
haowang101779990 已提交
9003

Q
Qingsheng Li 已提交
9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
9016

Q
Qingsheng Li 已提交
9017
    .. code-block:: text
H
haowang101779990 已提交
9018

Q
Qingsheng Li 已提交
9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
9034
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
9035 9036 9037 9038

    Examples:

        .. code-block:: python
9039
	
9040
            import paddle.fluid as fluid
9041
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
9042

9043 9044 9045
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
9046 9047 9048
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
9049
    assert not in_dygraph_mode(), (
9050
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
9051 9052
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9053
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
9054 9055 9056 9057 9058 9059 9060 9061 9062
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
9076

9077
    Examples:
9078
        >>> import paddle.fluid as fluid
9079 9080
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
9081
    """
F
stash  
fengjiayi 已提交
9082
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
9083
    dtype = x.dtype
X
Xin Pan 已提交
9084
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
9085
    if seed is None:
9086
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
9087
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
9088
    if isinstance(seed, int):
F
fengjiayi 已提交
9089 9090 9091 9092 9093
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
9094 9095 9096 9097
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
9098
        inputs={"X": x,
F
stash  
fengjiayi 已提交
9099 9100
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
9101 9102
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
9103
    return out
W
whs 已提交
9104 9105


9106
def log(x, name=None):
W
wanghaoshuang 已提交
9107 9108 9109 9110 9111
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

9112
        Out = \\ln(x)
W
wanghaoshuang 已提交
9113 9114

    Args:
9115
        x (Variable): Input tensor.
9116 9117
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
9118 9119 9120 9121 9122 9123 9124 9125

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

9126
            import paddle.fluid as fluid
9127
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
9128
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
9129 9130
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
9131
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9132
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
9133
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
9134 9135 9136
    return out


9137
def relu(x, name=None):
W
wanghaoshuang 已提交
9138 9139
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
9140
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
9141 9142 9143 9144
    the tensor elementwise.

    .. math::

9145
        Out = \\max(0, x)
W
wanghaoshuang 已提交
9146 9147

    Args:
9148
        x (Variable): The input tensor.
9149 9150
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
9151 9152 9153 9154 9155 9156 9157 9158

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

9159
            import paddle.fluid as fluid
9160
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
9161
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
9162 9163
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
9164
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9165
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
9166 9167
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
9168
    return out
9169 9170


C
chengduo 已提交
9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
9195 9196 9197 9198 9199 9200
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
9216 9217 9218
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
9219 9220 9221 9222
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
9223
    .. math::
9224

H
haowang101779990 已提交
9225
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
9226

9227
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
9228 9229 9230 9231 9232
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
9233
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
9234
                           Its shape should be the same as input.
9235
        num_classes (int): The possible number of labels.
W
whs 已提交
9236 9237

    Returns:
M
minqiyang 已提交
9238 9239
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
9240
                     Three variables:
M
minqiyang 已提交
9241

H
haowang101779990 已提交
9242 9243 9244
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
9245 9246 9247 9248

    Examples:

        .. code-block:: python
9249

B
Bai Yifan 已提交
9250
            import paddle.fluid as fluid
9251 9252 9253 9254
            iou_shape = [32, 32]
            num_classes = 5
            predict = fluid.layers.data(name='predict', shape=iou_shape)
            label = fluid.layers.data(name='label', shape=iou_shape)
B
Bai Yifan 已提交
9255
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
9256
                                                          num_classes)
W
whs 已提交
9257 9258 9259
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9260 9261 9262
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
9263 9264
    helper.append_op(
        type="mean_iou",
W
whs 已提交
9265 9266
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
9267
        outputs={
W
whs 已提交
9268 9269 9270
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
9271 9272 9273
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
9274 9275 9276 9277 9278 9279


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

9280 9281 9282 9283 9284
    **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
    Instructions for updating: Use `fluid.layers.crop_tensor
    <https://www.paddlepaddle.org.cn/documentation/docs/en/api/layers/nn.html#crop_tensor>`_
    instead.

9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
9316
            by `shape`, which can be a Variable or a list/tuple of integer.
9317 9318
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
9319
            iteration. If a list/tuple of integer, it's length must be the same
9320
            as the rank of `x`
S
SunGaofeng 已提交
9321
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
9322
            offsets at each dimension. It can be a Variable or a list/tuple
S
SunGaofeng 已提交
9323
            of integers. If a tensor Variable, it's rank must be the same as `x`.
9324
            This way is suitable for the case that the offsets may be changed
9325
            each iteration. If a list/tuple of integer, it's length must be the
9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
9341
            import paddle.fluid as fluid
9342 9343 9344 9345 9346 9347
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
9348
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
9349 9350 9351 9352 9353

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
9354
            isinstance(shape, Variable)):
9355 9356 9357 9358 9359
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
9360
    out = helper.create_variable_for_type_inference(x.dtype)
9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
9378 9379


9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X =  [[[0, 1, 2, 3]
                       [0, 5, 6, 7]
                       [0, 0, 0, 0]],

                      [[0, 3, 4, 5]
                       [0, 6, 7, 8]
                       [0, 0, 0, 0]]].
            and
                shape = [2, 2, 3],
                offsets = [0, 0, 1],
            output is:
                Out = [[[1, 2, 3]
                        [5, 6, 7]],

                        [[3, 4, 5]
                         [6, 7, 8]]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list|tuple of integer): The output shape is specified
            by `shape`. It can be a 1-D tensor Variable or a list/tuple. If a 
            1-D tensor Variable, it's rank must be the same as `x`. If a 
            list/tuple, it's length must be the same as the rank of `x`. Each 
            element of list can be an integer or a tensor Variable of shape: [1].
            If Variable contained, it is suitable for the case that the shape may 
            be changed each iteration. Only the first element of list/tuple can be 
            set to -1, it means that the first dimension of the output is the same 
            as the input.
        offsets (Variable|list|tuple of integer|None): Specifies the cropping
            offsets at each dimension. It can be a 1-D tensor Variable or a list/tuple.
            If a 1-D tensor Variable, it's rank must be the same as `x`. If a list/tuple, 
            it's length must be the same as the rank of `x`. Each element of list can be
            an integer or a tensor Variable of shape: [1]. If Variable contained, it is 
            suitable for the case that the offsets may be changed each iteration. If None, 
            the offsets are 0 at each dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.
        ValueError: If offsets is not None and not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

            # shape is a 1-D tensor variable
            crop_shape = fluid.layers.data(name="crop_shape", shape=[3], dtype="int32", append_batch_size=False)
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3])
            # crop1.shape = [-1, 2, 3]

            # or shape is a list in which each element is a constant or variable
            y = fluid.layers.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            crop2 = fluid.layers.crop_tensor(y, shape=[-1, 3, dim1, 4])
            # crop2.shape = [-1, 3, -1, 4]

            # offsets is a 1-D tensor variable
            crop_offsets = fluid.layers.data(name="crop_offsets", shape=[3], dtype="int32", append_batch_size=False)
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

            # offsets is a list in which each element is a constant or variable
            offsets_var =  fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
            isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    if not (isinstance(offsets, list) or isinstance(offsets, tuple) or \
            isinstance(offsets, Variable)):
        raise ValueError("The offsets should be a list, tuple or Variable.")

