nn.py 526.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
L
lvmengsi 已提交
64
    'instance_norm',
H
heqiaozhi 已提交
65
    'data_norm',
X
Xin Pan 已提交
66 67 68 69 70 71
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
72
    'sequence_unpad',
X
Xin Pan 已提交
73 74 75 76 77 78
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
79 80
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
81 82
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
83
    'sequence_slice',
X
Xin Pan 已提交
84 85 86 87 88 89 90 91 92 93 94 95
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
96
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
97 98 99 100 101
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
102
    'group_norm',
D
dengkaipeng 已提交
103
    'spectral_norm',
X
Xin Pan 已提交
104 105 106 107 108 109 110 111
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
112
    'lod_append',
X
Xin Pan 已提交
113 114 115 116 117
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
118
    'roi_align',
X
Xin Pan 已提交
119 120 121 122
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
123
    'resize_trilinear',
124
    'resize_nearest',
X
Xin Pan 已提交
125
    'gather',
126
    'gather_nd',
X
Xin Pan 已提交
127
    'scatter',
128 129
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
130 131 132 133
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
134
    'selu',
X
Xin Pan 已提交
135 136
    'log',
    'crop',
137
    'crop_tensor',
X
Xin Pan 已提交
138
    'rank_loss',
M
minqiyang 已提交
139
    'margin_rank_loss',
X
Xin Pan 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
156
    'unique',
157
    'unique_with_counts',
X
Xin Pan 已提交
158 159 160 161 162 163 164 165 166 167
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
168 169
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
170 171 172 173 174 175
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
176
    'strided_slice',
X
Xin Pan 已提交
177
    'shape',
Z
zhoukunsheng 已提交
178
    'rank',
Z
zhoukunsheng 已提交
179
    'size',
X
Xin Pan 已提交
180 181 182 183 184 185 186 187 188 189
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
190
    'space_to_depth',
W
whs 已提交
191
    'affine_grid',
S
sneaxiy 已提交
192
    'sequence_reverse',
193
    'affine_channel',
B
barrierye 已提交
194
    'similarity_focus',
M
minqiyang 已提交
195
    'hash',
D
dengkaipeng 已提交
196
    'grid_sampler',
G
gmcather 已提交
197 198
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
199
    'bilinear_tensor_product',
C
chengduo 已提交
200 201
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
202
    'lstm',
S
shippingwang 已提交
203
    'shuffle_channel',
204
    'temporal_shift',
S
sneaxiy 已提交
205
    'py_func',
206
    'psroi_pool',
207
    'prroi_pool',
H
heqiaozhi 已提交
208
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
209
    'huber_loss',
D
dengkaipeng 已提交
210
    'kldiv_loss',
C
ceci3 已提交
211
    'npair_loss',
R
ruri 已提交
212
    'pixel_shuffle',
213
    'fsp_matrix',
H
heqiaozhi 已提交
214
    'continuous_value_model',
Z
zhoukunsheng 已提交
215
    'where',
Z
zhoukunsheng 已提交
216
    'sign',
217
    'deformable_conv',
218
    'unfold',
C
cjt222 已提交
219
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
220
    'filter_by_instag',
221
    'shard_index',
H
huangjun12 已提交
222
    'hard_swish',
R
ruri 已提交
223
    'mse_loss',
Y
Yu Yang 已提交
224 225
]

J
jerrywgz 已提交
226 227
kIgnoreIndex = -100

Y
Yu Yang 已提交
228 229 230 231 232 233 234

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
235
       name=None):
Y
Yu Yang 已提交
236
    """
237
    **Fully Connected Layer**
Y
Yu Yang 已提交
238

239
    This function creates a fully connected layer in the network. It can take
240
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
241
    Args in detail). It creates a variable called weights for each input tensor,
242 243 244 245
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
246
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
247 248
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
249

250
    When the input is single tensor:
C
caoying03 已提交
251

252 253 254 255 256
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
257 258 259

    .. math::

260
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
261 262 263

    In the above equation:

264 265 266
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
267
    * :math:`b`: The bias parameter created by this layer (if needed).
268
    * :math:`Act`: The activation function.
C
caoying03 已提交
269
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
270

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
289
    Args:
R
ranqiu 已提交
290 291 292 293 294 295 296 297 298 299
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
300
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
301 302 303 304
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
305 306
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
307 308
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
309

310
    Returns:
F
fengjiayi 已提交
311
        Variable: The transformation result.
312 313

    Raises:
C
caoying03 已提交
314
        ValueError: If rank of the input tensor is less than 2.
315 316 317 318

    Examples:
        .. code-block:: python

319
          import paddle.fluid as fluid
320
          # when input is single tensor
F
fengjiayi 已提交
321
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
322
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
323 324 325 326 327

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
328
    """
C
caoying03 已提交
329
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
330 331 332 333

    dtype = helper.input_dtype()

    mul_results = []
334 335
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
336 337 338
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
339

Y
Yu Yang 已提交
340
        w = helper.create_parameter(
341
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
342
        tmp = helper.create_variable_for_type_inference(dtype)
343
        helper.append_op(
344 345 346
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
347
            outputs={"Out": tmp},
M
mozga-intel 已提交
348 349
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
350 351 352 353
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
354
    else:
X
Xin Pan 已提交
355
        pre_bias = helper.create_variable_for_type_inference(dtype)
356
        helper.append_op(
357 358 359
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
360
            attrs={"use_mkldnn": False})
361 362 363 364
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
365 366


H
HaoRen 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


453 454 455
def embedding(input,
              size,
              is_sparse=False,
456
              is_distributed=False,
457 458 459
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
460
    """
461 462
    **Embedding Layer**

463
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
464 465
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
466 467 468

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
469 470

    Args:
471
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
472
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
473 474 475 476
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
477
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
478 479 480 481 482 483 484 485
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
486

487 488 489
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
490

491 492
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
493

B
bdzhuxiaoning 已提交
494 495 496
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
497 498 499
    """

    helper = LayerHelper('embedding', **locals())
500
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
501 502
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
503 504
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
505
    tmp = helper.create_variable_for_type_inference(dtype)
506 507
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
508 509 510 511 512
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
513 514 515
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
516
            'remote_prefetch': remote_prefetch,
517 518
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
519 520 521
    return tmp


H
hutuxian 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


W
wopeizl 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
586

W
wopeizl 已提交
587 588 589 590 591 592 593 594 595 596 597
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
598

W
wopeizl 已提交
599 600 601 602
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
603

W
wopeizl 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
640
            
641
            import paddle.fluid as fluid
642 643
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
644
            hidden_dim = 512
645 646 647 648 649 650
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
651
                                           bias_attr=False)
652

W
wopeizl 已提交
653 654 655
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
656
    assert in_dygraph_mode(
657
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
701 702


P
phlrain 已提交
703 704 705 706 707 708
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
709
         dropout_prob=0.0,
P
phlrain 已提交
710 711 712 713 714
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
715
    """
P
phlrain 已提交
716
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
717 718

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
719
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
720 721
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
722
    .. math::
M
minqiyang 已提交
723 724 725 726 727 728 729

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
730
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
731 732 733 734

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
735 736

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
737 738 739 740 741 742
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
743 744 745
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
746
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
747

M
minqiyang 已提交
748
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
749 750 751 752 753
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
754
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
755 756 757 758 759
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
760
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
761 762
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
763 764
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
765 766 767 768 769 770
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
771
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
772

L
liuhongyu 已提交
773 774

    Returns:
M
minqiyang 已提交
775 776
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
777
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
778

H
haowang101779990 已提交
779 780 781 782
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
783
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
784 785
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
786
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
787 788 789 790


    Examples:
        .. code-block:: python
791
            
792 793 794
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

795 796 797 798 799
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
800 801 802 803 804 805
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
806 807 808 809 810
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
811 812 813 814
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
815 816 817
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
877 878 879 880 881 882 883 884 885 886
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
887
                  proj_activation='tanh',
888
                  dtype='float32',
X
xuezhong 已提交
889 890 891 892 893
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
894 895 896
    """
    **Dynamic LSTMP Layer**

897 898 899 900 901 902
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
903 904 905 906 907

    The formula is as follows:

    .. math::

908
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
909

910
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
911

912
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
913

914
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
915

916
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
917

918
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
919

920
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
921

Y
Yibing Liu 已提交
922 923 924 925 926 927
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
928
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
929
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
930
          bias vector).
Y
Yibing Liu 已提交
931 932 933
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
934
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
935
    * :math:`h`: The hidden state.
936
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
937 938
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
939
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
940
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
941
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
942 943
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
944 945 946 947

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
948

Y
Yibing Liu 已提交
949 950 951 952 953 954 955 956 957 958 959 960
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
961
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
962 963
                               hidden-hidden weight and projection weight.

964 965
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
966 967
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
968 969
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
970
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
971 972 973 974 975

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
976
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
977 978 979 980 981 982
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
983
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
984 985 986
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
987
                                - The shape is (1 x 7D).
C
chengduo 已提交
988 989 990 991 992

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
993 994 995 996 997 998 999 1000 1001
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
1002
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
1003 1004
                              default "tanh".
        proj_activation(str): The activation for projection output.
1005
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
1006
                              default "tanh".
Y
Yibing Liu 已提交
1007
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
1008 1009
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
1021 1022

    Returns:
1023 1024 1025 1026
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
1027 1028

    Examples:
1029

Y
Yibing Liu 已提交
1030 1031
        .. code-block:: python

1032
            import paddle.fluid as fluid
1033 1034 1035 1036
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
1037
            hidden_dim, proj_dim = 512, 256
1038
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
1039
                                     act=None, bias_attr=None)
1040 1041 1042
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
1043 1044 1045 1046
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
1047
    """
1048

L
lujun 已提交
1049
    assert in_dygraph_mode(
1050 1051
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
1052
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
1053
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1054
    size = size // 4
Y
Yibing Liu 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1065 1066 1067 1068 1069 1070
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1086

X
xuezhong 已提交
1087 1088 1089 1090 1091
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1092 1093
    helper.append_op(
        type='lstmp',
1094
        inputs=inputs,
Y
Yibing Liu 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1104 1105
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1115 1116 1117 1118 1119 1120 1121
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1122 1123
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1124
    """
1125
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1126

1127 1128 1129
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1130

G
guosheng 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1140

G
guosheng 已提交
1141
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1142

Q
Qiao Longfei 已提交
1143 1144 1145

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1158
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1159 1160
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1161 1162 1163 1164
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1165
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1166 1167

    Args:
1168 1169
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1170
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1171
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1172 1173
            is the hidden size.
        size(int): The dimension of the gru cell.
1174
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1175 1176
            hidden-hidden weight matrix. Note:

1177
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1178
              :math:`D` is the hidden size.
1179
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1180
              The first part are weights of the update gate and reset gate with
1181
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1182
              candidate hidden state with shape :math:`(D \\times D)`.
1183 1184 1185 1186 1187

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1188
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1189
            the bias in the update gate, reset gate and candidate calculations.
1190 1191 1192
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1193 1194
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1195
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1196 1197 1198
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1199
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1200
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1201 1202 1203 1204
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1205 1206

    Returns:
G
guosheng 已提交
1207
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1208
            and sequence length is the same with the input.
1209

G
guosheng 已提交
1210
    Examples:
1211

G
guosheng 已提交
1212 1213
        .. code-block:: python

1214 1215
            import paddle.fluid as fluid

1216 1217 1218 1219
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1220
            hidden_dim = 512
1221
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1222
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1223 1224
    """

L
lujun 已提交
1225
    assert in_dygraph_mode(
1226 1227
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1228 1229 1230 1231 1232 1233 1234
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1235
    batch_size = input.shape[0]
G
guosheng 已提交
1236
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1237
    if h_0:
G
guosheng 已提交
1238
        assert h_0.shape == (
Y
Yancey 已提交
1239 1240 1241
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1242

X
Xin Pan 已提交
1243 1244 1245 1246
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1260 1261
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1262 1263 1264 1265
        })
    return hidden


Y
Yu Yang 已提交
1266 1267 1268
def gru_unit(input,
             hidden,
             size,
1269 1270
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1271
             activation='tanh',
Q
Qiao Longfei 已提交
1272 1273
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1274
    """
1275 1276 1277
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1278
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1279
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1280

1281 1282
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1283

1284
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1285

1286
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1303 1304

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1305 1306 1307
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1308 1309
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1310 1311
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1312 1313 1314
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1315 1316 1317

    Args:
        input (Variable): The fc transformed input value of current step.
1318
        hidden (Variable): The hidden value of gru unit from previous step.
1319
        size (integer): The input dimension value.
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1334
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1335
            the bias in the update gate, reset gate and candidate calculations.
1336 1337 1338
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1339 1340
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1341 1342 1343 1344
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1345

1346 1347 1348 1349 1350 1351
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1376
    size = size // 3
Y
Yu Yang 已提交
1377 1378

    # create weight
1379 1380
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1381

X
Xin Pan 已提交
1382 1383 1384
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1385
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1386
    # create bias
1387
    if helper.bias_attr:
Y
Yu Yang 已提交
1388 1389 1390
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1391
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1392 1393 1394

    helper.append_op(
        type='gru_unit',
1395
        inputs=inputs,
Y
Yu Yang 已提交
1396 1397 1398 1399 1400 1401
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1402 1403
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1404 1405 1406 1407 1408
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1409
@templatedoc()
1410
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
1411 1412 1413 1414 1415 1416 1417 1418
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
1419
        Length(${length_type}): ${length_comment}
1420
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
1421 1422

    Returns:
D
dzhwinter 已提交
1423 1424 1425
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1426

