Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
30d32035
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
30d32035
编写于
5月 30, 2018
作者:
M
mozga-intel
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Withdraw mkldnn mul
上级
654f5d3c
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
8 addition
and
308 deletion
+8
-308
paddle/fluid/operators/mul_mkldnn_op.cc
paddle/fluid/operators/mul_mkldnn_op.cc
+0
-197
paddle/fluid/operators/mul_op.cc
paddle/fluid/operators/mul_op.cc
+0
-39
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+5
-8
python/paddle/fluid/tests/unittests/test_mul_mkldnn_op.py
python/paddle/fluid/tests/unittests/test_mul_mkldnn_op.py
+0
-44
python/paddle/fluid/tests/unittests/test_mul_op.py
python/paddle/fluid/tests/unittests/test_mul_op.py
+2
-16
python/paddle/fluid/tests/unittests/test_operator_desc.py
python/paddle/fluid/tests/unittests/test_operator_desc.py
+1
-4
未找到文件。
paddle/fluid/operators/mul_mkldnn_op.cc
已删除
100644 → 0
浏览文件 @
654f5d3c
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/mul_op.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace
paddle
{
namespace
operators
{
using
paddle
::
framework
::
Tensor
;
using
paddle
::
platform
::
MKLDNNDeviceContext
;
template
<
typename
Format
=
mkldnn
::
memory
::
format
>
mkldnn
::
memory
::
desc
type
(
const
std
::
vector
<
int
>&
dims
,
Format
&&
f
)
{
return
platform
::
MKLDNNMemDesc
(
dims
,
mkldnn
::
memory
::
data_type
::
f32
,
f
);
}
template
<
typename
T
>
class
MulMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
auto
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
weight
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
PADDLE_ENFORCE
(
input
->
dims
().
size
()
&
(
2
|
4
),
"Input must be with 2 or 4 dimensions, i.e. NC or NCHW"
);
PADDLE_ENFORCE
(
weight
->
dims
().
size
()
&
(
2
|
4
),
"Weights must be with 2 or 4 dimensions, i.e. OI or OIHW"
);
std
::
vector
<
int
>
w_tz
=
paddle
::
framework
::
vectorize2int
(
weight
->
dims
());
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
auto
src_md
=
src_tz
.
size
()
!=
2
?
type
(
src_tz
,
mkldnn
::
memory
::
format
::
nchw
)
:
type
({
src_tz
[
0
],
src_tz
[
1
]},
mkldnn
::
memory
::
format
::
nc
);
auto
dst_md
=
type
({
src_tz
[
0
],
w_tz
[
1
]},
mkldnn
::
memory
::
format
::
nc
);
auto
weights_md
=
src_tz
.
size
()
!=
2
?
type
({
w_tz
[
1
],
src_tz
[
1
],
src_tz
[
2
],
src_tz
[
3
]},
mkldnn
::
memory
::
format
::
oihw
)
:
type
({
w_tz
[
1
],
src_tz
[
1
]},
mkldnn
::
memory
::
format
::
oi
);
auto
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
std
::
string
key
=
ctx
.
op
().
Output
(
"Out"
);
const
std
::
string
key_fc_pd
=
key
+
"@mul_pd"
;
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
w_data
=
weight
->
data
<
T
>
();
auto
dst_memory
=
mkldnn
::
memory
({
dst_md
,
mkldnn_engine
},
output_data
);
auto
src_memory
=
mkldnn
::
memory
({
src_md
,
mkldnn_engine
},
platform
::
to_void_cast
(
input_data
));
auto
weights_memory
=
mkldnn
::
memory
({
weights_md
,
mkldnn_engine
},
platform
::
to_void_cast
(
w_data
));
auto
pd
=
platform
::
MKLDNNFwdPrimitiveDesc
<
mkldnn
::
inner_product_forward
>
(
mkldnn_engine
,
src_md
,
weights_md
,
dst_md
);
dev_ctx
.
SetBlob
(
key_fc_pd
,
pd
);
auto
forward
=
mkldnn
::
inner_product_forward
(
*
pd
,
src_memory
,
weights_memory
,
dst_memory
);
std
::
vector
<
mkldnn
::
primitive
>
pipeline
=
{
forward
};
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
};
template
<
typename
T
>
class
MulMKLDNNGradOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
auto
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
Tensor
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
w
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
const
Tensor
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
Tensor
*
w_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
std
::
string
key
=
ctx
.
op
().