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def contain_var(input_list):
        for ele in input_list:
            if isinstance(ele, Variable):
                return True
        return False

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
    elif contain_var(offsets):
        new_offsets_tensor = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                assert dim >= 0, ("offsets should be greater or equal to zero.")
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
        ipts['OffsetsTensor'] = new_offsets_tensor
    else:
        attrs['offsets'] = offsets

    unk_dim_idx = -1
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_idx, dim_size in enumerate(shape):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(-1)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one element in shape can be unknown.")
                    assert dim_idx == 0, (
                        "Only the first element in shape can be -1.")
                    unk_dim_idx = dim_idx
                else:
                    assert dim_size > 0, (
                        "Each dimension size given in shape must be greater than zero."
                    )
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
9579

W
whs 已提交
9580
              out_shape = [2, 3, 5, 5]
9581

W
whs 已提交
9582
          Step 1:
9583

W
whs 已提交
9584 9585 9586
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
9587

W
whs 已提交
9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
9633
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
9634
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
9647

S
SunGaofeng 已提交
9648
            import paddle.fluid as fluid
W
whs 已提交
9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
9660
            isinstance(out_shape, Variable)):
W
whs 已提交
9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


9682 9683
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
9684

9685 9686
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
9687
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
9688 9689 9690
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
9691

9692 9693
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
9694

H
haowang101779990 已提交
9695 9696
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
9697 9698
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
9699

H
haowang101779990 已提交
9700 9701 9702 9703 9704 9705 9706 9707
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
9708 9709 9710

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

9728
            import paddle.fluid as fluid
9729 9730 9731
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
9746
    out = helper.create_variable_for_type_inference("float32")
9747 9748 9749 9750 9751 9752 9753 9754

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
9755 9756


M
minqiyang 已提交
9757 9758
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
9759
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
9760
    which compares left score and right score passed in.
M
minqiyang 已提交
9761
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
9762 9763 9764

    .. math::

H
haowang101779990 已提交
9765
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
9766 9767

    Args:
M
minqiyang 已提交
9768
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
9769 9770
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
9771
       margin (float): Indicates the given margin.
M
minqiyang 已提交
9772 9773
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
9774

M
minqiyang 已提交
9775
    Returns:
M
minqiyang 已提交
9776
       Variable: The ranking loss.
H
haowang101779990 已提交
9777

M
minqiyang 已提交
9778
    Raises:
M
minqiyang 已提交
9779
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
9780

M
minqiyang 已提交
9781
    Examples:
H
haowang101779990 已提交
9782

M
minqiyang 已提交
9783
        .. code-block:: python
H
haowang101779990 已提交
9784

9785
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
9786 9787 9788
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
9789 9790
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
9791
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
9792 9793 9794 9795 9796 9797
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
9798 9799
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
9823
        .. code-block:: text
W
whs 已提交
9824

T
Tink_Y 已提交
9825
	      Given that X is a channel of image from input:
M
minqiyang 已提交
9826

T
Tink_Y 已提交
9827 9828
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
9829

T
Tink_Y 已提交
9830
	      Case 0:
M
minqiyang 已提交
9831

T
Tink_Y 已提交
9832 9833 9834
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
9835

T
Tink_Y 已提交
9836 9837 9838
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
9839

T
Tink_Y 已提交
9840
	      Case 1:
M
minqiyang 已提交
9841

T
Tink_Y 已提交
9842 9843
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
9844

T
Tink_Y 已提交
9845 9846 9847
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
9848

T
Tink_Y 已提交
9849
	      Case 2:
M
minqiyang 已提交
9850

T
Tink_Y 已提交
9851 9852
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
9853

T
Tink_Y 已提交
9854 9855 9856
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
9857 9858


W
whs 已提交
9859 9860
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
9861
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
9879 9880 9881 9882 9883
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
9884 9885 9886 9887
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
9888
    out = helper.create_variable_for_type_inference(dtype)
9889 9890 9891 9892 9893 9894 9895 9896 9897
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
9898
    helper.append_op(
9899
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
9900 9901 9902 9903

    return out


9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9916 9917 9918 9919 9920

    Examples:

        .. code-block:: python

9921
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9922 9923
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
9924 9925
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
9926
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9947 9948 9949 9950 9951

    Examples:

        .. code-block:: python

9952
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9953 9954
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
9955 9956
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
9957
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
9972
        factor(float|Variable|1.0): The exponential factor of Pow.
9973 9974 9975 9976 9977
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9978 9979 9980 9981 9982

    Examples:

        .. code-block:: python

9983
            import paddle.fluid as fluid
9984

Z
ZhenWang 已提交
9985
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
9986 9987 9988 9989 9990 9991 9992

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
9993 9994
    """
    helper = LayerHelper('pow', **locals())
9995 9996 9997 9998 9999 10000 10001 10002
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
10003
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10004
    helper.append_op(
10005
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10022 10023 10024 10025 10026

    Examples:

        .. code-block:: python

10027
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10028
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
10029
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
10030 10031
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
10032
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10055 10056 10057 10058 10059

    Examples:

        .. code-block:: python

10060
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10061 10062
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
10063 10064
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
10065
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10087 10088 10089 10090 10091

    Examples:

        .. code-block:: python

10092
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10093 10094
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
10095 10096
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
10097
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10098 10099 10100 10101 10102 10103 10104 10105
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
10106 10107 10108 10109
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
10110 10111
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
10112

J
jerrywgz 已提交
10113 10114 10115 10116 10117 10118 10119 10120
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
10121 10122
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
10123
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
10124
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
10125
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
10126
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
10127
          will be named automatically.
J
jerrywgz 已提交
10128 10129 10130 10131 10132 10133 10134 10135