J
JesseyXujin 已提交
1427 1428 1429
    Examples:
        .. code-block:: python

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data = fluid.layers.data(name='input_data', shape=[10], dtype='float32', lod_level=1)
                label = fluid.layers.data(name='label', shape=[1], dtype='int', lod_level=1)
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                input_data2 = fluid.layers.data(name='input_data2', shape=[10,10], dtype='float32')
                label2 = fluid.layers.data(name='label2', shape=[10,1], dtype='int')
                label_length = fluid.layers.data(name='length', shape=[1], dtype='int')
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
1470
                     name='crfw',
1471 1472 1473 1474 1475 1476
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
1477

1478 1479 1480 1481 1482 1483 1484 1485
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
            ll=np.array([[3,3,4,2]])
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}

            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
1486 1487 1488 1489
            
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
Y
yuyang18 已提交
1490
    """
Y
Yu Yang 已提交
1491 1492 1493 1494 1495 1496
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1497 1498 1499 1500 1501 1502 1503 1504
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
1505 1506 1507 1508 1509 1510 1511
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
        this_inputs['length'] = [length]
Y
Yu Yang 已提交
1512 1513
    helper.append_op(
        type='linear_chain_crf',
1514
        inputs=this_inputs,
Y
Yu Yang 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1525 1526 1527 1528
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1529

W
wopeizl 已提交
1530 1531
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1532

W
wopeizl 已提交
1533
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1534

W
wopeizl 已提交
1535
        label(${label_type}): ${label_comment}
1536

W
wopeizl 已提交
1537 1538
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1539

W
wopeizl 已提交
1540 1541
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1542

1543
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1544 1545 1546 1547 1548 1549 1550
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1551 1552 1553 1554 1555 1556 1557 1558
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1559
                "Transition": transition,
W
wopeizl 已提交
1560 1561
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1562

W
wopeizl 已提交
1563
    return viterbi_path
Y
Yu Yang 已提交
1564 1565


Y
yi.wu 已提交
1566
@templatedoc()
F
fengjiayi 已提交
1567
def cos_sim(X, Y):
Y
Yu Yang 已提交
1568
    """
Y
yi.wu 已提交
1569 1570 1571
    ${comment}

    Args:
1572 1573
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1574

Y
yi.wu 已提交
1575
    Returns:
1576
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1577 1578 1579 1580

    Examples:
        .. code-block:: python

1581
            import paddle.fluid as fluid
L
lvmengsi 已提交
1582 1583 1584
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1585
    """
F
fengjiayi 已提交
1586
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1587 1588 1589
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1600 1601 1602 1603 1604
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1605
            dropout_implementation="downgrade_in_infer"):
1606 1607 1608 1609 1610
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1611
    training. The dropout operator randomly sets (according to the given dropout
1612 1613 1614
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1615 1616
    dropout op can be removed from the program to make the program more efficient.

1617
    Args:
1618 1619
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1620 1621 1622 1623 1624 1625 1626
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1627 1628
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1629
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1630 1631

                                           - train: out = input * mask
C
ceci3 已提交
1632
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1633 1634 1635

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1636
                                        2. upscale_in_train, upscale the outcome at training time
1637

H
haowang101779990 已提交
1638 1639
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1640

H
haowang101779990 已提交
1641 1642
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1643

M
minqiyang 已提交
1644

1645
    Returns:
1646
        Variable: A tensor variable is the shape with `x`.
1647 1648

    Examples:
1649

1650 1651
        .. code-block:: python

1652
            import paddle.fluid as fluid
1653 1654
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1655 1656
    """

F
fengjiayi 已提交
1657
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1658 1659
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1660
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1661 1662 1663 1664

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1665 1666 1667 1668 1669
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1670 1671 1672 1673
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1674
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1675
            'dropout_implementation': dropout_implementation,
1676
        })
1677 1678 1679
    return out


J
jerrywgz 已提交
1680
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1681
    """
Y
Yibing Liu 已提交
1682 1683
    **Cross Entropy Layer**

1684 1685 1686
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1687 1688

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1689
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1690

Y
Yibing Liu 已提交
1691
        .. math::
Y
yangyaming 已提交
1692

Y
Yibing Liu 已提交
1693 1694 1695
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1696 1697
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1698 1699 1700 1701 1702

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1703
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1704 1705 1706
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1707 1708
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1709
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1710

Y
Yibing Liu 已提交
1711
    Args:
Y
yangyaming 已提交
1712
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1713 1714 1715 1716
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1717
        label (Variable|list): the ground truth which is a 2-D tensor. When
1718 1719 1720 1721
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1722
        soft_label (bool): a flag indicating whether to
1723
                                           interpretate the given labels as soft
1724
                                           labels. Default: `False`.
M
minqiyang 已提交
1725 1726
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1727
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1728 1729 1730 1731 1732

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1733 1734 1735
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1736

H
haowang101779990 已提交
1737 1738
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1739

H
haowang101779990 已提交
1740 1741
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1742 1743 1744 1745

    Examples:
        .. code-block:: python

1746
          import paddle.fluid as fluid
L
lvmengsi 已提交
1747 1748 1749 1750
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1751
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1752
    """
S
sneaxiy 已提交
1753 1754
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1755
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1756
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1757 1758 1759 1760 1761
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1762 1763
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1764 1765 1766
    return out


S
sneaxiy 已提交
1767 1768 1769 1770
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1771
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1772 1773 1774 1775 1776
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1777
                 'MatchX': [match_x],
S
sneaxiy 已提交
1778 1779 1780 1781 1782
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1783
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1784
    """
1785
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1786

1787
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1788
    The loss at a given point in one session is defined as:
1789 1790 1791

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1792 1793

    Learn more details by reading paper <session-based recommendations with recurrent
1794
    neural networks>.
F
frankwhzhang 已提交
1795

1796 1797 1798 1799 1800 1801
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1802 1803
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1804 1805 1806
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1807 1808 1809
    Examples:
        .. code-block:: python

1810 1811 1812 1813 1814 1815 1816
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1817
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1818
    """
1819 1820 1821 1822 1823
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1824
                'Label': [label]},
1825 1826 1827 1828
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1829
def square_error_cost(input, label):
Y
Yu Yang 已提交
1830
    """
1831 1832
    **Square error cost layer**

1833 1834
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1849 1850
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1851 1852

    Returns:
G
guosheng 已提交
1853
        Variable: The tensor variable storing the element-wise squared error \
1854
                  difference of input and label.
1855 1856 1857 1858

    Examples:
        .. code-block:: python

1859
          import paddle.fluid as fluid
R
ruri 已提交
1860 1861 1862
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1863

Y
Yu Yang 已提交
1864
    """
F
fengjiayi 已提交
1865
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1866
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1867 1868 1869 1870 1871 1872
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1873
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1874
    helper.append_op(
F
fengjiayi 已提交
1875 1876
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1877 1878 1879
    return square_out


Y
yi.wu 已提交
1880
@templatedoc()
Y
Yu Yang 已提交
1881 1882 1883 1884
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1885 1886
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1887
    """
Y
yi.wu 已提交
1888
    **Chunk Evaluator**
Y
yi.wu 已提交
1889

Y
yangyaming 已提交
1890
    This function computes and outputs the precision, recall and
1891
    F1-score of chunk detection.
Y
yi.wu 已提交
1892

M
minqiyang 已提交
1893
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1894
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1895 1896 1897 1898 1899 1900

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1901

Y
yi.wu 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1927

Y
yi.wu 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1952
    Args:
1953 1954 1955 1956 1957
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1958
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1959

Y
yi.wu 已提交
1960
    Returns:
Y
update  
yi.wu 已提交
1961 1962 1963
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1964

Y
yi.wu 已提交
1965 1966 1967
    Examples:
        .. code-block:: python

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1979
            crf = fluid.layers.linear_chain_crf(
1980
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1981
            crf_decode = fluid.layers.crf_decoding(
1982
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1983 1984 1985 1986 1987
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1988
    """
F
fengjiayi 已提交
1989
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1990 1991

    # prepare output
X
Xin Pan 已提交
1992 1993 1994 1995 1996 1997 1998
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1999

2000 2001 2002 2003 2004
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
2005 2006
    helper.append_op(
        type="chunk_eval",
2007
        inputs=this_input,
Y
Yu Yang 已提交
2008 2009 2010
        outputs={
            "Precision": [precision],
            "Recall": [recall],
2011 2012 2013 2014
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
2015 2016 2017
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
2018 2019
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
2020
        })
2021 2022
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
2023 2024


2025
@templatedoc()
Y
Yu Yang 已提交
2026 2027 2028 2029
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
2030 2031
                  padding=True,
                  padding_start=None,
Y
Yu Yang 已提交
2032 2033
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
2034 2035
                  act=None,
                  name=None):
Y
Yu Yang 已提交
2036
    """
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
    The sequence_conv receives input sequences with variable length and other convolutional
    configuration parameters for the filter and stride to apply the convolution operation.
    It fills all-zero padding data on both sides of the sequence by default to ensure that
    the output is the same length as the input. You can customize the padding behavior by
    configuring the parameter :attr:`padding\_start`.
    
    **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.

    .. code-block:: text

            Here we'll illustrate the details of the padding operation:
            For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
            Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
            Besides, for the sake of simplicity, we assume M=1 and N=2.
            X = [[a1, a2;
                  b1, b2;
                  c1, c2]
                 [d1, d2]]

            This is to say that input (X) has 4 words and the dimension of each word
            representation is 2.

            * Case1:

                If padding_start is -1 and filter_size is 3.
                The length of padding data is calculated as follows:
                up_pad_len = max(0, -padding_start) = 1
                down_pad_len = max(0, filter_size + padding_start - 1) = 1

                The output of the input sequence after padding is:
                data_aftet_padding = [[0,  0,  a1, a2, b1, b2;
                                       a1, a2, b1, b2, c1, c2;
                                       b1, b2, c1, c2, 0,  0 ]
                                      [0,  0,  d1, d2, 0,  0 ]]

                It will be multiplied by the filter weight to get the final output.
2073 2074 2075

    Args:
        input (Variable): ${x_comment}
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
        num_filters (int): the number of filters.
        filter_size (int): the height of filter, the width is hidden size by default.
        filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
        padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
            future. Currently, it will always pad input to make sure the length of the output is
            the same as input whether :attr:`padding` is set true or false. Because the length of
            input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
            result to not be computed correctly. These padding data will not be trainable or updated
            while trainnig. 
        padding_start (int|None): It is used to indicate the start index for padding the input
            sequence, which can be negative. The negative number means to pad
            :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
            The positive number means to skip :attr:`padding_start` time-steps of each instance,
            and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
            at the end of the sequence to ensure that the output is the same length as the input.
            If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
            on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
            is padded at the end of each input sequence.
C
chengduo 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
2107

2108 2109
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
2110 2111

    Examples:
2112

B
bdzhuxiaoning 已提交
2113 2114 2115
        .. code-block:: python

             import paddle.fluid as fluid
2116

B
bdzhuxiaoning 已提交
2117
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
2118
             x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
Y
Yu Yang 已提交
2119 2120
    """

L
lujun 已提交
2121
    assert not in_dygraph_mode(), (
2122
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
2123 2124 2125 2126 2127
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
2128
    pre_bias = helper.create_variable_for_type_inference(dtype)
2129 2130
    if padding_start is None:
        padding_start = -int(filter_size // 2)
Y
Yu Yang 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
2141 2142
            'contextStart': padding_start,
            'contextLength': filter_size,
Y
Yu Yang 已提交
2143 2144 2145 2146 2147
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
2148
def sequence_softmax(input, use_cudnn=False, name=None):
2149 2150 2151
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
2152
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2169 2170 2171
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2172

2173 2174 2175 2176 2177 2178 2179
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2180
             import paddle.fluid as fluid
2181 2182 2183 2184
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2185
    assert not in_dygraph_mode(), (
2186
        "sequence layer is not supported in dygraph mode yet.")
2187 2188
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2189
    softmax_out = helper.create_variable_for_type_inference(dtype)
2190 2191 2192 2193 2194 2195 2196 2197
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2198
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2199
    """
2200
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2201
    has the same shape as the input.
Q
qiaolongfei 已提交
2202

D
dengkaipeng 已提交
2203
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2204
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2205
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2206 2207 2208
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2209
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2210
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2211 2212 2213 2214 2215 2216 2217

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2218
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2219 2220 2221 2222 2223 2224 2225 2226

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2227 2228
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2229 2230
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2231 2232 2233
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2234 2235 2236 2237 2238 2239 2240 2241

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2242 2243
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2244
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2245
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2246
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2247 2248
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2249 2250

    """
2251 2252
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2253
    softmax_out = helper.create_variable_for_type_inference(dtype)
2254 2255 2256 2257
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2258 2259
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2260 2261 2262
    return softmax_out


Y
Yu Yang 已提交
2263 2264 2265
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2266 2267
           stride=1,
           padding=0,
2268
           dilation=1,
Y
Yu Yang 已提交
2269 2270 2271
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2272
           use_cudnn=True,
2273 2274
           act=None,
           name=None):
Y
Yu Yang 已提交
2275
    """
C
chengduoZH 已提交
2276
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2277 2278
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2279
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2280 2281 2282 2283 2284 2285
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
2286
    for more details.
2287 2288 2289
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2290

2291
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2292

C
chengduoZH 已提交
2293 2294
    .. math::

C
refine  
chengduoZH 已提交
2295
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2296

T
tensor-tang 已提交
2297
    Where:
C
chengduoZH 已提交
2298

2299 2300 2301 2302 2303
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2304
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2305 2306 2307

    Example:

2308 2309
        - Input:

W
weixing02 已提交
2310
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2311

W
weixing02 已提交
2312
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2313

2314
        - Output:
T
tensor-tang 已提交
2315

W
weixing02 已提交
2316
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2317

C
chengduoZH 已提交
2318
        Where
2319 2320

        .. math::
C
chengduoZH 已提交
2321

W
weixing02 已提交
2322 2323
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2324 2325