Input
(
"Out"
);
const
std
::
string
key_fc_pd
=
key
+
"@mul_pd"
;
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
w_data
=
w
->
data
<
T
>
();
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
T
*
input_grad_data
=
nullptr
;
T
*
w_grad_data
=
nullptr
;
if
(
input_grad
)
{
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
w_grad
)
{
w_grad_data
=
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
w_tz
=
paddle
::
framework
::
vectorize2int
(
w
->
dims
());
auto
src_md
=
src_tz
.
size
()
!=
2
?
type
(
src_tz
,
mkldnn
::
memory
::
format
::
nchw
)
:
type
({
src_tz
[
0
],
src_tz
[
1
]},
mkldnn
::
memory
::
format
::
nc
);
auto
dst_md
=
type
({
src_tz
[
0
],
w_tz
[
1
]},
mkldnn
::
memory
::
format
::
nc
);
auto
weights_md
=
src_tz
.
size
()
!=
2
?
type
({
w_tz
[
1
],
src_tz
[
1
],
src_tz
[
2
],
src_tz
[
3
]},
mkldnn
::
memory
::
format
::
oihw
)
:
type
({
w_tz
[
1
],
src_tz
[
1
]},
mkldnn
::
memory
::
format
::
oi
);
auto
src_memory
=
mkldnn
::
memory
({
src_md
,
mkldnn_engine
},
platform
::
to_void_cast
(
input_data
));
auto
dst_memory
=
mkldnn
::
memory
({
dst_md
,
mkldnn_engine
},
platform
::
to_void_cast
(
out_grad_data
));
auto
weight_memory
=
mkldnn
::
memory
({
weights_md
,
mkldnn_engine
},
platform
::
to_void_cast
(
w_data
));
auto
pd
=
std
::
static_pointer_cast
<
mkldnn
::
inner_product_forward
::
primitive_desc
>
(
dev_ctx
.
GetBlob
(
key_fc_pd
));
PADDLE_ENFORCE
(
pd
!=
nullptr
,
"Fail to find pd in device context"
);
if
(
w_grad
)
{
auto
weights_grad_memory
=
mkldnn
::
memory
(
{
weights_md
,
mkldnn_engine
},
platform
::
to_void_cast
(
w_grad_data
));
auto
bwd_weight_pd
=
platform
::
MKLDNNBwdPrimitiveDesc
<
mkldnn
::
inner_product_backward_weights
>
(
mkldnn_engine
,
*
pd
,
src_md
,
weights_md
,
dst_md
);
auto
bwd_weights_prim
=
mkldnn
::
inner_product_backward_weights
(
bwd_weight_pd
,
src_memory
,
dst_memory
,
weights_grad_memory
);
std
::
vector
<
mkldnn
::
primitive
>
pipeline
{
bwd_weights_prim
};
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
if
(
input_grad
)
{
auto
src_grad_memory
=
mkldnn
::
memory
(
{
src_md
,
mkldnn_engine
},
platform
::
to_void_cast
(
input_grad_data
));
auto
bwd_data_pd
=
platform
::
MKLDNNBwdPrimitiveDesc
<
mkldnn
::
inner_product_backward_data
>
(
mkldnn_engine
,
*
pd
,
src_md
,
weights_md
,
dst_md
);
auto
bwd_data_prim
=
mkldnn
::
inner_product_backward_data
(
bwd_data_pd
,
dst_memory
,
weight_memory
,
src_grad_memory
);
std
::
vector
<
mkldnn
::
primitive
>
pipeline
{
bwd_data_prim
};
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_KERNEL
(
mul
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
paddle
::
operators
::
MulMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL
(
mul_grad
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
paddle
::
operators
::
MulMKLDNNGradOpKernel
<
float
>
);
paddle/fluid/operators/mul_op.cc
浏览文件 @
30d32035
...
...
@@ -16,10 +16,6 @@ limitations under the License. */
#include <string>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -76,22 +72,6 @@ class MulOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_dims
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
private:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kPlain
};
#ifdef PADDLE_WITH_MKLDNN
if
(
library
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library
=
framework
::
LibraryType
::
kMKLDNN
;
}
#endif
framework
::
DataLayout
layout
{
framework
::
DataLayout
::
kAnyLayout
};
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
(),
layout
,
library
);
}
};
class
MulOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -120,9 +100,6 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
)DOC"
)
.
SetDefault
(
1
)
.
EqualGreaterThan
(
1
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
int
>
(
"y_num_col_dims"
,
R"DOC((int, default 1), The mul_op can take tensors with more than two,
...
...
@@ -177,22 +154,6 @@ class MulGradOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
y_grad_name
,
y_dims
);
}
}
private:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kPlain
};
#ifdef PADDLE_WITH_MKLDNN
if
(
library
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library
=
framework
::
LibraryType
::
kMKLDNN
;
}
#endif
framework
::
DataLayout
layout
{
framework
::
DataLayout
::
kAnyLayout
};
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
(),
layout
,
library
);
}
};
}
// namespace operators
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
30d32035
...
...
@@ -177,11 +177,8 @@ def fc(input,
inputs
=
{
"X"
:
input_var
,
"Y"
:
w
},
outputs
=
{
"Out"
:
tmp
},
attrs
=
{
"x_num_col_dims"
:
num_flatten_dims
,
"y_num_col_dims"
:
1
,
"use_mkldnn"
:
use_mkldnn
})
attrs
=
{
"x_num_col_dims"
:
num_flatten_dims
,
"y_num_col_dims"
:
1
})
mul_results
.
append
(
tmp
)
if
len
(
mul_results
)
==
1
:
...