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
10136 10137 10138
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
10139
            mode = 'channel'
J
jerrywgz 已提交
10140 10141 10142
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
10154
        attr=helper.param_attr,
J
jerrywgz 已提交
10155 10156 10157 10158
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
10159
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
10160 10161 10162 10163 10164 10165 10166 10167 10168
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


10169 10170 10171 10172 10173 10174 10175 10176 10177 10178
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10179
    Returns:
10180
        output(${out_type}): ${out_comment}
10181 10182 10183

    Examples:

10184
    .. code-block:: python
10185

10186
            import paddle.fluid as fluid
H
haowang101779990 已提交
10187 10188
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
10189 10190
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
10191
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10210
    Returns:
10211
        output(${out_type}): ${out_comment}
10212 10213 10214 10215 10216

    Examples:

        .. code-block:: python

10217
            import paddle.fluid as fluid
H
haowang101779990 已提交
10218 10219
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
10220 10221
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
10222
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10240
    Returns:
10241
        output(${out_type}): ${out_comment}
10242 10243 10244

    Examples:

10245 10246 10247 10248 10249
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
10250
            y = fluid.layers.soft_relu(x, threshold=20.0)
10251 10252
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
10253
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10254 10255 10256 10257 10258 10259 10260 10261
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


10262 10263 10264 10265
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
10266

H
haowang101779990 已提交
10267
    For Example:
M
minqiyang 已提交
10268

H
haowang101779990 已提交
10269
    .. code-block:: text
10270

H
haowang101779990 已提交
10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
10292 10293 10294

    Args:
        x (Variable): A tensor of rank >= axis.
10295 10296
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
10297 10298 10299 10300 10301 10302 10303 10304
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
10305 10306 10307
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
10308 10309 10310 10311
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
10312
        ValueError: If axis is not in range [0, rank(x)].
10313 10314 10315 10316 10317

    Examples:

        .. code-block:: python

10318
            import paddle.fluid as fluid
10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
10330 10331
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
10332
    helper.append_op(
10333
        type='flatten2',
10334
        inputs={"X": x},
10335 10336
        outputs={'Out': out,
                 'XShape': x_shape},
10337 10338
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
10339 10340


C
chenweihang 已提交
10341
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
10342
    """
C
chenweihang 已提交
10343
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
10344
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
10345 10346
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
10347

H
haowang101779990 已提交
10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
10365 10366

    Args:
C
chenweihang 已提交
10367 10368 10369
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
10370 10371 10372 10373 10374 10375 10376

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

10377 10378 10379
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
10380 10381
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
10382
    assert not in_dygraph_mode(), (
10383
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
10384
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
10385 10386
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
10387 10388 10389 10390 10391 10392
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
10393
    return out
10394

10395

S
sneaxiy 已提交
10396 10397 10398 10399 10400 10401 10402 10403 10404
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
10405

S
sneaxiy 已提交
10406
    .. math::
10407

S
sneaxiy 已提交
10408 10409 10410
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
10411
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
10412 10413 10414 10415
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
10416 10417 10418
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
10419 10420
    Returns:
        Variable: The output sequence mask.
10421

10422 10423 10424
    Examples:
        .. code-block:: python
	
10425
            import paddle.fluid as fluid
10426 10427 10428 10429 10430
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
10431
    """
Q
qingqing01 已提交
10432
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
10433
    if name is None:
X
Xin Pan 已提交
10434
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
10435
    else:
X
Xin Pan 已提交
10436
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
10437

10438 10439 10440 10441 10442 10443 10444 10445
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
10446
    helper.append_op(
10447 10448 10449
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
10450
    return out
S
sneaxiy 已提交
10451 10452


X
Xin Pan 已提交
10453
def stack(x, axis=0):
S
sneaxiy 已提交
10454 10455 10456 10457
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
10458 10459 10460 10461 10462 10463 10464

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
10465
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
10466
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
10467

C
chengduozh 已提交
10468 10469
    For Example:

C
chengduozh 已提交
10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
10508
    Args:
10509
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
10510
        axis (int|None): The axis along which all inputs are stacked.
10511

S
sneaxiy 已提交
10512 10513
    Returns:
        Variable: The stacked variable.
10514

10515 10516 10517
    Examples:
        .. code-block:: python

10518
            import paddle.fluid as fluid
10519
            import paddle.fluid.layers as layers
10520 10521
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
10522 10523
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
10524 10525
    """

X
Xin Pan 已提交
10526 10527 10528 10529 10530 10531
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
10532
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
10533
    helper.append_op(
S
sneaxiy 已提交
10534 10535
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
10536

X
Xin Pan 已提交
10537
    return out
D
dzhwinter 已提交
10538 10539


J
Jiawei Wang 已提交
10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
10610 10611 10612 10613 10614
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
10615

D
dzhwinter 已提交
10616 10617 10618
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
10619
    raised.
D
dzhwinter 已提交
10620 10621

    Args:
M
minqiyang 已提交
10622
        x (Variable): Input variable.
D
dzhwinter 已提交
10623 10624
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
10625

D
dzhwinter 已提交
10626 10627
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
10628

10629 10630 10631 10632 10633 10634
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
10635 10636 10637 10638 10639 10640 10641 10642 10643 10644
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
10645
    for _ in range(num):
X
Xin Pan 已提交
10646
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
10647 10648 10649 10650 10651 10652 10653 10654

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
10667

W
whs 已提交
10668 10669 10670 10671
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
10672

W
whs 已提交
10673
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
10674

W
whs 已提交
10675
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
10676

W
whs 已提交
10677 10678 10679 10680
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
10681

W
whs 已提交
10682 10683
    Args:
        x (Variable): A tensor with rank in [1, 6].
L
liym27 已提交
10684
        expand_times (list|tuple|Variable): Expand times number for each dimension.
W
whs 已提交
10685 10686 10687 10688 10689 10690 10691

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
L
liym27 已提交
10692

W
wangchaochaohu 已提交
10693
            import paddle.fluid as fluid
L
liym27 已提交
10694 10695 10696 10697 10698 10699 10700 10701 10702

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
W
whs 已提交
10703
    """
L
liym27 已提交
10704 10705 10706 10707 10708

    if not isinstance(expand_times, (list, tuple, Variable)):
        raise ValueError(
            "Input expand_times must be an Variable, python list or tuple.")