    Args:
2326
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2327
        num_filters(int): The number of filter. It is as same as the output
2328
            image channel.
2329
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2345 2346 2347 2348 2349
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2350
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2351 2352 2353 2354 2355
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2356 2357
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2358 2359
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2360
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2361
            will be named automatically. Default: None
C
chengduoZH 已提交
2362 2363

    Returns:
G
guosheng 已提交
2364
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2365 2366
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2367
    Raises:
2368 2369
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2370

C
chengduoZH 已提交
2371 2372 2373
    Examples:
        .. code-block:: python

2374
          import paddle.fluid as fluid
2375 2376
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2377 2378 2379
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2380
    assert param_attr is not False, "param_attr should not be False here."
2381
    l_type = 'conv2d'
X
xzl 已提交
2382 2383
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2384
        l_type = 'depthwise_conv2d'
2385 2386 2387 2388

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2389 2390 2391 2392 2393
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2394
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2395

C
chengduoZH 已提交
2396 2397 2398
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2399
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2400

C
chengduoZH 已提交
2401 2402
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2403 2404

    input_shape = input.shape
M
minqiyang 已提交
2405
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2406 2407

    def _get_default_param_initializer():
C
chengduo 已提交
2408 2409
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2410 2411 2412 2413 2414 2415 2416 2417
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2418
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2419 2420

    helper.append_op(
2421
        type=l_type,
Y
Yu Yang 已提交
2422 2423 2424 2425 2426
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2427 2428 2429
        attrs={
            'strides': stride,
            'paddings': padding,
2430
            'dilations': dilation,
C
chengduoZH 已提交
2431
            'groups': groups,
2432
            'use_cudnn': use_cudnn,
2433
            'use_mkldnn': False,
2434
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2435
        })
Y
Yu Yang 已提交
2436 2437 2438 2439 2440 2441

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2459 2460 2461 2462 2463 2464
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2465 2466 2467 2468 2469 2470 2471 2472 2473

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2474 2475
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2476 2477 2478
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2479
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2502
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2503 2504
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2505
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2506 2507
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2508
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2509 2510
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2511
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2512 2513
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2514
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2515 2516 2517 2518 2519 2520
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2531 2532
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2533 2534
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2535
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2536
            will be named automatically. Default: None.
C
chengduoZH 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2549
          import paddle.fluid as fluid
2550 2551
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2552 2553 2554
    """

    l_type = 'conv3d'
C
chengduo 已提交
2555
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2566
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2580 2581 2582
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2583 2584 2585 2586 2587 2588 2589 2590
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2591
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2606
            'use_mkldnn': False
C
chengduoZH 已提交
2607 2608
        })

2609
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2610 2611 2612 2613

    return helper.append_activation(pre_act)


2614
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2615
    """
Y
yangyaming 已提交
2616 2617 2618
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2629 2630
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2631 2632 2633 2634
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2635
         out.dim = [4, 1]
2636
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2637 2638

       for different pool_type:
2639 2640 2641
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2642
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2643 2644 2645 2646 2647
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2648

L
Luo Tao 已提交
2649
    Args:
2650
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2651
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2652
            It supports average, sum, sqrt and max.
2653 2654
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2655 2656 2657 2658 2659 2660 2661

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2662

2663 2664
             import paddle.fluid as fluid

Y
yangyaming 已提交
2665
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2666 2667 2668 2669 2670
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2671 2672
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2673
    """
L
lujun 已提交
2674
    assert not in_dygraph_mode(), (
2675
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2676
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2677
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2678 2679
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2680 2681 2682 2683 2684 2685

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2686 2687 2688 2689 2690
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2691

Y
yangyaming 已提交
2692 2693 2694 2695 2696
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2697 2698 2699
    return pool_out


C
add doc  
chengduoZH 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2716 2717 2718 2719
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2720
    """
L
lujun 已提交
2721
    assert not in_dygraph_mode(), (
2722
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2723
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2724
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2725 2726 2727 2728 2729
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2730
def sequence_first_step(input):
L
Luo Tao 已提交
2731
    """
L
Luo Tao 已提交
2732
    This function gets the first step of sequence.
L
Luo Tao 已提交
2733 2734 2735 2736

    .. code-block:: text

       x is a 1-level LoDTensor:
2737
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2738 2739 2740 2741 2742
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2743
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2744
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2745

L
Luo Tao 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2755

2756
             import paddle.fluid as fluid
Y
yangyaming 已提交
2757
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2758 2759 2760
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2761 2762 2763
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2764
def sequence_last_step(input):
L
Luo Tao 已提交
2765
    """
L
Luo Tao 已提交
2766
    This function gets the last step of sequence.
L
Luo Tao 已提交
2767 2768 2769 2770

    .. code-block:: text

       x is a 1-level LoDTensor:
2771
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2772 2773 2774 2775 2776
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2777
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2778
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2779

L
Luo Tao 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2789

2790
             import paddle.fluid as fluid
Y
yangyaming 已提交
2791
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2792 2793 2794
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2795 2796 2797
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2798 2799 2800 2801
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2802
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2803 2804 2805 2806 2807
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2808

H
haowang101779990 已提交
2809
              - Case:
Y
Yibing Liu 已提交
2810

2811
            Given the input Variable **input**:
2812

2813 2814 2815
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2816

2817
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2818

2819
            the output Variable will be
2820

2821 2822 2823
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2824

M
minqiyang 已提交
2825
    Note:
H
haowang101779990 已提交
2826
          The first dimension size of **input**, **offset** and **length**
2827
          should be equal. The **offset** should start from 0.
2828

Y
Yibing Liu 已提交
2829
    Args:
2830
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2831
                         sequences.
Y
Yibing Liu 已提交
2832 2833 2834 2835 2836 2837
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2838
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2839 2840 2841 2842 2843

    Examples:

        .. code-block:: python

2844
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2845 2846 2847 2848 2849
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2850
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2851 2852
                                                   length=length)
    """
L
lujun 已提交
2853
    assert not in_dygraph_mode(), (
2854
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2855 2856
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2857
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2872
@templatedoc()
Y
Yu Yang 已提交
2873
def pool2d(input,
C
chengduoZH 已提交
2874 2875
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2876 2877
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2878
           global_pooling=False,
C
chengduoZH 已提交
2879
           use_cudnn=True,
2880
           ceil_mode=False,
2881 2882
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2883
    """
F
fengjiayi 已提交
2884
    ${comment}
2885 2886

    Args:
2887 2888 2889
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2890
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2891
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2892 2893
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2894
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2895 2896 2897 2898 2899 2900
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2901 2902 2903
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2904
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2905
                        layer will be named automatically.
2906
        exclusive (bool): Whether to exclude padding points in average pooling
2907
                          mode, default is true
F
fengjiayi 已提交
2908

2909
    Returns:
F
fengjiayi 已提交
2910
        Variable: The pooling result.
F
fengjiayi 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2921
          import paddle.fluid as fluid
F
fengjiayi 已提交
2922 2923
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2924
          pool2d = fluid.layers.pool2d(
2925 2926 2927 2928
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2929
                            global_pooling=False)
Y
Yu Yang 已提交
2930 2931 2932 2933 2934
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2935

C
chengduoZH 已提交
2936 2937 2938 2939 2940
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2941 2942 2943 2944
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2945 2946
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2947

C
Add doc  
chengduoZH 已提交
2948
    l_type = 'pool2d'
2949 2950

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2951
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2952
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2953 2954

    helper.append_op(
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2966 2967
            "use_mkldnn": False,
            "exclusive": exclusive,
2968 2969 2970 2971 2972
        })

    return pool_out


D
dengkaipeng 已提交
2973
@templatedoc()
2974 2975 2976 2977 2978 2979 2980 2981
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2982 2983
           name=None,
           exclusive=True):
2984
    """
2985
    ${comment}
2986 2987

    Args:
D
dengkaipeng 已提交
2988 2989 2990 2991 2992
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2993 2994 2995 2996 2997
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2998 2999 3000 3001 3002 3003 3004
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
3005
        exclusive (bool): Whether to exclude padding points in average pooling
3006
                          mode, default is true
3007

3008
    Returns:
3009
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
3010 3011 3012 3013 3014

    Examples:

        .. code-block:: python

3015
          import paddle.fluid as fluid
D
dengkaipeng 已提交
3016 3017 3018 3019 3020 3021 3022 3023
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
3024 3025 3026 3027 3028
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
3029

C
chengduoZH 已提交
3030 3031 3032 3033 3034
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

3035 3036 3037
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
3038

C
chengduoZH 已提交
3039 3040
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
3041

3042 3043
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3044
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3045
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
3046 3047

    helper.append_op(
3048
        type=l_type,
Y
Yu Yang 已提交
3049 3050 3051 3052 3053 3054 3055
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
3056
            "paddings": pool_padding,
3057
            "use_cudnn": use_cudnn,
3058
            "ceil_mode": ceil_mode,
3059 3060
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
3061 3062 3063 3064 3065
        })

    return pool_out


3066 3067 3068 3069 3070 3071 3072
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3073 3074 3075 3076 3077 3078 3079
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
3080

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
3094 3095 3096 3097 3098 3099 3100 3101 3102

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3103 3104
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
3119
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
3120
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
3121
          # of input data into m * n grids averagely and performs poolings in each
3122 3123
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3124
          #
3125 3126 3127 3128 3129 3130 3131 3132
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
3133
          import paddle.fluid as fluid
3134 3135
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
3136
          pool_out = fluid.layers.adaptive_pool2d(
3137 3138
                            input=data,
                            pool_size=[3, 3],
3139
                            pool_type='avg')
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3150
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3176
    return (pool_out, mask) if require_index else pool_out
3177 3178 3179 3180 3181 3182 3183 3184 3185


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3186 3187 3188 3189 3190 3191 3192
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3193

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3211 3212 3213

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3214 3215 3216
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3217
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3218
            it must contain three integers, (Depth, Height, Width).
3219
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3220 3221
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3236 3237
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3238
          # of input data into l * m * n grids averagely and performs poolings in each
3239 3240
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3241
          #
3242 3243 3244 3245 3246 3247 3248 3249 3250
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3251
          #                 output[:, :, i, j, k] =
3252 3253
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3254 3255 3256

          import paddle.fluid as fluid

3257
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3258 3259
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3260
                            input=data,
D
dengkaipeng 已提交
3261
                            pool_size=[3, 3, 3],
3262
                            pool_type='avg')
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3273
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3299
    return (pool_out, mask) if require_index else pool_out
3300 3301


Y
Yu Yang 已提交
3302 3303 3304 3305 3306 3307 3308
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3309
               data_layout='NCHW',
Y
Yang Yang 已提交
3310
               in_place=False,
3311 3312
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3313
               moving_variance_name=None,
3314
               do_model_average_for_mean_and_var=False,
3315 3316
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3317
    """
Q
qiaolongfei 已提交
3318 3319 3320 3321
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3322

Q
qiaolongfei 已提交
3323
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3324

Q
qiaolongfei 已提交
3325 3326
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3327 3328 3329
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3342

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
3356 3357 3358 3359
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

3360
    Args:
Q
qingqing01 已提交
3361
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3362
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3372 3373
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3374 3375 3376
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3377 3378
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3379 3380 3381
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3382
        data_layout(string, default NCHW): NCHW|NHWC
3383
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3384 3385
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3386 3387 3388
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3389
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3390 3391
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3392
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3393
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3394 3395 3396 3397 3398
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3399 3400

    Returns:
Q
qiaolongfei 已提交
3401
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3402 3403 3404 3405 3406

    Examples:

        .. code-block:: python

3407
            import paddle.fluid as fluid
L
lvmengsi 已提交
3408
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3409 3410
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3411
    """
C
chengduo 已提交
3412
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3413 3414 3415
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3416 3417 3418 3419
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3438
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3439

3440 3441
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3442 3443 3444
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3445
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3446
        shape=param_shape,
W
Wu Yi 已提交
3447
        dtype=dtype)
3448 3449 3450 3451 3452 3453
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3454
            trainable=False,
W
wanghaoshuang 已提交
3455
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3456
        shape=param_shape,
W
Wu Yi 已提交
3457
        dtype=dtype)
3458
    variance.stop_gradient = True
Y
Yu Yang 已提交
3459 3460 3461 3462 3463 3464

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3465 3466 3467 3468
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3469

X
Xin Pan 已提交
3470 3471
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3489 3490 3491 3492
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3493
            "data_layout": data_layout,
X
Xin Pan 已提交
3494
            "use_mkldnn": False,
3495 3496
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3497
        })
Y
Yu Yang 已提交
3498 3499 3500 3501

    return helper.append_activation(batch_norm_out)


L
lvmengsi 已提交
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean of one  feature map in mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance of one feature map in mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift


    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

    Args:
        input(variable): The rank of input variable can be 2, 3, 4, 5.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: A tensor variable which is the result after applying instance normalization on the input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3675 3676
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3677

3678 3679
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3745
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3746 3747 3748 3749

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3750
@templatedoc()
G
guosheng 已提交
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3761
    ${comment}
G
guosheng 已提交
3762 3763 3764

    The formula is as follows:

Y
yuyang18 已提交
3765
    ..  math::
G
guosheng 已提交
3766 3767 3768 3769 3770 3771 3772

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3773 3774 3775 3776 3777 3778 3779 3780
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3781

G
guosheng 已提交
3782 3783
    Args:
        input(Variable): The input tensor variable.
3784
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3785
            normalization. Default True.
3786
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3787 3788
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3789
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3790
            Default 1.
3791
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3792
            division by zero. Default 1e-05.
G
guosheng 已提交
3793
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3794 3795
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3796 3797
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3798
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3799 3800
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3801
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3802
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3803
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3804 3805 3806
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3807 3808