...
@@ -3929,10 +3926,10 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this layer) on a rectilinear 2D grid.
For details, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
Args:
input (Variable): The input tensor of bilinear interpolation,
This is a 4-D tensor of the shape
...
...
@@ -3950,7 +3947,7 @@ def upsampling_bilinear2d(input, out_shape=None, scale=None, name=None):
Returns:
out (Variable): The output is a 4-D tensor of the shape
(num_batches, channls, out_h, out_w).
Examples:
.. code-block:: python
...
...
python/paddle/fluid/tests/unittests/test_mul_mkldnn_op.py
已删除
100644 → 0
浏览文件 @
654f5d3c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
test_mul_op
import
TestMulOp
,
TestMulOp2
,
TestFP16MulOp1
,
TestFP16MulOp2
class
TestMKLDNNMulOp
(
TestMulOp
):
def
init_op_test
(
self
):
super
(
TestMKLDNNMulOp
,
self
).
setUp
()
self
.
attrs
=
{
"use_mkldnn"
:
True
}
class
TestMKLDNNMulOp2
(
TestMulOp2
):
def
init_op_test
(
self
):
super
(
TestMKLDNNMulOp2
,
self
).
setUp
()
self
.
attrs
=
{
"use_mkldnn"
:
True
}
class
TestMKLDNNFP16MulOp1
(
TestFP16MulOp1
):
def
init_op_test
(
self
):
super
(
TestMKLDNNFP16MulOp1
,
self
).
setUp
()
self
.
attrs
=
{
"use_mkldnn"
:
True
}
class
TestMKLDNNFP16MulOp2
(
TestFP16MulOp2
):
def
init_op_test
(
self
):
super
(
TestMKLDNNFP16MulOp2
,
self
).
setUp
()
self
.
attrs
=
{
"use_mkldnn"
:
True
}
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_mul_op.py
浏览文件 @
30d32035
...
...
@@ -21,12 +21,10 @@ from op_test import OpTest
class
TestMulOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
use_mkldnn
=
False
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
84
,
100
)).
astype
(
"float32"
)
}
self
.
attrs
=
{
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
np
.
dot
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
...
...
@@ -47,16 +45,11 @@ class TestMulOp(OpTest):
class
TestMulOp2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
use_mkldnn
=
False
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
15
,
4
,
12
,
10
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
4
,
30
,
8
,
2
,
9
)).
astype
(
"float32"
)
}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
}
result
=
np
.
dot
(
self
.
inputs
[
'X'
].
reshape
(
15
*
4
,
12
*
10
),
self
.
inputs
[
'Y'
].
reshape
(
4
*
30
,
8
*
2
*
9
))
result
=
result
.
reshape
(
15
,
4
,
8
,
2
,
9
)
...
...
@@ -80,11 +73,9 @@ class TestMulOp2(OpTest):
class
TestFP16MulOp1
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
use_mkldnn
=
False
x
=
np
.
random
.
random
((
32
,
84
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
84
,
100
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
uint16
),
'Y'
:
y
.
view
(
np
.
uint16
)}
self
.
attrs
=
{
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
np
.
dot
(
x
,
y
)}
def
test_check_output
(
self
):
...
...
@@ -97,15 +88,10 @@ class TestFP16MulOp1(OpTest):
class
TestFP16MulOp2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
use_mkldnn
=
False
x
=
np
.
random
.
random
((
15
,
4
,
12
,
10
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
4
,
30
,
8
,
2
,
9
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
uint16
),
'Y'
:
y
.
view
(
np
.
uint16
)}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
}
result
=
np
.
dot
(
x
.
reshape
(
15
*
4
,
12
*
10
),
y
.
reshape
(
4
*
30
,
8
*
2
*
9
))
result
=
result
.
reshape
(
15
,
4
,
8
,
2
,
9
)
...
...
python/paddle/fluid/tests/unittests/test_operator_desc.py
浏览文件 @
30d32035
...
...
@@ -63,10 +63,7 @@ class TestOperator(unittest.TestCase):
self
.
assertEqual
(
mul_op
.
output
(
"Out"
),
[
"mul.out"
])
self
.
assertEqual
(
set
(
mul_op
.
attr_names
),
set
([
"x_num_col_dims"
,
"y_num_col_dims"
,
"use_mkldnn"
,
"op_role"
,
"op_role_var"
]))
set
([
"x_num_col_dims"
,
"y_num_col_dims"
,
"op_role"
,
"op_role_var"
]))
self
.
assertEqual
(
mul_op
.
has_attr
(
"x_num_col_dims"
),
True
)
self
.
assertEqual
(
mul_op
.
attr_type
(
"x_num_col_dims"
),
core
.
AttrType
.
INT
)
self
.
assertEqual
(
mul_op
.
attr
(
"x_num_col_dims"
),
1
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录