W
whs 已提交
10709
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741
    inputs = {"X": x}
    attrs = {}

    def contain_var(expand_times):
        for ele in expand_times:
            if isinstance(ele, Variable):
                return True
        return False

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
                    "Each element given in expand_times must not be negtive.")
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
10742 10743 10744 10745 10746

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:
L
liym27 已提交
10747 10748 10749 10750 10751 10752 10753 10754
        if isinstance(expand_times, Variable):
            expand_times.stop_gradient = True
            inputs['ExpandTimes'] = expand_times
        elif isinstance(expand_times, (list, tuple)):
            attrs['expand_times'] = get_attr_expand_times(expand_times)
            if contain_var(expand_times):
                inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                    expand_times)
10755

L
liym27 已提交
10756 10757
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
10758
    helper.append_op(
10759
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
10760
    return out
S
sneaxiy 已提交
10761 10762


G
fix  
gongweibao 已提交
10763 10764 10765
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
10766
@templatedoc()
G
fix  
gongweibao 已提交
10767 10768 10769 10770 10771 10772 10773 10774 10775
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
10776
    ${comment}
G
fix  
gongweibao 已提交
10777 10778

    Args:
G
gongweibao 已提交
10779 10780 10781
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10782
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
10783 10784 10785
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10786 10787
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
10788
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10789

10790 10791 10792
    Examples:
        .. code-block:: python

10793
            import paddle.fluid as fluid
10794 10795
            import paddle.fluid.layers as layers 

10796 10797
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
10798 10799 10800
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
10801
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
10818 10819


G
gongweibao 已提交
10820
@templatedoc()
X
Xin Pan 已提交
10821
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10822
    """
G
gongweibao 已提交
10823
    ${comment}
G
fix  
gongweibao 已提交
10824 10825

    Args:
G
gongweibao 已提交
10826 10827 10828 10829
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10830 10831 10832
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
10833
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10834

10835 10836 10837
    Examples:
        .. code-block:: python

10838
            import paddle.fluid as fluid
J
JesseyXujin 已提交
10839
            import paddle.fluid.layers as layers
10840
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
10841 10842 10843
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
10844
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10845 10846 10847 10848 10849 10850 10851 10852 10853 10854
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
10855
            'use_mkldnn': False
G
fix  
gongweibao 已提交
10856 10857 10858 10859 10860
        })

    return out


G
gongweibao 已提交
10861
@templatedoc()
G
fix  
gongweibao 已提交
10862
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10863
    """
G
gongweibao 已提交
10864
    ${comment}
G
fix  
gongweibao 已提交
10865 10866

    Args:
G
gongweibao 已提交
10867 10868 10869 10870
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
10871
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10872 10873

    Returns:
G
gongweibao 已提交
10874
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10875

10876 10877 10878
    Examples:
        .. code-block:: python

10879
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10880
            x = fluid.layers.data(
10881 10882 10883 10884 10885
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
10886
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
10887 10888 10889
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
10890
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
10902
@templatedoc()
G
fix  
gongweibao 已提交
10903 10904 10905 10906 10907 10908 10909 10910 10911
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
10912
    ${comment}
G
fix  
gongweibao 已提交
10913 10914

    Args:
G
gongweibao 已提交
10915 10916
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
10917
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10918 10919 10920 10921
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10922
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10923 10924

    Returns:
G
gongweibao 已提交
10925
        out (Variable): ${out_comment}
10926 10927 10928 10929

    Examples:
        .. code-block:: python

10930
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10931
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
10932

Y
Yibing Liu 已提交
10933
            out = fluid.layers.gaussian_random_batch_size_like(
10934
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10935 10936 10937
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10938
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10957
@templatedoc()
X
Xin Pan 已提交
10958
def sum(x):
G
fix  
gongweibao 已提交
10959
    """
G
gongweibao 已提交
10960
    ${comment}
G
fix  
gongweibao 已提交
10961 10962

    Args:
G
gongweibao 已提交
10963
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
10964 10965

    Returns:
G
gongweibao 已提交
10966
        out (Variable): ${out_comment}
10967 10968 10969 10970

    Examples:
        .. code-block:: python

10971
            import paddle.fluid as fluid
10972 10973 10974 10975
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
10976 10977 10978
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
10979 10980
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
10981 10982 10983 10984
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
10985
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
10986 10987 10988 10989

    return out


G
gongweibao 已提交
10990
@templatedoc()
G
fix  
gongweibao 已提交
10991 10992
def slice(input, axes, starts, ends):
    """
10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
11008

11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
11026
    Args:
G
gongweibao 已提交
11027 11028
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
11029 11030
        starts (List|Variable): ${starts_comment}
        ends (List|Variable): ${ends_comment}
G
fix  
gongweibao 已提交
11031 11032

    Returns:
G
gongweibao 已提交
11033
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11034

11035 11036 11037
    Examples:
        .. code-block:: python

11038
            import paddle.fluid as fluid
11039

11040
            input = fluid.layers.data(
11041 11042
                name="input", shape=[3, 4, 5, 6], dtype='float32')

11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
G
fix  
gongweibao 已提交
11054 11055
    """

11056 11057 11058 11059 11060 11061 11062
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
11063
    helper = LayerHelper('slice', **locals())
11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
11134 11135
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
11136
    helper.append_op(
11137
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
11138 11139 11140 11141

    return out


W
wangchaochaohu 已提交
11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
    Strided Slice OP

    The conceptualization that really helped me understand this was 
    that this function emulates the indexing behavior of numpy arrays.
    If you're familiar with numpy arrays, you'll know that you can make 
    slices via input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN]. 
    Basically, a very succinct way of writing for loops to get certain elements of the array.
    strided_slice just allows you to do this fancy indexing without the syntactic sugar. 
    The numpy (#input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN])
    example from above just becomes fluid.strided_slice(input,[0, 1, ..., N], 
    [start1, start2, ..., startN], [end1, end2, ..., endN], [strides1, strides2, ..., stridesN]),
    the axes which controls the dimension you want to slice makes it more flexible.