    Returns:
Y
yuyang18 已提交
3809
        ${y_comment}
G
guosheng 已提交
3810 3811 3812

    Examples:

3813
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3814 3815 3816
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3817
    """
L
lujun 已提交
3818
    assert in_dygraph_mode(
L
lujun 已提交
3819
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3834
    if shift:
G
guosheng 已提交
3835 3836 3837 3838 3839 3840
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3841 3842 3843 3844 3845
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3873
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
3887
        data_layout(string, default NCHW): NCHW(num_batch, channels, h, w) or NHWC(num_batch, h, w, channels).
D
Dun 已提交
3888 3889 3890 3891 3892 3893 3894
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3895
        >>> import paddle.fluid as fluid
D
Dun 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3906 3907 3908 3909 3910 3911
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3925 3926
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3937 3938 3939 3940 3941
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3942 3943 3944 3945 3946

    return helper.append_activation(group_norm_out)


@templatedoc()
3947
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3948 3949 3950
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3951
    This layer calculates the spectral normalization value of weight parameters of
3952
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3953
    Parameters. Calculations are showed as follows.
3954

D
dengkaipeng 已提交
3955 3956 3957
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3958
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3971
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3972 3973 3974 3975

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3976

D
dengkaipeng 已提交
3977
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3978 3979
                

D
dengkaipeng 已提交
3980 3981 3982 3983
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3984 3985 3986
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3987 3988 3989
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3990
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3991 3992

    Examples:
K
Kaipeng Deng 已提交
3993
       .. code-block:: python
D
dengkaipeng 已提交
3994

K
Kaipeng Deng 已提交
3995 3996 3997 3998 3999
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
4000 4001
    """
    helper = LayerHelper('spectral_norm', **locals())
4002
    dtype = weight.dtype
D
dengkaipeng 已提交
4003 4004 4005

    # create intput and parameters
    inputs = {'Weight': weight}
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
4024 4025

    # create output
4026
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
4027 4028

    helper.append_op(
4029
        type="spectral_norm",
D
Dun 已提交
4030
        inputs=inputs,
4031 4032 4033 4034 4035 4036
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
4037

4038
    return out
D
Dun 已提交
4039 4040


Y
Yu Yang 已提交
4041 4042 4043 4044
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4045 4046 4047
                     padding=0,
                     stride=1,
                     dilation=1,
4048
                     groups=None,
C
caoying03 已提交
4049
                     param_attr=None,
4050
                     bias_attr=None,
C
chengduoZH 已提交
4051
                     use_cudnn=True,
4052
                     act=None,
C
caoying03 已提交
4053
                     name=None):
Y
Yu Yang 已提交
4054
    """
4055 4056 4057 4058 4059 4060 4061 4062
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
4063
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
4064
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4065 4066 4067
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4068 4069 4070 4071 4072

    For each input :math:`X`, the equation is:

    .. math::

4073
        Out = \sigma (W \\ast X + b)
4074

4075
    Where:
4076 4077 4078

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
4079 4080 4081 4082
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4083

4084 4085 4086 4087
    Example:

        - Input:

4088
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
4089

4090
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
4091 4092 4093

        - Output:

4094
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
4095 4096

        Where
Y
Yu Yang 已提交
4097

4098 4099
        .. math::

4100 4101
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
4111 4112

    Args:
4113 4114 4115 4116
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4117 4118 4119 4120
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4149
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
4150 4151 4152
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4153
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
4154
            will be named automatically. Default: True.
Y
Yu Yang 已提交
4155 4156

    Returns:
4157
        Variable: The tensor variable storing the convolution transpose result.
4158 4159

    Raises:
4160 4161
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4162 4163 4164 4165

    Examples:
       .. code-block:: python

4166
          import paddle.fluid as fluid
4167 4168
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4169
    """
C
chengduo 已提交
4170
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
4171 4172 4173 4174 4175 4176 4177 4178
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
4179 4180 4181
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
4182 4183 4184
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
4185

C
chengduoZH 已提交
4186 4187
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
4188

Y
Yu Yang 已提交
4189 4190 4191 4192 4193
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
4194

Y
Yu Yang 已提交
4195 4196
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
4197

C
chengduoZH 已提交
4198
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4199
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
4200
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4201
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
4202
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
4203 4204 4205
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
4206

4207 4208 4209 4210 4211 4212 4213
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
4214
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4215
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
4216

Y
Yu Yang 已提交
4217 4218 4219
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4220
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4221
    helper.append_op(
4222
        type=op_type,
Y
Yu Yang 已提交
4223 4224
        inputs={'Input': [input],
                'Filter': [img_filter]},
4225
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4226
        attrs={
4227
            'output_size': output_size,
4228 4229 4230 4231 4232
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
4233 4234
        })

4235 4236 4237
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
4238 4239


4240
def conv3d_transpose(input,
Y
Yu Yang 已提交
4241 4242 4243
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4244 4245 4246
                     padding=0,
                     stride=1,
                     dilation=1,
4247
                     groups=None,
C
caoying03 已提交
4248
                     param_attr=None,
4249
                     bias_attr=None,
C
chengduoZH 已提交
4250
                     use_cudnn=True,
4251
                     act=None,
C
caoying03 已提交
4252
                     name=None):
Y
Yu Yang 已提交
4253
    """
4254
    **Convlution3D transpose layer**
4255

4256
    The convolution3D transpose layer calculates the output based on the input,
4257
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
4258 4259 4260 4261 4262
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
4263
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4264 4265 4266
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4267 4268 4269 4270 4271

    For each input :math:`X`, the equation is:

    .. math::

4272
        Out = \sigma (W \\ast X + b)
4273 4274 4275

    In the above equation:

4276 4277
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
4278 4279 4280 4281
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4282

4283 4284 4285 4286
    Example:

        - Input:

4287
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4288

4289
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4290 4291 4292

        - Output:

4293
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4294 4295

        Where
Y
Yu Yang 已提交
4296

4297 4298
        .. math::

4299 4300 4301
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4302 4303

    Args:
4304
        input(Variable): The input image with [N, C, D, H, W] format.
4305 4306 4307
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4308
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4309 4310
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4311
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4312 4313 4314
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4315 4316
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4317
        stride(int|tuple): The stride size. If stride is a tuple, it must
4318 4319
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4320
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4321 4322 4323
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4324 4325 4326 4327 4328
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4338 4339
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4340 4341
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4342 4343
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4344 4345

    Returns:
4346
        Variable: The tensor variable storing the convolution transpose result.
4347 4348

    Raises:
4349 4350
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4351 4352 4353 4354

    Examples:
       .. code-block:: python

4355
          import paddle.fluid as fluid
4356 4357
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4358
    """
C
chengduo 已提交
4359
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4360 4361
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4362
    if not isinstance(input, Variable):
4363
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4364 4365
    input_channel = input.shape[1]

4366 4367 4368
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4369

C
chengduoZH 已提交
4370 4371 4372
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4373 4374 4375 4376 4377 4378
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4379 4380 4381
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4382

4383
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4384
                         padding[0] - 1) // dilation[0] + 1
4385
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4386
                         padding[1] - 1) // dilation[1] + 1
4387
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4388
                         padding[2] - 1) // dilation[2] + 1
4389
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4390
    else:
4391 4392
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4393

4394
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4395
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4396 4397 4398
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4399
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4400
    helper.append_op(
4401
        type=l_type,
Y
Yu Yang 已提交
4402 4403
        inputs={'Input': [input],
                'Filter': [img_filter]},
4404
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4405 4406 4407 4408
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4409
            'groups': groups,
C
chengduoZH 已提交
4410 4411
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4412

4413 4414
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4415
    return out
Y
yangyaming 已提交
4416 4417


Y
yangyaming 已提交
4418
def sequence_expand(x, y, ref_level=-1, name=None):
4419
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4420 4421 4422 4423
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4424 4425 4426 4427 4428

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4429
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4430
                x.data = [[a], [b], [c], [d]]
4431 4432 4433
                x.dims = [4, 1]

            y is a LoDTensor:
4434 4435
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4436

Y
yangyaming 已提交
4437
            ref_level: 0
4438

Y
yangyaming 已提交
4439
            then output is a 1-level LoDTensor:
4440
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4441
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4442 4443 4444 4445
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4446
                x.data = [[a], [b], [c]]
4447 4448 4449
                x.dims = [3, 1]

            y is a LoDTensor:
4450
                y.lod = [[2, 0, 3]]
4451

Y
yangyaming 已提交
4452
            ref_level: -1
4453

Y
yangyaming 已提交
4454 4455 4456
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4457 4458 4459
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4460 4461
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4462
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4463
                        will be named automatically.
4464 4465 4466 4467 4468 4469

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4470
	
4471
            import paddle.fluid as fluid
4472
            import paddle.fluid.layers as layers
4473 4474 4475
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4476
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4477
    """
L
lujun 已提交
4478
    assert not in_dygraph_mode(), (
4479
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4480
    helper = LayerHelper('sequence_expand', input=x, **locals())
4481
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4482
    tmp = helper.create_variable_for_type_inference(dtype)
4483
    helper.append_op(
Y
yangyaming 已提交
4484 4485 4486 4487 4488
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4489
    return tmp
4490 4491


C
chengduo 已提交
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4540 4541
            
            import paddle.fluid as fluid
4542
            import paddle.fluid.layers as layers
C
chengduo 已提交
4543 4544 4545 4546 4547 4548

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4549
    assert not in_dygraph_mode(), (
4550
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4551 4552
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4553
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4554 4555 4556 4557 4558 4559 4560 4561
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4562
@templatedoc()
4563
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4564 4565 4566 4567 4568
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4569 4570 4571
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4572
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4573 4574 4575 4576
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4577 4578 4579
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4580

F
fengjiayi 已提交
4581
    Returns:
M
minqiyang 已提交
4582
        Variable: The padded sequence batch and the original lengths before
4583
                  padding. All sequences has the same length.
M
minqiyang 已提交
4584

F
fengjiayi 已提交
4585 4586 4587
    Examples:
        .. code-block:: python

4588
            import paddle.fluid as fluid
F
fengjiayi 已提交
4589 4590
            import numpy

4591
            x = fluid.layers.data(name='x', shape=[10, 5],
F
fengjiayi 已提交
4592
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4593
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4594
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4595 4596 4597
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4598
    assert not in_dygraph_mode(), (
4599
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4600 4601
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4602 4603
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4604 4605 4606 4607

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4608 4609 4610 4611 4612 4613
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4614 4615
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4616
        attrs={'padded_length': maxlen})
4617
    return out, length
F
fengjiayi 已提交
4618 4619


4620
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4621
    """
4622
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4623

4624 4625
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4626 4627 4628 4629 4630 4631 4632 4633 4634
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4635 4636 4637
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4638
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4639

4640
	    length.data = [2, 3, 4],
Y
Yibing Liu 已提交
4641 4642 4643 4644

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4645
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4646 4647 4648 4649 4650 4651

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4652 4653
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4654 4655 4656 4657 4658 4659 4660

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4661
            import paddle.fluid as fluid
4662 4663 4664 4665 4666 4667 4668 4669 4670
            import numpy

            # pad data
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0.0], dtype=numpy.float32))
            pad_data, len = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
            
            # upad data
            unpad_data = fluid.layers.sequence_unpad(x=pad_data, length=len)
Y
Yibing Liu 已提交
4671 4672
    """

L
lujun 已提交
4673
    assert not in_dygraph_mode(), (
4674
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4675 4676
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4677
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4689 4690 4691 4692 4693 4694 4695
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4696
                is_accumulated=True,
4697 4698
                name=None,
                return_parent_idx=False):
4699
    """
4700 4701
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4702 4703 4704

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4705 4706

    This layer does the search in beams for one time step. Specifically, it
4707 4708 4709
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4721 4722 4723 4724

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4725

4726
    Args:
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4750 4751
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4752 4753
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4754 4755 4756 4757
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4758

4759
    Returns:
4760 4761 4762 4763
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4764 4765 4766 4767

    Examples:
        .. code-block:: python

4768 4769
            import paddle.fluid as fluid

4770 4771 4772
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4785
                axis=0)
4786
            selected_ids, selected_scores = fluid.layers.beam_search(
4787 4788 4789 4790 4791 4792 4793
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4794
    helper = LayerHelper('beam_search', **locals())
4795 4796 4797 4798 4799 4800
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4801

X
Xin Pan 已提交
4802 4803 4804
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4805 4806 4807 4808 4809
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4810 4811 4812

    helper.append_op(
        type='beam_search',
4813
        inputs=inputs,
Q
Qiao Longfei 已提交
4814 4815 4816
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4817
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4818 4819 4820 4821 4822 4823
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4824
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4825
        })
4826 4827 4828 4829
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4830 4831


4832 4833 4834 4835 4836 4837 4838
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4839

4840 4841 4842 4843 4844 4845 4846 4847 4848
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4849

4850 4851 4852 4853 4854 4855
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4856

4857 4858
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4859

4860 4861
            import paddle.fluid as fluid

4862 4863
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4864 4865 4866
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4867 4868 4869
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4870 4871
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4887 4888 4889 4890
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4891
              param_attr=None,
C
caoying03 已提交
4892 4893
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4894 4895 4896 4897
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4898
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4899

4900
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4901

4902
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4903

4904
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4905 4906 4907

            h_t & = o_t tanh(c_t)

4908 4909 4910 4911 4912 4913
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4914 4915 4916

        .. math::

4917
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4918 4919 4920 4921 4922 4923 4924 4925

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4926
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4927 4928

    Args:
Y
yangyaming 已提交
4929 4930 4931 4932 4933 4934
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4935
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4948 4949
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4950 4951

    Returns:
Y
yangyaming 已提交
4952
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4953 4954

    Raises:
4955 4956 4957 4958
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4959 4960 4961 4962 4963

    Examples:

        .. code-block:: python

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4991
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4992 4993 4994 4995
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4996 4997
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4998 4999 5000
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
5001
    size = cell_t_prev.shape[1]
5002
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
5003 5004
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
5005
                param_attr=param_attr,
5006
                bias_attr=bias_attr)
Y
yangyaming 已提交
5007
    dtype = x_t.dtype
X
Xin Pan 已提交
5008 5009
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
5010 5011 5012 5013 5014 5015 5016 5017 5018

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
5019
    return h, c
G
guosheng 已提交
5020 5021


C
caoying03 已提交
5022
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
5023
    """
Y
yangyaming 已提交
5024
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
5025 5026 5027

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5028
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
5029 5030
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5031 5032
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5033
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
5034
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
5035
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5036 5037
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5038 5039 5040

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
5041

G
guosheng 已提交
5042 5043 5044
    Examples:
        .. code-block:: python

5045
            import paddle.fluid as fluid
G
guosheng 已提交
5046 5047 5048
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
5049
            # Each example is followed by the corresponding output tensor.
5050
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
5051 5052 5053 5054
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
5055

5056
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5057 5058
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
5059
            # Each example is followed by the corresponding output tensor.
5060 5061 5062
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
5063

G
guosheng 已提交
5064 5065
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
5066
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5067 5068
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
5069 5070 5071 5072 5073
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5074
            'dim': dim if dim != None else [0],
G
guosheng 已提交
5075 5076 5077 5078
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5079 5080


C
caoying03 已提交
5081
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
5082
    """
Y
Yibing Liu 已提交
5083
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
5084 5085 5086

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
5087 5088 5089
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
5090
            must be in the range :math:`[-rank(input), rank(input))`. If
5091
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
5092
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
5093 5094
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
5095
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
5096
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
5097
                       will be named automatically.
G
guosheng 已提交
5098 5099

    Returns:
Y
Yibing Liu 已提交
5100
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
5101

G
guosheng 已提交
5102 5103 5104
    Examples:
        .. code-block:: python

5105
            import paddle.fluid as fluid
G
guosheng 已提交
5106 5107 5108 5109
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5110
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
5111 5112 5113
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
5114
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
5115

5116
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5117 5118 5119
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5120 5121 5122
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
5123 5124
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
5125
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5126 5127
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
5128 5129 5130 5131 5132
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5133
            'dim': dim if dim != None else [0],
G
guosheng 已提交
5134 5135 5136 5137
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
5138 5139


C
caoying03 已提交
5140
def reduce_max(input, dim=None, keep_dim=False, name=None):
5141
    """
Y
yangyaming 已提交
5142
    Computes the maximum of tensor elements over the given dimension.
5143 5144 5145

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5146
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
5147 5148 5149
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5150
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5151 5152
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5153
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5154 5155
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5156 5157 5158

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5159

5160 5161 5162
    Examples:
        .. code-block:: python

5163
            import paddle.fluid as fluid
5164 5165 5166 5167
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5168
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5169 5170 5171 5172
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
5173

5174
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5175 5176 5177
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5178 5179 5180
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
5181 5182
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
5183
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5184 5185
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5186 5187 5188 5189 5190
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5191
            'dim': dim if dim != None else [0],
5192 5193 5194 5195 5196 5197
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5198
def reduce_min(input, dim=None, keep_dim=False, name=None):
5199
    """
Y
yangyaming 已提交
5200
    Computes the minimum of tensor elements over the given dimension.
5201 5202 5203

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5204
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
5205 5206 5207
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
5208
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
5209 5210
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
5211
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
5212 5213
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
5214 5215 5216

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
5217

5218 5219 5220
    Examples:
        .. code-block:: python

5221
            import paddle.fluid as fluid
5222 5223 5224 5225
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5226
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5227 5228 5229 5230
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
5231

5232
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5233 5234 5235
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5236 5237 5238
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
5239 5240
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
5241
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5242 5243
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5244 5245 5246 5247 5248
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5249
            'dim': dim if dim != None else [0],
5250 5251 5252 5253
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5254 5255


5256 5257 5258 5259 5260 5261
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5262
        dim (list|int|None): The dimensions along which the product is performed. If
5263 5264
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5265 5266
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5267 5268 5269
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
5270
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
5271
            layer will be named automatically.
5272 5273 5274 5275 5276 5277 5278

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

5279
            import paddle.fluid as fluid
5280 5281 5282 5283
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5284
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5285 5286 5287
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5288
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5289
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5290

5291
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5292 5293 5294
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5295 5296 5297
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5298 5299
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5300
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5301 5302
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5303 5304 5305 5306 5307
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5308
            'dim': dim if dim != None else [0],
5309 5310 5311 5312 5313 5314
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5315 5316
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5317
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5337
        
5338
            import paddle.fluid as fluid
5339 5340 5341
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5342 5343 5344
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5345 5346 5347 5348 5349 5350 5351
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5372
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5392

5393
            import paddle.fluid as fluid
5394 5395 5396
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5397 5398 5399
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5400 5401 5402 5403 5404 5405 5406
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5421 5422 5423 5424 5425
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5426
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5427
    """
C
caoying03 已提交
5428
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5429 5430 5431

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5432 5433 5434 5435 5436
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5437
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5438
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5439
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5440 5441
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5442 5443

    Returns:
D
dzhwinter 已提交
5444
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5445 5446 5447 5448

    Examples:
        .. code-block:: python

5449 5450 5451 5452 5453 5454
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5455
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5456 5457 5458 5459 5460 5461 5462 5463
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5464 5465 5466 5467 5468 5469 5470 5471
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5472
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5473 5474 5475
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5476
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5499
    .. math::
5500 5501

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5502 5503 5504 5505 5506

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5507
        x(Variable|list): The input tensor to l2_normalize layer.
5508
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5509 5510
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5511
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5512
            the default value is 1e-12.
5513
        name(str|None): A name for this layer(optional). If set None, the layer \
5514
            will be named automatically.
C
caoying03 已提交
5515 5516

    Returns:
5517
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5518 5519

    Examples:
5520

C
caoying03 已提交
5521 5522
        .. code-block:: python

5523
            import paddle.fluid as fluid
5524 5525 5526 5527
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5528 5529
    """

F
fengjiayi 已提交
5530 5531
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5532 5533
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5534 5535
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5536
    helper.append_op(
5537 5538 5539 5540
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5541
        attrs={
5542 5543
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5544 5545
        })
    return out
5546 5547


S
sneaxiy 已提交
5548
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5549
    """
Y
ying 已提交
5550 5551 5552 5553
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5554

C
chengduoZH 已提交
5555
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5556
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5557

5558 5559 5560 5561 5562
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5563
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5564

C
chengduoZH 已提交
5565
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5566
      performs in the following way.
G
guosheng 已提交
5567

5568
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5569
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5570
        last two dimensions and a batched matrix multiply supporting broadcast
5571
        applies on the two tensors.
G
guosheng 已提交
5572

Y
ying 已提交
5573 5574
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5575
    removed after matrix multiplication.
G
guosheng 已提交
5576 5577 5578

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5579 5580 5581
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5582
        alpha (float): The scale of output. Default 1.0.
5583
        name(str|None): A name for this layer(optional). If set None, the layer
5584
            will be named automatically.
G
guosheng 已提交
5585 5586

    Returns:
石晓伟 已提交
5587
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5588

G
guosheng 已提交
5589 5590 5591
    Examples:
        .. code-block:: python

5592
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5593
            # x: [B, ..., M, K], y: [B, ..., K, N]
5594
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5595

5596
            # x: [B, M, K], y: [B, K, N]
5597
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5598

5599
            # x: [B, M, K], y: [K, N]
5600
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5601

5602
            # x: [M, K], y: [K, N]
5603
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5604 5605

            # x: [B, M, K], y: [K]
5606
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5607

5608
            # x: [K], y: [K]
5609
            # fluid.layers.matmul(x, y)  # out: [1]
5610

Y
ying 已提交
5611
            # x: [M], y: [N]
5612 5613
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5614
            import paddle.fluid as fluid
5615 5616 5617
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5618
    """
Y
ying 已提交
5619 5620 5621 5622 5623 5624 5625

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5626
            y_shape = y_shape + [1]
Y
ying 已提交
5627 5628 5629 5630 5631 5632 5633

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5634 5635
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5636

C
chengduo 已提交
5637
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5638
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5639 5640 5641
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5642
                if dim_x != y_shape[i]:
C
chengduo 已提交
5643 5644
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5645 5646 5647

    __check_input(x, y)

5648
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5649
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5650
    helper.append_op(
5651 5652 5653 5654
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5655 5656 5657
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5658
            'alpha': float(alpha),
S
sneaxiy 已提交
5659
        })
5660
    return out
5661 5662


5663
def topk(input, k, name=None):
Q
qingqing01 已提交
5664 5665 5666 5667
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5668
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5669 5670 5671 5672 5673 5674
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5696 5697 5698
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5699
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5700
                 of input.
5701
        name(str|None): A name for this layer(optional). If set None, the layer
5702
                       will be named automatically.
F
fengjiayi 已提交
5703
                       Default: None
Q
qingqing01 已提交
5704 5705

    Returns:
5706 5707 5708
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5709
        within the last dimension of input.
Q
qingqing01 已提交
5710

F
fengjiayi 已提交
5711 5712
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5713 5714 5715 5716

    Examples:
        .. code-block:: python

5717
            import paddle.fluid as fluid
5718 5719
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5720 5721 5722
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5723 5724
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5725 5726 5727 5728 5729 5730
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5731 5732
    helper.append_op(
        type="top_k",
W
whs 已提交
5733
        inputs=inputs,
Q
qingqing01 已提交
5734 5735
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5736
        attrs=attrs)
Q
qingqing01 已提交
5737 5738 5739 5740 5741
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5742 5743 5744 5745 5746 5747
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5748
    """
R
ruri 已提交
5749
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5750 5751 5752 5753 5754 5755 5756 5757
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5758

Y
ying 已提交
5759
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5760

5761
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5762
    the total number denoted by `batch_size`, and the separation is specified
5763 5764
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5765

5766
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5767 5768
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5769

5770
    Args:
5771 5772
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5773
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5774
                          the length of reference string.
5775
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5776
                                     calculating edit distance.
5777 5778
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5779

W
wanghaoshuang 已提交
5780
    Returns:
5781 5782 5783
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5784 5785 5786

    Examples:
        .. code-block:: python
5787
            
R
ruri 已提交
5788 5789
            import paddle.fluid as fluid

5790 5791 5792 5793
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5794

5795 5796 5797 5798 5799 5800 5801 5802
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5803

5804
    """
5805
    helper = LayerHelper("edit_distance", **locals())
5806

5807
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5808
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5809 5810
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5811 5812 5813 5814 5815

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5816
            attrs={"tokens": ignored_tokens})
5817 5818 5819 5820 5821
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5822
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5823
            attrs={"tokens": ignored_tokens})
5824 5825
        label = erased_label

5826 5827 5828 5829 5830
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5831
    # edit distance op
X
Xin Pan 已提交
5832 5833
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5834 5835
    helper.append_op(
        type="edit_distance",
5836
        inputs=this_inputs,
5837 5838
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5839 5840
        attrs={"normalized": normalized})

5841
    return edit_distance_out, sequence_num
5842 5843 5844 5845 5846


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5847

Y
ying 已提交
5848 5849 5850 5851
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5869
        input.lod = [[4, 4]]
M
minqiyang 已提交
5870

W
whs 已提交
5871
        Computation:
5872

W
whs 已提交
5873 5874 5875 5876 5877 5878
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5879 5880 5881 5882 5883

        output.data = [[2],
                       [1],
                       [3]]

5884
        output.lod = [[2, 1]]
5885

W
whs 已提交
5886

5887 5888
    Args:

Y
ying 已提交
5889 5890 5891 5892 5893 5894 5895 5896 5897
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5898
        name (str): The name of this layer. It is optional.
5899 5900

    Returns:
H
haowang101779990 已提交
5901 5902 5903
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5904
                  LoD [[]] and dims [1, 1].
5905 5906 5907 5908

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5909
            import paddle.fluid as fluid
5910 5911
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5912
    """
5913
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5914
    _, topk_indices = topk(input, k=1)
5915 5916

    # ctc align op
X
Xin Pan 已提交
5917
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5918 5919 5920
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5921
        outputs={"Output": [ctc_out]},
5922 5923
        attrs={"merge_repeated": True,
               "blank": blank})
5924
    return ctc_out
5925 5926


5927 5928 5929 5930 5931 5932
def warpctc(input,
            label,
            blank=0,
            norm_by_times=False,
            input_length=None,
            label_length=None):
W
wanghaoshuang 已提交
5933
    """
5934 5935
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5936
    to compute Connectionist Temporal Classification (CTC) loss.
5937 5938
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5939 5940 5941
    input tensor.