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7] ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, -1]
                ends = [-1, 0]
                strides = [1, -1]
            Then:
                result = [ [4, 3, 2] ]
    Atrgs:
       input (Varibale): the input variable.
       axes(List):axis we need to slice
       starts (List): the start index in axis
       ends (List): the end index in axis
       strides (List): the stride length when we do slice operation
    Returns
       out(Variable): the result by strided_slice Op
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
 
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]
            strides= [1, 1, 1]

            input = fluid.layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides)
    """
    helper = LayerHelper('strided_slice', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))

    helper.append_op(
        type='strided_slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides
        })

    return out


G
fix  
gongweibao 已提交
11221 11222
def shape(input):
    """
C
chengduozh 已提交
11223 11224
    **Shape Layer**

C
fix doc  
chengduozh 已提交
11225
    Get the shape of the input.
G
fix  
gongweibao 已提交
11226 11227

    Args:
C
chengduozh 已提交
11228
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
11229 11230

    Returns:
C
fix doc  
chengduozh 已提交
11231
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
11232

11233 11234 11235
    Examples:
        .. code-block:: python

11236 11237 11238
            import paddle.fluid as fluid

            input = fluid.layers.data(
11239
                name="input", shape=[3, 100, 100], dtype="float32")
11240
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
11241 11242 11243
    """

    helper = LayerHelper('shape', **locals())
11244
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
11245
    helper.append_op(
G
fix  
gongweibao 已提交
11246
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
11247 11248

    return out
G
merge  
gongweibao 已提交
11249 11250


Z
zhoukunsheng 已提交
11251 11252 11253 11254
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
11255
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
11256 11257 11258 11259 11260 11261 11262 11263 11264 11265

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

11266 11267 11268 11269
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
11270 11271 11272 11273 11274 11275 11276 11277
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
11307 11308 11309 11310
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
11311
    if in_dygraph_mode():
X
Xin Pan 已提交
11312 11313 11314
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
11315 11316 11317 11318
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
11319 11320
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
11321
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11322 11323 11324
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
11325

S
sneaxiy 已提交
11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
11337
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
11338 11339 11340 11341 11342 11343 11344 11345
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
11346
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
11347
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
11348 11349 11350

    Returns:
        out(${out_type}): ${out_comment}
11351 11352 11353 11354 11355 11356 11357 11358

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
11359 11360 11361
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
11362
    if name is None:
X
Xin Pan 已提交
11363
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11364 11365 11366
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
11367 11368 11369 11370 11371 11372 11373 11374 11375 11376

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
11377
    return helper.append_activation(out)
S
sneaxiy 已提交
11378 11379


X
Xin Pan 已提交
11380
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11381 11382 11383
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
11384
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11385 11386 11387
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
11388
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11389 11390 11391
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
11392
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11393 11394 11395
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
11396
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11397 11398 11399
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
11400
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11401 11402 11403
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
11404
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11405 11406 11407
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


11408 11409 11410 11411 11412 11413 11414 11415
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
11416
for func in [
11417 11418 11419 11420 11421 11422 11423 11424 11425
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
11426 11427 11428 11429 11430
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
11431 11432
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
11433
        ])
11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11471 11472


11473
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11474 11475
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11476 11477
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11478 11479 11480

    if out is None:
        if name is None:
X
Xin Pan 已提交
11481
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11497
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11509 11510 11511 11512

    Examples:
        .. code-block:: python

11513
            import paddle.fluid as fluid
11514
            left = fluid.layers.data(
石晓伟 已提交
11515
                name='left', shape=[1], dtype='bool')
11516
            right = fluid.layers.data(
石晓伟 已提交
11517
                name='right', shape=[1], dtype='bool')
11518
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
11519 11520 11521 11522 11523 11524 11525
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11526
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11538 11539 11540 11541

    Examples:
        .. code-block:: python

11542
            import paddle.fluid as fluid
11543
            left = fluid.layers.data(
石晓伟 已提交
11544
                name='left', shape=[1], dtype='bool')
11545
            right = fluid.layers.data(
石晓伟 已提交
11546
                name='right', shape=[1], dtype='bool')
11547
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
11548 11549 11550 11551 11552 11553 11554
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11555
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11567 11568 11569 11570

    Examples:
        .. code-block:: python

11571
            import paddle.fluid as fluid
11572
            left = fluid.layers.data(
石晓伟 已提交
11573
                name='left', shape=[1], dtype='bool')
11574
            right = fluid.layers.data(
石晓伟 已提交
11575
                name='right', shape=[1], dtype='bool')
11576
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
11577 11578 11579 11580 11581 11582 11583
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11584
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11585 11586 11587 11588 11589 11590 11591 11592 11593 11594
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11595 11596 11597 11598

    Examples:
        .. code-block:: python

11599
            import paddle.fluid as fluid
11600
            left = fluid.layers.data(
石晓伟 已提交
11601
                name='left', shape=[1], dtype='bool')
11602
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
11603 11604 11605 11606
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11622 11623 11624 11625

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11626
            import paddle.fluid as fluid
11627 11628 11629
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11630 11631 11632 11633 11634
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11635 11636
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11637 11638 11639

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11663 11664 11665 11666

    Examples:
        .. code-block:: python

11667
            import paddle.fluid as fluid
11668 11669 11670
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11671 11672 11673 11674 11675
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11676 11677
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11678 11679 11680

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11681 11682 11683 11684 11685 11686 11687 11688

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11702 11703 11704 11705

    Examples:
        .. code-block:: python

11706
            import paddle.fluid as fluid
11707 11708 11709
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11710 11711 11712 11713 11714
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
11715
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11716 11717 11718 11719 11720 11721 11722 11723 11724 11725
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11737 11738 11739 11740

    Examples:
        .. code-block:: python

11741
            import paddle.fluid as fluid
11742 11743 11744 11745 11746
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11785 11786 11787 11788 11789
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
11790
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11791 11792 11793 11794 11795 11796 11797 11798 11799
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
11800 11801
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
11802 11803 11804 11805 11806 11807
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
11808 11809 11810
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
11811 11812
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
11813 11814 11815 11816 11817 11818
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
11819
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
11820
        name(basestring|None): Name of the output.
11821 11822
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
11823 11824 11825

    Returns:
        out(${out_type}): ${out_comment}
11826 11827 11828 11829

    Examples:
        .. code-block:: python

11830
            import paddle.fluid as fluid
11831 11832 11833 11834 11835 11836 11837 11838 11839 11840
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
11841 11842 11843 11844 11845
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
11846
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11847 11848 11849 11850 11851 11852 11853 11854
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
11855 11856
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
11873 11874 11875 11876

    Examples:
        .. code-block:: python

11877
            import paddle.fluid as fluid
J
jerrywgz 已提交
11878 11879 11880 11881 11882
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11883 11884 11885 11886
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
11887
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11888 11889 11890 11891 11892 11893 11894 11895 11896 11897
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
11898 11899


J
JiabinYang 已提交
11900
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11901
    """
J
JiabinYang 已提交
11902
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11903 11904 11905

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
11906
    The attr blocksize indicates the input block size.
11907 11908

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
11909
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
11910 11911

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
11912
    (but keeping all data)
J
JiabinYang 已提交
11913

J
JiabinYang 已提交
11914
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
11915
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
11916 11917 11918 11919 11920
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
11921
    Args:
J
JiabinYang 已提交
11922
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
11923
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
11924 11925

    Returns:
J
JiabinYang 已提交
11926
        Variable: The output LoDtensor.
J
JiabinYang 已提交
11927 11928

    Raises:
J
JiabinYang 已提交
11929
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
11930 11931 11932

    Examples:
        .. code-block:: python
11933 11934 11935
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11936 11937

            data = fluid.layers.data(
11938
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
11939
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11940
                x=data, blocksize=2)
11941

11942
            exe = fluid.Executor(fluid.CPUPlace())
11943 11944 11945 11946
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
11947

J
JiabinYang 已提交
11948 11949
    """

J
JiabinYang 已提交
11950
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11951

J
JiabinYang 已提交
11952 11953
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11954 11955

    if name is None:
J
JiabinYang 已提交
11956 11957
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11958 11959 11960 11961 11962
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11963
        type="space_to_depth",
J
JiabinYang 已提交
11964
        inputs={"X": x},
J
JiabinYang 已提交
11965
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11966
        outputs={"Out": out})
J
JiabinYang 已提交
11967 11968
    return out

J
JiabinYang 已提交
11969

S
sneaxiy 已提交
11970 11971
@templatedoc()
def sequence_reverse(x, name=None):
11972
    """
S
sneaxiy 已提交
11973 11974 11975 11976 11977 11978 11979 11980
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
11981 11982 11983 11984 11985 11986 11987

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
11988
    """
L
lujun 已提交
11989
    assert not in_dygraph_mode(), (
11990
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
11991 11992
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
11993
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11994 11995 11996 11997 11998 11999 12000 12001 12002 12003
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
12004 12005


12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072
def sequence_topk_avg_pooling(input, row, col, topks, channel_num):
    """
    The :attr:`topks` is a list with incremental values in this function. For each topk,
    it will average the topk features as an output feature for each channel of every 
    input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height 
    and width information for :attr:`input` tensor. If feature size of input sequence is less 
    than topk, it will padding 0 at the back.

    .. code-block:: text

            If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]

            input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i] 
                input.lod = [[60, 56]]  # where 60 = channel_num * 5 * 6
                input.dims = [116, 1]   # where 116 = 60 + 56

            If topks is [1, 3, 5], then we get a 1-level LoDTensor:
                out.lod =  [[5, 4]] 	# share Lod info with row LodTensor
                out.dims = [9, 6]   	# where 6 = len(topks) * channel_num

    Args:
        input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide the height information
                        of the input tensor data.
        col (Variable): The col shoud be 1-level LodTensor to provide the width information
                        of the input tensor data.
        topks (list): A list of incremental value to average the topk feature.
        channel_num (int): The number of input channel.

    Returns:
        Variable: output LodTensor specified by this layer.

    Examples:

        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.sequence_topk_avg_pooling(input=x_lod_tensor,
                                                   row=row_lod_tensor,
                                                   col=col_lod_tensor,
                                                   topks=[1, 3, 5],
                                                   channel_num=5)
    """
    helper = LayerHelper('sequence_topk_avg_pooling', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    pos = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(), stop_gradient=True)
    helper.append_op(
        type='sequence_topk_avg_pooling',
        inputs={'X': input,
                'ROW': row,
                'COLUMN': col},
        outputs={'Out': out,
                 'pos': pos},
        attrs={'topks': topks,
               'channel_num': channel_num})

    return out


12073 12074 12075 12076 12077 12078
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
12079 12080 12081 12082 12083
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
12084

12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
12097
        act (str, default None): Activation to be applied to the output of this layer.
12098 12099 12100

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

12115 12116 12117 12118
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
12119
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
12131
    return helper.append_activation(out)
12132 12133


B
barrierye 已提交
12134
def similarity_focus(input, axis, indexes, name=None):
12135
    """
B
barrierye 已提交
12136
    SimilarityFocus Operator
B
barrierye 已提交
12137 12138

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
12139

12140 12141 12142
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
12143
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
12144 12145 12146 12147 12148 12149 12150
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
12151
       each index.
B
barrierye 已提交
12152 12153 12154 12155
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
12205
    Args:
12206
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
12207
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
12208
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
12209
            1, 2 or 3.
B
barrierye 已提交
12210
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
12211 12212

    Returns:
H
haowang101779990 已提交
12213 12214
        Variable: A tensor variable with the same shape and same type \
                  as the input.
12215

B
barrierye 已提交
12216 12217
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
12218

12219
            import paddle.fluid as fluid
B
barrierye 已提交
12220
            data = fluid.layers.data(
Y
Yibing Liu 已提交
12221 12222
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
12235 12236 12237 12238 12239
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
12240 12241 12242 12243 12244 12245 12246
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
12247 12248


M
minqiyang 已提交
12249 12250
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
12251 12252
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
12253 12254
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
12255 12256 12257 12258 12259 12260 12261 12262

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
12263
        input.data = 
12264
            [[1, 2],
12265
             [3, 4]]
M
minqiyang 已提交
12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
12279 12280
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
12281 12282 12283 12284
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
12285
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
12286 12287
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
12288
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
12289
        name (str, default None): The name of this layer.
M
minqiyang 已提交
12290 12291

    Returns:
12292
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
12293 12294 12295

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
12296

12297 12298
            import paddle.fluid as fluid

12299 12300 12301 12302
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
12303 12304


12305 12306 12307 12308
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
12309 12310
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
12311 12312
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
12313 12314 12315 12316 12317 12318 12319
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
12320 12321


D
dengkaipeng 已提交
12322
@templatedoc()
12323 12324
def grid_sampler(x, grid, name=None):
    """
12325
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
12326
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
12327 12328 12329 12330
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
12331
    interpolation value of 4 nearest corner points.
12332

H
haowang101779990 已提交
12333
    .. code-block:: text
12334

H
haowang101779990 已提交
12335 12336
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
12337

H
haowang101779990 已提交
12338 12339
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
12340

H
haowang101779990 已提交
12341 12342 12343
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
12344

H
haowang101779990 已提交
12345 12346 12347 12348 12349 12350 12351 12352 12353
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
12354

H
haowang101779990 已提交
12355 12356 12357 12358
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
12359

H
haowang101779990 已提交
12360 12361 12362 12363
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
12364

H
haowang101779990 已提交
12365 12366 12367 12368
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
12369

H
haowang101779990 已提交
12370 12371
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
12372 12373

    Args:
12374 12375 12376
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
12377 12378

    Returns:
H
haowang101779990 已提交
12379
        Variable: Output of shape [N, C, H, W] data samples input X
12380 12381
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
12382 12383 12384 12385
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
12386 12387 12388 12389 12390
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
12391
            out = fluid.layers.grid_sampler(x=x, grid=grid)
12392