    Args:
5942
       input (Variable): The unscaled probabilities of variable-length sequences,
5943 5944 5945
         which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
         information. When it is a 2-D LodTensor, it's shape is 
         [Lp, num_classes + 1], where Lp is the sum of all input
W
wanghaoshuang 已提交
5946
         sequences' length and num_classes is the true number of classes.
5947 5948 5949 5950
         (not including the blank label). When it is a 3-D Tensor, it's shape 
         is [max_logit_length, batch_size, num_classes + 1],
         where max_logit_length is the length of the longest
         input logit sequence.
5951
       label (Variable): The ground truth of variable-length sequence,
5952 5953 5954
         which is a 2-D Tensor with LoD information or a 2-D Tensor without
         LoD information. When it is a 2-D LoDTensor or 2-D Tensor, 
         it is of the shape [Lg, 1], where Lg is th sum of all labels' length.
5955
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5956 5957
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5958 5959 5960
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5961
         follewed by a mean_op.
5962 5963 5964 5965
       input_length(Variable): The length for each input sequence if it is 
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
       label_length(Variable): The length for each label sequence if it is
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
W
wanghaoshuang 已提交
5966 5967

    Returns:
5968 5969
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5970 5971 5972

    Examples:
        .. code-block:: python
5973

5974
            # using LoDTensor
B
Bai Yifan 已提交
5975
            import paddle.fluid as fluid
5976 5977 5978
            import numpy as np
            
            label = fluid.layers.data(name='label', shape=[12, 1],
B
Bai Yifan 已提交
5979
                                      dtype='float32', lod_level=1)
5980 5981 5982
            predict = fluid.layers.data(name='predict', 
                                        shape=[11, 8],
                                        dtype='float32',lod_level=1)
5983
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5984

5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
            # using Tensor
            input_length = fluid.layers.data(name='logits_length', shape=[11],
                                         dtype='int64')
            label_length = fluid.layers.data(name='labels_length', shape=[12],
                                         dtype='int64')
            target = fluid.layers.data(name='target', shape=[12, 1],
                                       dtype='int32')
            # length of the longest logit sequence
            max_seq_length = 4
            # number of logit sequences
            batch_size = 4
            output = fluid.layers.data(name='output', 
                                       shape=[max_seq_length, batch_size, 8],
                                       dtype='float32')
            loss = fluid.layers.warpctc(input=output,label=target,
                                        input_length=input_length,
                                        label_length=label_length)

W
wanghaoshuang 已提交
6003
    """
F
fengjiayi 已提交
6004
    helper = LayerHelper('warpctc', **locals())
6005 6006 6007 6008 6009
    this_inputs = {'Logits': [input], 'Label': [label]}
    if input_length and label_length:
        this_inputs['LogitsLength'] = [input_length]
        this_inputs['LabelLength'] = [label_length]

X
Xin Pan 已提交
6010 6011
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
6012

W
wanghaoshuang 已提交
6013 6014
    helper.append_op(
        type='warpctc',
6015
        inputs=this_inputs,
W
wanghaoshuang 已提交
6016 6017
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
6018 6019 6020 6021
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
        })
W
wanghaoshuang 已提交
6022
    return loss_out
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
6038 6039 6040
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
6041 6042 6043 6044 6045
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
6046

6047
            out.lod  = [[0, 1, 3]]
6048 6049 6050 6051

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
6052 6053 6054 6055 6056 6057 6058
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
6059 6060 6061

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
6062 6063

    Returns:
6064

6065 6066 6067 6068 6069
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
6070 6071 6072
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
6073
    """
L
lujun 已提交
6074
    assert not in_dygraph_mode(), (
6075
        "sequence layer is not supported in dygraph mode yet.")
6076
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
6077
    out = helper.create_variable_for_type_inference(helper.input_dtype())
6078 6079 6080 6081 6082 6083
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
6084 6085


6086 6087 6088 6089
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
6090 6091 6092 6093 6094 6095
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
6096
        num_neg_samples=None,
6097 6098 6099
        name=None,
        sampler="uniform",
        custom_dist=None,
6100 6101
        seed=0,
        is_sparse=False):
6102 6103 6104 6105 6106 6107 6108
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
6109 6110
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
6111
            sample is 1.0.
C
chengduo 已提交
6112 6113 6114 6115 6116 6117 6118 6119 6120
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
6121
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
6122 6123
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
6124 6125 6126
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
6127
        custom_dist (float[]): A float[] with size=num_total_classes.
6128 6129 6130 6131
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
6132
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
6133

6134
    Returns:
Y
Yibing Liu 已提交
6135 6136 6137 6138 6139 6140
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
6175
    """
Y
Yang Yu 已提交
6176 6177 6178
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
6179 6180

    dim = input.shape[1]
Y
Yang Yu 已提交
6181 6182 6183 6184 6185 6186
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
6187
    inputs = {}
C
chengduo 已提交
6188 6189 6190 6191 6192 6193 6194
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
6195 6196 6197
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
6198

6199 6200 6201 6202
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
6203 6204 6205 6206 6207 6208 6209

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
6210 6211
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
6212
        custom_dist_len = num_total_classes
6213 6214 6215 6216 6217 6218
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
6219
            if normal_prob - 1.0 > 0:
6220
                bigs.append((i, normal_prob))
6221
            elif 1.0 - normal_prob > 0:
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
6237
            if big_left - 1.0 > 0:
6238
                bigs.append((big_idx, big_left))
6239
            elif 1.0 - big_left > 0:
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
6269 6270 6271 6272
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

6273 6274 6275 6276 6277
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

6278 6279 6280 6281
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6282

Y
Yang Yu 已提交
6283 6284
    attrs = {
        'num_total_classes': int(num_total_classes),
6285 6286
        'num_neg_samples': num_neg_samples,
        'seed': seed,
6287
        'sampler': sampler,
6288 6289
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
6290
    }
Y
Yang Yu 已提交
6291 6292 6293

    helper.append_op(
        type='nce',
C
chengduo 已提交
6294
        inputs=inputs,
Y
Yang Yu 已提交
6295 6296 6297 6298 6299 6300
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
6301
    return cost / (num_neg_samples + 1)
6302 6303


C
chengduo 已提交
6304 6305
def hsigmoid(input,
             label,
6306
             num_classes,
C
chengduo 已提交
6307 6308
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
6309
             name=None,
6310 6311 6312
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
6313
             is_sparse=False):
W
weixing02 已提交
6314 6315
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
6316
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
6317
    complete binary tree, or you can use is_custom to pass your own tree to
6318
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
6319 6320 6321 6322 6323 6324
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6325
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6326
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6327

6328 6329
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6330 6331 6332 6333
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6334
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6335
       related to the same batch of inputs.
6336

W
weixing02 已提交
6337
    Args:
M
minqiyang 已提交
6338
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6339 6340 6341 6342
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6343 6344
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6345
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6357
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6358
            it should be in leaf -> root order
M
minqiyang 已提交
6359 6360 6361
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6362
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6363
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6364
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6365
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6366
             of W and input will be sparse.
W
weixing02 已提交
6367 6368

    Returns:
J
JiabinYang 已提交
6369
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6370 6371 6372 6373 6374

    Examples:

        .. code-block:: python

6375
            import paddle.fluid as fluid
G
guosheng 已提交
6376 6377 6378
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6379 6380 6381 6382
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6383 6384
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6385
    dim = input.shape[1]
6386
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6387 6388 6389
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6390 6391 6392 6393 6394 6395 6396 6397 6398
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6399
    if (is_custom) and (path_code is None):
6400
        raise ValueError("path_code should not be None with custom tree")
6401
    elif (is_custom) and (path_table is None):
6402
        raise ValueError("path_table should not be None with custom tree")
6403
    elif (is_custom) and (num_classes is None):
6404
        raise ValueError("num_classes should not be None with custom tree")
6405 6406 6407
    else:
        pass

J
JiabinYang 已提交
6408
    weights = None
6409 6410 6411 6412
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6413
    if not is_custom:
J
JiabinYang 已提交
6414 6415 6416 6417 6418 6419 6420 6421
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6422
            shape=[num_classes, dim],
J
JiabinYang 已提交
6423 6424
            is_bias=False,
            dtype=input.dtype)
6425 6426 6427
    inputs = {
        "X": input,
        "W": weights,
6428
        "PathTable": path_table,
6429
        "PathCode": path_code,
6430 6431
        "Label": label
    }
W
weixing02 已提交
6432
    if helper.bias_attr:
6433
        if not is_custom:
J
JiabinYang 已提交
6434 6435
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6436
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6437 6438 6439 6440 6441 6442
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6443
                shape=[num_classes, 1],
J
JiabinYang 已提交
6444 6445 6446
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6447 6448
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6449
        inputs=inputs,
W
weixing02 已提交
6450
        outputs={"Out": out,
6451 6452 6453 6454 6455 6456 6457
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6458 6459 6460
    return out


Y
fix ci.  
ying 已提交
6461
def transpose(x, perm, name=None):
Y
ying 已提交
6462 6463 6464 6465 6466 6467 6468
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6469 6470 6471
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6472 6473 6474 6475 6476 6477 6478

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6479
            # use append_batch_size=False to avoid prepending extra
6480
            # batch size in shape
6481
            import paddle.fluid as fluid
6482
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6483
                            dtype='float32', append_batch_size=False)
6484
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6485 6486
    """

Y
fix ci.  
ying 已提交
6487
    if len(perm) != len(x.shape):
Y
ying 已提交
6488 6489
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6490
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6491 6492 6493 6494 6495 6496
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6497 6498

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6499 6500
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6501
    helper.append_op(
6502
        type='transpose2',
Y
fix ci.  
ying 已提交
6503
        inputs={'X': [x]},
6504 6505
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6506 6507
        attrs={'axis': perm})
    return out
6508 6509


6510 6511 6512 6513 6514 6515 6516
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6517
    """
6518 6519 6520 6521 6522 6523 6524
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6553 6554 6555 6556 6557 6558 6559 6560 6561
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6562 6563 6564
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6565 6566 6567 6568 6569
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6597 6598 6599
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6612
            output.dims = {8, 8}
6613

6614
            output.lod = [[4, 4]]
6615

T
Tink_Y 已提交
6616
    Examples:
6617 6618 6619

        .. code-block:: python

B
Bai Yifan 已提交
6620 6621 6622
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6623
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6624 6625
                input=data, stride=[1, 1], filter_size=[2, 2])

6626 6627

    """
L
lujun 已提交
6628
    assert not in_dygraph_mode(), (
6629
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6640
    inputs = {"X": input}
6641
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6642 6643 6644 6645 6646
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6647
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6648
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6649
    helper.append_op(
6650
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6651
    return out
6652 6653


Y
yuyang18 已提交
6654
@templatedoc()
6655
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6656 6657
    """
    ${comment}
6658 6659

    Args:
Y
yuyang18 已提交
6660
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6661 6662
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6663 6664 6665 6666 6667
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6668
        ${out_comment}.
6669 6670

    Examples:
Y
yuyang18 已提交
6671 6672 6673 6674
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6675 6676 6677 6678 6679 6680
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6681
    out = helper.create_variable_for_type_inference(dtype)
6682 6683 6684 6685 6686
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6687
    return helper.append_activation(out)
6688 6689


Y
yuyang18 已提交
6690
@templatedoc()
6691 6692
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6693 6694
    ${comment}

L
lujun 已提交
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6738 6739

    Args:
Y
yuyang18 已提交
6740 6741
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6742 6743

    Returns:
Y
yuyang18 已提交
6744
        ${out_comment}.
6745 6746
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6747 6748 6749 6750 6751

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6752
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6753 6754 6755 6756 6757 6758
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6759 6760


6761 6762 6763
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6764
                               ignore_index=kIgnoreIndex,
6765
                               numeric_stable_mode=True,
6766 6767
                               return_softmax=False,
                               axis=-1):
6768 6769
    """
    **Softmax With Cross Entropy Operator.**
6770

6771
    Cross entropy loss with softmax is used as the output layer extensively. This
6772 6773 6774
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6775

6776 6777 6778
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6779

6780 6781 6782 6783
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6784

6785
    The equation is as follows:
6786

6787
    1) Hard label (one-hot label, so every sample has exactly one class)
6788

6789 6790 6791 6792
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6793

6794 6795 6796
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6797

6798 6799 6800 6801
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6802 6803
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6804 6805

    .. math::
6806

H
haowang101779990 已提交
6807
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6808

H
haowang101779990 已提交
6809
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6810

H
haowang101779990 已提交
6811
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6812 6813 6814

    and then cross entropy loss is calculated by softmax and label.

6815
    Args:
6816 6817 6818 6819 6820 6821
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6822
        soft_label (bool): A flag to indicate whether to interpretate the given
6823
            labels as soft labels. Default False.
M
minqiyang 已提交
6824 6825
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6826 6827
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6828 6829
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6830 6831 6832 6833
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6834
                                    Note that the speed may be slower when use
6835
                                    stable algorithm. Default: True
6836
        return_softmax (bool): A flag indicating whether to return the softmax
6837
                               along with the cross entropy loss. Default: False
6838 6839 6840
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6841

6842
    Returns:
H
haowang101779990 已提交
6843 6844
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6845 6846 6847 6848
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6849 6850 6851 6852

    Examples:
        .. code-block:: python

6853 6854
            import paddle.fluid as fluid

6855 6856 6857
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6858 6859
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6860 6861
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6862 6863
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6864 6865 6866 6867 6868 6869
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6870 6871 6872
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6873 6874
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6875
        })
6876 6877 6878 6879

    if return_softmax:
        return loss, softmax

6880 6881 6882
    return loss


6883 6884 6885
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6886
                                       num_true=1,
6887
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6888 6889 6890
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6891
                                       seed=0):
X
xuezhong 已提交
6892 6893 6894 6895 6896
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6897
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6898 6899 6900 6901 6902 6903 6904 6905
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6906
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6907 6908 6909 6910 6911 6912 6913 6914
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6915
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6927
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6928 6929 6930 6931 6932
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6933
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6934
            logits.
X
xuezhong 已提交
6935 6936 6937 6938 6939
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6940 6941 6942
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6943 6944 6945 6946 6947 6948 6949
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6950 6951 6952
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6953
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6954
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6955
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6956
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6957 6958 6959 6960 6961 6962 6963 6964
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6965 6966
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6967 6968
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6969 6970 6971 6972 6973

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6974
            'Labels': label,
X
xuezhong 已提交
6975 6976
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6977 6978 6979 6980
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6981
            'SampledLabels': sampled_label,
6982 6983 6984
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6985 6986
        },
        attrs={
X
xuezhong 已提交
6987
            'use_customized_samples': use_customized_samples,
6988
            'uniq': True,
X
xuezhong 已提交
6989 6990 6991 6992
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6993 6994
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6995 6996 6997 6998 6999 7000
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

7001 7002
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
7003
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
7004
                'Label': sampled_softlabel},
X
xuezhong 已提交
7005 7006 7007
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
7008
            'soft_label': True,
X
xuezhong 已提交
7009 7010 7011
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
7012
    return loss / num_true
X
xuezhong 已提交
7013 7014


7015 7016
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
7017 7018
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
7019
    For each instance, it computes the smooth L1 loss element by element first
7020
    and then sums all the losses. So the shape of ouput Variable is
7021
    [batch_size, 1].
7022

7023 7024
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
7025
            L1 loss op with shape [batch_size, dim1, ..., dimN].
7026
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
7027
            L1 loss op with same shape as :attr:`x`.
7028
        inside_weight (Variable|None):  A tensor with rank at least 2. This
7029 7030
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
7031
            by this tensor element by element.
7032
        outside_weight (Variable|None): A tensor with rank at least 2. This
7033 7034
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
7035
            element by element.
7036
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
7037 7038
           scalar with default value 1.0.