D
dengkaipeng 已提交
12393 12394 12395 12396 12397 12398 12399 12400 12401
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

12402
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
12403 12404
    ipts = {'X': x, 'Grid': grid}

12405
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
12406 12407 12408
    return out


G
gmcather 已提交
12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

12436
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12437 12438
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
12477
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
12478 12479 12480 12481 12482 12483 12484
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
12485 12486
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12487

12488 12489 12490 12491 12492
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
12493
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
12494

H
heqiaozhi 已提交
12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
12508 12509 12510 12511
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
12512
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
12513 12514
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
12515
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12516 12517

    .. math::
H
haowang101779990 已提交
12518 12519 12520
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12521 12522

    Where:
H
haowang101779990 已提交
12523 12524
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

12538 12539 12540 12541 12542 12543 12544 12545 12546
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12547

G
gmcather 已提交
12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12564 12565 12566 12567 12568 12569 12570 12571 12572 12573


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
12574
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12575

Q
Qiao Longfei 已提交
12576
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12577 12578 12579
    For example:

    .. math::
H
haowang101779990 已提交
12580
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12581

Q
Qiao Longfei 已提交
12582
    In this formula:
12583 12584
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
12585
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
12586
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12587 12588 12589
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
12590 12591
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
12592 12593 12594
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
12595
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
12596
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
12597
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
12598 12599 12600 12601
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
12602
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
12603 12604 12605 12606

    Examples:
        .. code-block:: python

12607
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12608 12609 12610
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12611 12612
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12613
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12614 12615 12616 12617

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12618
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
12649 12650 12651 12652 12653 12654 12655 12656

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12657 12658 12659 12660 12661 12662 12663 12664 12665 12666
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12667 12668


S
shippingwang 已提交
12669
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12670 12671
    """
    **Shuffle Channel Operator**
12672

S
shippingwang 已提交
12673 12674 12675 12676 12677 12678
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12679
    
S
shippingwang 已提交
12680
    .. code-block:: text
12681

S
shippingwang 已提交
12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12710
    Args: 
S
shippingwang 已提交
12711 12712
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12713 12714

    Returns:
S
shippingwang 已提交
12715 12716
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12717 12718

    Raises:
S
shippingwang 已提交
12719
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12720 12721 12722

    Examples:
        .. code-block:: python
12723

12724
            import paddle.fluid as fluid
12725
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
12726
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12727 12728 12729
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12730
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12731 12732 12733 12734 12735 12736 12737 12738 12739

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12740
    return out
S
Add  
shippingwang 已提交
12741 12742


12743
@templatedoc()
D
dengkaipeng 已提交
12744
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12745 12746 12747 12748 12749 12750 12751 12752
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12753
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
12754
        name (str, default None): The name of this layer.
12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12766
            import paddle.fluid as fluid
12767
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
12768
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12781 12782
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12783 12784 12785
    return out


S
sneaxiy 已提交
12786
class PyFuncRegistry(object):
S
sneaxiy 已提交
12787 12788 12789
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12790
        if func is None or not callable(func):
S
sneaxiy 已提交
12791 12792 12793
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12794
        # find named args using reflection
S
sneaxiy 已提交
12795 12796 12797 12798 12799 12800 12801
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12802 12803 12804
        '''
        Why record self here?

M
minqiyang 已提交
12805 12806
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12807
           to find the registered function corresponding
M
minqiyang 已提交
12808
           to :code:`idx`.
S
sneaxiy 已提交
12809

M
minqiyang 已提交
12810 12811
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12812
           whose reference count is 1 would cause
M
minqiyang 已提交
12813
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12814 12815
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12816
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12831 12832 12833 12834 12835 12836 12837 12838 12839
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12840

S
sneaxiy 已提交
12841 12842
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12843 12844

        ret = []
S
sneaxiy 已提交
12845 12846 12847
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12848 12849
                continue

S
sneaxiy 已提交
12850 12851
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12852

S
sneaxiy 已提交
12853 12854 12855
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12856

S
sneaxiy 已提交
12857
        return tuple(ret)
S
sneaxiy 已提交
12858 12859


S
sneaxiy 已提交
12860 12861 12862 12863
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
12864

S
sneaxiy 已提交
12865 12866 12867 12868 12869 12870 12871 12872
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
12873
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
12874

S
sneaxiy 已提交
12875 12876
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
12877 12878 12879 12880
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
12881
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
12882
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
12883 12884
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
12885 12886 12887 12888 12889
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
12890
            should create :code:`out` beforehand.
S
sneaxiy 已提交
12891
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
12892
                                       None means no backward. Default None.
S
sneaxiy 已提交
12893
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
12894
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
12895 12896
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
12897
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
12898 12899 12900

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
12901 12902

    Examples:
M
minqiyang 已提交
12903

S
sneaxiy 已提交
12904 12905 12906 12907 12908
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
12909
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
12910 12911
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
12912
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
12913 12914 12915
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
12916
        >>>
S
sneaxiy 已提交
12917 12918 12919 12920 12921
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
12922
        >>>     print(x)
S
sneaxiy 已提交
12923 12924 12925 12926 12927 12928
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
12929
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
12930 12931
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
12932 12933
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
12934 12935 12936 12937 12938 12939 12940 12941
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
12942
    """
S
sneaxiy 已提交
12943
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12944 12945 12946
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12947
        x = [x]
S
sneaxiy 已提交
12948 12949
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12950

S
sneaxiy 已提交
12951 12952 12953
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12954
        out_list = [out]
S
sneaxiy 已提交
12955
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
12956
        out_list = out
S
sneaxiy 已提交
12957 12958 12959
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12960

S
sneaxiy 已提交
12961 12962
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12963
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12964 12965

    for each_out in out_list:
S
sneaxiy 已提交
12966 12967
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12968 12969
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12970

S
sneaxiy 已提交
12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12986 12987 12988 12989

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12990 12991
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12992 12993 12994
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12995
        })
S
sneaxiy 已提交
12996
    return out
S
sneaxiy 已提交
12997 12998 12999


# For debug usage
S
sneaxiy 已提交
13000 13001 13002 13003
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
13017 13018 13019 13020 13021
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
13034 13035 13036 13037
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126


@templatedoc()
def prroi_pool(input,
               rois,
               output_channels,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
               name=None):
    """
    The precise roi pooling implementation for paddle?https://arxiv.org/pdf/1807.11590.pdf

    Args:
        input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        output_channels (integer): The output's channel.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
        name (str, default None): The name of this operation.

    Returns:
        Variable(Tensor): The shape of the returned Tensor is (num_rois, output_channels, pooled_h, pooled_w), with value type float32,float16..

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.prroi_pool(x, rois, 10, 1.0, 7, 7)
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='prroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13127

M
minqiyang 已提交
13128

M
minqiyang 已提交
13129
def huber_loss(input, label, delta):
13130
    """
M
minqiyang 已提交
13131 13132 13133
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
13134 13135 13136 13137

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
13138
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
13139 13140 13141 13142

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
13143
        huber\_loss = 0.5 * (label - input) * (label - input)
13144 13145 13146 13147 13148 13149 13150


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
13151
        delta (float): The parameter of huber loss, which controls
13152 13153 13154
                       the range of outliers

    Returns:
M
minqiyang 已提交
13155
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
13156 13157 13158 13159

    Examples:
        .. code-block:: python

13160 13161 13162 13163 13164 13165 13166 13167 13168
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

13169
    """
M
minqiyang 已提交
13170
    helper = LayerHelper('huber_loss', **locals())
13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
13182 13183


D
dengkaipeng 已提交
13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

13201
            import paddle.fluid as fluid
D
dengkaipeng 已提交
13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

13247
          import paddle.fluid as fluid
T
Tao Luo 已提交
13248 13249 13250
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
13251
          # edges must be directional
T
Tao Luo 已提交
13252 13253 13254 13255
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
13256
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
13257 13258
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
13259
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
13260
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
13284 13285


C
ceci3 已提交
13286
from .ops import square
C
ceci3 已提交
13287
from .control_flow import equal
C
ceci3 已提交
13288 13289


C
ceci3 已提交
13290 13291 13292
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
13293

C
ceci3 已提交
13294
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
13295 13296

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
13297
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
13298 13299 13300 13301 13302
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
13303 13304
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
13305 13306 13307 13308 13309 13310 13311

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

13312
       import paddle.fluid as fluid
C
ceci3 已提交
13313 13314 13315 13316 13317 13318 13319 13320
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
13321 13322 13323 13324 13325 13326 13327
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
13328
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
13329 13330
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
13331 13332
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
13333 13334 13335 13336
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
13337 13338 13339
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
13340 13341 13342
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
13343 13344


R
ruri 已提交
13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

13374
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
13375 13376 13377 13378 13379 13380 13381 13382 13383

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

13384
            import paddle.fluid as fluid
R
ruri 已提交
13385
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
13436 13437 13438 13439 13440 13441
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
13442 13443 13444 13445 13446 13447 13448 13449
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
13450 13451 13452 13453


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
13454

H
heqiaozhi 已提交
13455
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
13456

H
fix doc  
heqiaozhi 已提交
13457
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
13458 13459 13460
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
13461
    
H
fix doc  
heqiaozhi 已提交
13462
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
13463

H
heqiaozhi 已提交
13464
    Args:
H
fix doc  
heqiaozhi 已提交
13465 13466

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
13467 13468
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
13469
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
13470
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
13471

H
heqiaozhi 已提交
13472
    Returns:
H
fix doc  
heqiaozhi 已提交
13473 13474 13475

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
13476
    Examples:
H
fix doc  
heqiaozhi 已提交
13477

H
heqiaozhi 已提交
13478
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
13479

13480
          import paddle.fluid as fluid
H
heqiaozhi 已提交
13481 13482 13483 13484 13485 13486 13487 13488 13489 13490
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
13491

H
heqiaozhi 已提交
13492 13493 13494 13495 13496 13497 13498 13499 13500
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
13501
    return out
Z
zhoukunsheng 已提交
13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

13520
             import paddle.fluid as fluid
13521 13522 13523
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
13524
             # condition is a tensor [True, False, True]
13525 13526 13527
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
13528 13529

             # condition is a tensor [[True, False], [False, True]]
13530 13531 13532
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
13533 13534

             # condition is a tensor [False, False, False]
13535 13536 13537 13538
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
13539 13540 13541 13542 13543 13544 13545 13546 13547
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

13565 13566 13567
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
13568
          # [1, 0, -1]
13569 13570
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
13583 13584


Z
zhoukunsheng 已提交
13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13689
                    modulated=True,
13690 13691 13692 13693 13694 13695
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13696 13697 13698
   
    
    Deformable Convolution v2: 
13699 13700 13701 13702
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13703 13704

    Deformable Convolution v1:
13705
    
13706 13707 13708 13709 13710 13711 13712
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
    which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
13738
        offset (Variable): The input coordinate offset of deformable convolution layer.
13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13777 13778
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13790 13791
          #deformable conv v2:
         
13792
          import paddle.fluid as fluid
13793 13794 13795 13796
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13797 13798 13799 13800 13801 13802 13803 13804 13805
                                             num_filters=2, filter_size=3, padding=1, modulated=True)

          #deformable conv v1:

          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
                                             num_filters=2, filter_size=3, padding=1, modulated=False)
13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13883 13884 13885

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

14049
        import paddle.fluid as fluid
C
cjt222 已提交
14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
14111 14112


K
Kevin 已提交
14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227
def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
    and :attr:`col` are 1-level LodTensor. The covolution operation is same as conv2d layer with 
    padding. Besides, input.dims[1] should be 1. 

    .. code-block:: text
            
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
            input is a lodTensor: 
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
            
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
        input (Variable): The input shoud be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide height information.
        col (Variable): The col shoud be 1-level LodTensor to provide width information.
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.var_conv_2d(input=x_lod_tensor, 
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


A
Aurelius84 已提交
14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309
def match_matrix_tensor(x,
                        y,
                        channel_num,
                        act=None,
                        param_attr=None,
                        dtype='float32',
                        name=None):
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
    Then the semantic matching matrix of query A and title B is calculated by 
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W` 
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided, 
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
                x.lod =  [[2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
                out.lod =  [[12, 6]]   # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
            out, out_tmp = layers.match_matrix_tensor(x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
    assert len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[
        -1]

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
    w = helper.create_parameter(
        attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False)
    mm_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)
    helper.append_op(
        type='match_matrix_tensor',
        inputs={
            'X': x,
            'Y': y,
            'W': w,
        },
        outputs={"Out": mm_res,
                 "Tmp": tmp_res},
        attrs={'dim_t': channel_num})

    return helper.append_activation(mm_res), tmp_res


14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
    ${comment}
    Args:
        x(Varaible): Input of HardSwish operator.
        threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
        scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
        offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_swish(x)
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out