7039
    Returns:
7040
        Variable: The output smooth L1 loss with shape [batch_size, 1].
7041 7042 7043 7044

    Examples:
        .. code-block:: python

7045
            import paddle.fluid as fluid
7046
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
7047 7048
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
7049
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
7050
            out = fluid.layers.smooth_l1(x=fc, y=label)
7051
    """
7052

7053
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
7054 7055
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
7066
        attrs={'sigma': sigma if sigma is not None else 1.0})
7067
    return loss
7068 7069


7070
def one_hot(input, depth, allow_out_of_range=False):
7071
    """
Y
Yibing Liu 已提交
7072
    This layer creates the one-hot representations for input indices.
7073 7074

    Args:
Y
Yibing Liu 已提交
7075 7076
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
7077 7078 7079 7080
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
7081 7082

    Returns:
Y
Yibing Liu 已提交
7083
        Variable: The one-hot representations of input.
7084 7085

    Examples:
C
caoying03 已提交
7086
        .. code-block:: python
7087

7088
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7089 7090
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
7091 7092
    """
    helper = LayerHelper("one_hot", **locals())
7093

X
Xin Pan 已提交
7094
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
7105
            depth.stop_gradient = True
7106 7107
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
7108 7109
    helper.append_op(
        type="one_hot",
7110 7111
        inputs=inputs,
        attrs=attrs,
7112 7113
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
7114
    return one_hot_out
Y
Yu Yang 已提交
7115 7116


Y
Yu Yang 已提交
7117
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
7118
    """
Y
yi.wu 已提交
7119 7120 7121
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
7122 7123 7124 7125 7126 7127

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

7128 7129
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
7130 7131 7132 7133

    Examples:
        .. code-block:: python

7134
           import paddle.fluid as fluid
Y
yi.wu 已提交
7135
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
7136
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
7137 7138
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
7139 7140
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
7141 7142 7143 7144 7145
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
7146
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
7147
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
7148 7149
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
7150
            outputs={'Out': [counter]},
7151
            attrs={'step': float(step)})
Y
Yu Yang 已提交
7152 7153 7154
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
7155 7156


7157
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
7158
    """
C
caoying03 已提交
7159 7160
    Gives a new shape to the input Tensor without changing its data.

7161
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
7162
    :attr:`shape` is a list of integer or tensor variable while :attr:`actual_shape` is a tensor
7163
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
7164
    if it is provided and it only contains integer, while :attr:`shape` still should be set correctly to
7165
    gurantee shape inference in compile-time.
C
caoying03 已提交
7166

7167
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
7168

7169 7170 7171 7172
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

7173
    2. 0 means the actual dimension value is going to be copied from the
7174 7175 7176 7177
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
7178 7179

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
7180
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
7181
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
7182

7183
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7184 7185
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
7186 7187
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
7188
    dimensions.
C
caoying03 已提交
7189

7190
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
7191 7192 7193 7194
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
7195

7196 7197
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the future and only use :attr:`shape` instead.

C
caoying03 已提交
7198
    Args:
7199
        x(variable): The input tensor.
7200 7201 7202 7203
        shape(list|tuple|Variable): The new shape. At most one dimension of the new shape can
                     be -1. If :attr:`shape` is a list or tuple, it can contain Variable or not and
                     the shape of Variable must be [1].

7204 7205 7206 7207
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
7208 7209 7210 7211
                                than :attr:`shape(list|tuple)` but not :attr:`shape(Variable)`. \
                                This argument :attr:`actual_shape` will be removed in a future version. \
                                Instructions for updating: :attr:`actual_shape` is deprecated,
                                only use :attr:`shape` instead.
7212 7213
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
7214 7215 7216
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
7217
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
7218
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
7219

7220
    Returns:
G
guosheng 已提交
7221 7222 7223 7224
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
7225

X
Xin Pan 已提交
7226 7227 7228
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
7229 7230
    Examples:
        .. code-block:: python
G
guosheng 已提交
7231

7232
            import paddle.fluid as fluid
7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            data_1 = fluid.layers.data(
                name='data_1', shape=[2, 4, 6], dtype='float32')
            reshaped_1 = fluid.layers.reshape(
                x=data_1, shape=[-1, 0, 3, 2], inplace=True)

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
C
caoying03 已提交
7246 7247
    """

7248 7249 7250
    if not isinstance(shape, (list, tuple, Variable)):
        raise TypeError(
            "Input shape must be an Variable or python list or tuple.")
7251

7252 7253
    if not isinstance(actual_shape, Variable) and (actual_shape is not None):
        raise TypeError("actual_shape should either be Variable or None.")
7254

7255
    helper = LayerHelper("reshape2", **locals())
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298
    inputs = {"X": x}
    attrs = {}

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension in shape can be unknown.")
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The indice of 0s in shape can not exceed Rank(X).")
                else:
                    assert dim_size > 0, (
                        "Each dimension size given in shape must not be negtive "
                        "except one unknown dimension.")
        return attrs_shape

7299 7300 7301 7302
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
            if contain_var(shape):
                inputs['ShapeTensor'] = get_new_shape_tensor(shape)
            elif isinstance(actual_shape, Variable):
                actual_shape.stop_gradient = True
                inputs["Shape"] = actual_shape
7315

7316 7317
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
7318
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
7319
    helper.append_op(
7320
        type="reshape2",
X
Xin Pan 已提交
7321
        inputs=inputs,
7322
        attrs=attrs,
7323 7324
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
7325

D
dzhwinter 已提交
7326
    return helper.append_activation(out)
7327

7328

7329
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
7330
    """
M
minqiyang 已提交
7331 7332 7333
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
7334
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
7335

H
haowang101779990 已提交
7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7357

Y
Yibing Liu 已提交
7358
    Args:
7359
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7360
        axes (list): List of integers, indicating the dimensions to be squeezed.
7361
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7362 7363 7364 7365 7366 7367 7368

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7369
            import paddle.fluid as fluid
7370
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7371
            x = layers.data(name='x', shape=[5, 1, 10])
7372
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7373
    """
L
lujun 已提交
7374
    assert not in_dygraph_mode(), (
L
lujun 已提交
7375
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7376
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7377 7378
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7379
    helper.append_op(
7380
        type="squeeze2",
7381
        inputs={"X": input},
Y
Yibing Liu 已提交
7382
        attrs={"axes": axes},
7383 7384
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7385

7386 7387 7388
    return out


7389
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7390
    """
M
minqiyang 已提交
7391 7392 7393
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7394

M
minqiyang 已提交
7395
    For example:
H
haowang101779990 已提交
7396 7397 7398

    .. code-block:: text

M
minqiyang 已提交
7399
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7400
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7401

Y
Yibing Liu 已提交
7402
    Args:
7403
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7404
        axes (list): List of integers, indicating the dimensions to be inserted.
7405
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7406 7407 7408 7409 7410 7411 7412

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7413 7414 7415
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7416 7417
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7418 7419
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7420
    helper.append_op(
7421
        type="unsqueeze2",
7422
        inputs={"X": input},
Y
Yibing Liu 已提交
7423
        attrs={"axes": axes},
7424 7425
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7426

7427 7428
    return out

7429

Y
yangyaming 已提交
7430
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7431
    """
Y
Yibing Liu 已提交
7432
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7433 7434 7435 7436
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7437
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7438 7439 7440 7441 7442 7443

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7444
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7445 7446 7447
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7448
            target_lod: [4, 2]
Y
yangyaming 已提交
7449 7450

            then we get a 1-level LoDTensor:
7451
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7452 7453 7454 7455 7456 7457
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7458
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7459 7460 7461 7462
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7463
                y.data = [[2, 4]]
Y
yangyaming 已提交
7464 7465 7466
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7467
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7468 7469 7470 7471 7472 7473
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7474
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7475 7476 7477 7478
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7479
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7480 7481 7482 7483
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7484
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7485 7486 7487 7488
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7489
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7490
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7491
                           from :attr:`y`.
Y
yangyaming 已提交
7492
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7493
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7494 7495

    Returns:
Y
Yibing Liu 已提交
7496
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7497 7498

    Raises:
Y
Yibing Liu 已提交
7499
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7500 7501 7502 7503

    Examples:
        .. code-block:: python

7504
            import paddle.fluid as fluid
7505 7506 7507
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7508 7509
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7510
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7548
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7549 7550 7551 7552 7553 7554

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7555

7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7566 7567 7568
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7569 7570
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7571 7572 7573 7574 7575 7576 7577 7578

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7579
    helper.append_op(
7580
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7581
    return out
D
dragonwarrior 已提交
7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7593
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7622
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7623 7624
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7637 7638 7639
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7653 7654 7655 7656


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7657
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7658
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7659

G
guosheng 已提交
7660
    Specifically, the number of values padded before the contents of :attr:`x`
7661
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7662
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7663
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7686
                         The length of :attr:paddings must be
G
guosheng 已提交
7687 7688 7689 7690 7691 7692 7693 7694 7695 7696
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7697

G
guosheng 已提交
7698
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7699 7700
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7701 7702 7703 7704 7705
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7706
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7707 7708 7709 7710 7711 7712 7713
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7714 7715


C
chengduo 已提交
7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7747 7748
		And
            pad_value = -1,
C
chengduo 已提交
7749

T
Tink_Y 已提交
7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7780 7781 7782
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7783 7784 7785 7786 7787
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7788
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7789 7790 7791 7792 7793 7794 7795 7796 7797
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7798 7799 7800 7801 7802 7803 7804
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7805 7806
    called label-smoothing regularization (LSR).

7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7830
                              be :math:`(1, class\_num)`.
7831 7832
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7833
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7834 7835 7836 7837 7838 7839 7840 7841 7842
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7843
            
7844
            import paddle.fluid as fluid
7845
            import paddle.fluid.layers as layers
7846 7847 7848 7849 7850 7851 7852 7853 7854 7855

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7856
    smooth_label = helper.create_variable_for_type_inference(dtype)
7857 7858 7859 7860 7861 7862 7863
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7864 7865


W
wopeizl 已提交
7866 7867 7868 7869 7870 7871 7872
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7873 7874 7875 7876 7877
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7878 7879 7880 7881 7882 7883 7884 7885 7886 7887
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7918 7919


J
jerrywgz 已提交
7920 7921 7922 7923 7924 7925
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7926 7927
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7928 7929 7930 7931 7932
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7933 7934 7935 7936 7937
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7948
            import paddle.fluid as fluid
J
jerrywgz 已提交
7949 7950 7951 7952
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7953 7954 7955
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7956 7957 7958 7959 7960 7961
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7962
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
8003 8004
        .. code-block:: python

S
SunGaofeng 已提交
8005 8006 8007
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
8008
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
8009
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
8010 8011
    """
    label = one_hot(label, depth=input.shape[-1])
8012
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
8013 8014 8015 8016 8017 8018
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
8019 8020


8021 8022 8023 8024
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
8025
                 resample='BILINEAR',
8026 8027
                 actual_shape=None,
                 align_corners=True,
8028 8029
                 align_mode=1,
                 data_format='NCHW'):
8030
    """
Q
qiaolongfei 已提交
8031
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
8032

8033 8034 8035 8036
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
    and the resizing only applies on the three dimensions(depth, hight and width).
8037

8038
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
8039 8040
    future and only use :attr:`out_shape` instead.

8041
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
8042

8043
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
8044

K
Kaipeng Deng 已提交
8045 8046
        'TRILINEAR' : Trilinear interpolation

8047
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
8048

8049 8050 8051 8052 8053 8054 8055 8056 8057 8058
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
8059 8060 8061 8062 8063
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
8064
    Align_corners and align_mode are optinal parameters,the calculation method 
8065 8066 8067 8068
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8069
    .. code-block:: text
8070

T
Tink_Y 已提交
8071
        For scale:
8072
          
T
Tink_Y 已提交
8073
            if align_corners = True && out_size > 1 :
8074

T
Tink_Y 已提交
8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
8086

T
Tink_Y 已提交
8087 8088
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8089

T
Tink_Y 已提交
8090 8091
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
8092

T
Tink_Y 已提交
8093 8094
          else:
              align_corners = True
8095

T
Tink_Y 已提交
8096 8097
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8098

T
Tink_Y 已提交
8099 8100
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8101

T
Tink_Y 已提交
8102 8103 8104 8105 8106 8107 8108 8109 8110 8111
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8112

T
Tink_Y 已提交
8113 8114 8115 8116
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8117

T
Tink_Y 已提交
8118 8119
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8120

K
Kaipeng Deng 已提交
8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
8143 8144 8145 8146 8147 8148
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
8149 8150 8151
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

8152 8153


8154
    Args:
8155 8156
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
8157
        out_shape(list|tuple|Variable|None): Output shape of image resize
8158 8159 8160 8161
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
8162 8163 8164
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
8165
             Default: None.
8166 8167
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
8168 8169
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
8170 8171 8172
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8173
                                :attr:`out_shape` and :attr:`scale` specifying
8174 8175
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8176 8177 8178 8179 8180 8181
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8182
                                Default: None
8183 8184 8185 8186
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
8187
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
8188
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
8189 8190 8191 8192 8193 8194
                            src_idx = scale*dst_index.
        data_format(str, optional): NCHW(num_batches, channels, height, width) or 
                                    NHWC(num_batches, height, width, channels) for 4-D Tensor,
                                    NCDHW(num_batches, channels, depth, height, width) or 
                                    NDHWC(num_batches, depth, height, width, channels) for 5-D Tensor.
                                    Default: 'NCHW'.
8195 8196

    Returns:
8197 8198
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
8199

8200 8201 8202
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
8203 8204 8205 8206
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
8207
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
8208 8209
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
8210
        ValueError: scale should be greater than zero.
8211 8212
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
8213
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
8214

8215 8216 8217
    Examples:
        .. code-block:: python

8218
            import paddle.fluid as fluid
8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.image_resize(input, out_shape=[12, dim1], resample="NEAREST")
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.image_resize(input, out_shape=shape_tensor, resample="NEAREST")
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.image_resize(input, out_shape=[4, 4], resample="NEAREST", actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.image_resize(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]

8245
    """
8246 8247
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
8248
        'TRILINEAR': 'trilinear',
8249 8250
        'NEAREST': 'nearest',
    }
8251 8252
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
8253 8254
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
8255
    resample_type = resample_methods[resample]
8256

K
Kaipeng Deng 已提交
8257 8258 8259 8260 8261
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

8262 8263 8264 8265 8266
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

8267
    if out_shape is None and scale is None:
8268
        raise ValueError("One of out_shape and scale must not be None.")
8269
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
8270
    dtype = helper.input_dtype()
8271

8272 8273 8274 8275 8276 8277 8278 8279 8280
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

8281 8282 8283
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

8284 8285 8286 8287 8288
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

8289
    inputs = {"X": input}
D
dengkaipeng 已提交
8290
    attrs = {
8291 8292 8293
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
8294 8295
        "interp_method": resample_type,
        "align_corners": align_corners,
8296 8297
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
8298 8299
    }

8300
    if out_shape is not None:
8301
        if isinstance(out_shape, Variable):
8302
            out_shape.stop_gradient = True
8303
            inputs['OutSize'] = out_shape
8304 8305
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
8306 8307
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
8336 8337 8338 8339
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
8340 8341 8342 8343 8344 8345 8346
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
8347 8348 8349 8350
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
8351 8352 8353 8354 8355 8356 8357 8358 8359
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
8360

8361
    else:
8362 8363 8364 8365 8366 8367 8368
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        if isinstance(scale, float):
            if scale <= 0:
                raise ValueError("scale should be greater than zero.")
            attrs['scale'] = float(scale)
8369

8370
    if isinstance(actual_shape, Variable):
8371 8372 8373 8374 8375
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
8376 8377 8378 8379
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
8380
    out = helper.create_variable_for_type_inference(dtype)
8381
    helper.append_op(
8382
        type='{}_interp'.format(resample_type),
8383
        inputs=inputs,
8384
        outputs={"Out": out},
D
dengkaipeng 已提交
8385
        attrs=attrs)
8386
    return out
F
stash  
fengjiayi 已提交
8387 8388


8389
@templatedoc(op_type="bilinear_interp")
8390 8391 8392 8393
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
8394 8395
                    actual_shape=None,
                    align_corners=True,
8396 8397
                    align_mode=1,
                    data_format='NCHW'):
8398
    """
8399 8400
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
8401 8402
    in priority order.

8403 8404 8405
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

8406 8407 8408 8409
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
8410 8411
    again in the other direction.

8412
    For details of bilinear interpolation, please refer to Wikipedia:
8413
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
8414

T
tink2123 已提交
8415
    Align_corners and align_mode are optinal parameters,the calculation 
8416 8417 8418 8419
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8420
    .. code-block:: text
8421

T
Tink_Y 已提交
8422
        For scale:
8423
          
T
Tink_Y 已提交
8424
            if align_corners = True && out_size > 1 :
8425

T
Tink_Y 已提交
8426 8427 8428 8429
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
8430
              scale_factor = float(in_size/out_size)
8431

T
Tink_Y 已提交
8432 8433 8434 8435 8436 8437 8438 8439 8440 8441
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8442

T
Tink_Y 已提交
8443
          else:
T
tink2123 已提交
8444

T
Tink_Y 已提交
8445 8446 8447 8448
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8449

Y
yuyang18 已提交
8450
    Args:
8451 8452
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
8453
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
8454
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
8455 8456
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
8457
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8458
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8459
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8460
             Default: None.
Y
yuyang18 已提交
8461
        name(str|None): The output variable name.
8462 8463 8464
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8465
                                :attr:`out_shape` and :attr:`scale` specifying
8466 8467
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8468 8469 8470 8471 8472 8473
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8474
                                Default: None
8475 8476
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
8477 8478
        data_format(str, optional): NCHW(num_batches, channels, height, width) or 
                                    NHWC(num_batches, height, width, channels). Default: 'NCHW'.
Y
yuyang18 已提交
8479 8480

    Returns:
8481 8482
        A 4-D Tensor in shape of (num_batches, channels, out_h, out_w) or
        (num_batches, out_h, out_w, channels).
8483 8484 8485 8486

    Examples:
        .. code-block:: python

8487
            import paddle.fluid as fluid
8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_bilinear(input, out_shape=[12, dim1])
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_bilinear(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_bilinear(input, out_shape=[4, 4], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_bilinear(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]
8513 8514
    """

8515
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
8516
                        align_corners, align_mode, data_format)
8517 8518


K
Kaipeng Deng 已提交
8519 8520 8521 8522 8523 8524 8525
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
8526 8527
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
8528 8529 8530 8531 8532
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

8533 8534 8535
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
8564

K
Kaipeng Deng 已提交
8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

    Args:
8584 8585
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
K
Kaipeng Deng 已提交
8586
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
8587
            layer, the shape is (out_d, out_h, out_w). Default: None. If a list, 
8588 8589
            each element can be  an integer or a Tensor Variable with shape: [1]. If 
            a Tensor Variable, its dimension size should be 1.
8590
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
8591 8592 8593 8594 8595 8596 8597 8598 8599 8600
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8601 8602 8603 8604 8605 8606
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
K
Kaipeng Deng 已提交
8607 8608 8609
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
8610 8611 8612
        data_format(str, optional): NCDHW(num_batches, channels, depth, height, width) or 
                                    NDHWC(num_batches, depth, height, width, channels).
                                    Default: 'NCDHW'.
K
Kaipeng Deng 已提交
8613 8614

    Returns:
8615 8616
        A 5-D Tensor in shape of (num_batches, channels, out_d, out_h, out_w) or 
        (num_batches, out_d, out_h, out_w, channels).
K
Kaipeng Deng 已提交
8617 8618 8619 8620 8621

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646
            input = fluid.layers.data(name="input", shape=[3, 6, 9, 11], dtype="float32")
            # input.shape = [-1, 3, 6, 9, 11], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
            # out0.shape = [-1, 3, 12, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_trilinear(input, out_shape=[12, dim1, 4])
            # out1.shape = [-1, 3, 12, -1, 4]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="shape_tensor", shape=[3], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_trilinear(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[3], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_trilinear(input, out_shape=[4, 4, 8], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4, 8]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_trilinear(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1, -1]
K
Kaipeng Deng 已提交
8647 8648 8649
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
8650
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
8651 8652


8653
@templatedoc(op_type="nearest_interp")
8654 8655 8656 8657
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
8658
                   actual_shape=None,
8659 8660
                   align_corners=True,
                   data_format='NCHW'):
8661
    """
8662
    Resize input by performing nearest neighbor interpolation in both the
8663 8664
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
8665

8666 8667 8668
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

8669 8670
    Example:

T
Tink_Y 已提交
8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
8683
          
T
Tink_Y 已提交
8684 8685
          if:
              align_corners = False
8686

T
Tink_Y 已提交
8687 8688
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8689

T
Tink_Y 已提交
8690 8691
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8692

T
Tink_Y 已提交
8693 8694
          else:
              align_corners = True
8695

T
Tink_Y 已提交
8696 8697
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8698

T
Tink_Y 已提交
8699 8700
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8701 8702


8703
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8704
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8705 8706

    Args:
8707 8708
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
8709
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
8710 8711 8712 8713
            layer, the shape is (out_h, out_w). Default: None. If a list, each 
            element can be integer or a tensor Variable with shape: [1]. If a 
            tensor Variable, its dimension size should be 1.
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8714
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8715
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8716
             Default: None.
Y
yuyang18 已提交
8717
        name(str|None): The output variable name.
8718 8719 8720
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8721
                                :attr:`out_shape` and :attr:`scale` specifying
8722 8723
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
8724 8725 8726 8727 8728 8729
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
                                errors would be occured in graph constructing stage.
8730
                                Default: None
8731
        align_corners(bool): ${align_corners_comment}
8732 8733 8734
        data_format(str, optional): NCHW(num_batches, channels, height, width) or 
                                    NHWC(num_batches, height, width, channels).
                                    Default: 'NCHW'.
Y
yuyang18 已提交
8735 8736

    Returns:
8737 8738
        A 4-D Tensor in shape of (num_batches, channels, out_h, out_w) or 
        (num_batches, out_h, out_w, channels).
8739 8740 8741 8742

    Examples:
        .. code-block:: python

8743
            import paddle.fluid as fluid
8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768
            input = fluid.layers.data(name="input", shape=[3, 6, 9], dtype="float32")
            # input.shape = [-1, 3, 6, 9], where -1 indicates batch size, and it will get the exact value in runtime.

            out0 = fluid.layers.resize_nearest(input, out_shape=[12, 12])
            # out0.shape = [-1, 3, 12, 12], it means out0.shape[0] = input.shape[0] in runtime.

            # out_shape is a list in which each element is a integer or a tensor Variable
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            out1 = fluid.layers.resize_nearest(input, out_shape=[12, dim1])
            # out1.shape = [-1, 3, 12, -1]

            # out_shape is a 1-D tensor Variable
            shape_tensor = fluid.layers.data(name="resize_shape", shape=[2], dtype="int32", append_batch_size=False)
            out2 = fluid.layers.resize_nearest(input, out_shape=shape_tensor)
            # out2.shape = [-1, 3, -1, -1]

            # when use actual_shape
            actual_shape_tensor = fluid.layers.data(name="actual_shape_tensor", shape=[2], dtype="int32", append_batch_size=False)
            out3 = fluid.layers.resize_nearest(input, out_shape=[4, 4], actual_shape=actual_shape_tensor)
            # out3.shape = [-1, 3, 4, 4]

            # scale is a Variable
            scale_tensor = fluid.layers.data(name="scale", shape=[1], dtype="float32", append_batch_size=False)
            out4 = fluid.layers.resize_nearest(input, scale=scale_tensor)
            # out4.shape = [-1, 3, -1, -1]
8769 8770
    """

8771 8772 8773 8774 8775 8776 8777 8778 8779 8780
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
8781 8782 8783 8784


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8785 8786 8787
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8788 8789 8790 8791 8792 8793 8794
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8795
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8796

8797
    Returns:
Q
update  
qiaolongfei 已提交
8798
        Variable: The output is a 4-D tensor of the shape
8799
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8800 8801 8802 8803

    Examples:
        .. code-block:: python

8804
            import paddle.fluid as fluid
R
ruri 已提交
8805 8806
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8807 8808 8809 8810 8811 8812 8813 8814 8815 8816
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8817 8818 8819
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8820 8821 8822
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8823
def gather(input, index, overwrite=True):
W
whs 已提交
8824
    """
Q
qiaolongfei 已提交
8825 8826
    **Gather Layer**

8827
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8828 8829 8830 8831
    of X indexed by `index` and concatenate them together.

    .. math::

8832
        Out = X[Index]
W
whs 已提交
8833 8834 8835 8836 8837 8838 8839


    .. code-block:: text


                Given:

8840 8841
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8842 8843 8844 8845 8846 8847 8848 8849 8850 8851
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8852
        input (Variable): The source input with rank>=1.
W
whs 已提交
8853
        index (Variable): The index input with rank=1.
8854 8855 8856 8857 8858 8859
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8860 8861 8862 8863 8864

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8865

W
whs 已提交
8866 8867
        .. code-block:: python

8868
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8869 8870
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8871 8872 8873 8874
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8875
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8876 8877 8878 8879
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8880 8881
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8882 8883 8884
    return out


8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
        input (Variable): The source input
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[2, 2], dtype='int32')
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


8970
def scatter(input, index, updates, name=None, overwrite=True):
8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8988 8989 8990 8991
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8992 8993 8994 8995 8996 8997 8998 8999

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

9000 9001 9002 9003 9004
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
9005

9006
            output = fluid.layers.scatter(input, index, updates)
9007 9008 9009
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9010
    out = helper.create_variable_for_type_inference(dtype)
9011 9012 9013 9014 9015
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
9016
        attrs={'overwrite': overwrite},
9017 9018 9019 9020
        outputs={"Out": out})
    return out


9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Variable. :attr:`ref` is a Tensor with rank :math:`R` 
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
        ref (Variable): The ref input.
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same type
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:]
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape and type as ref.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            ref = fluid.layers.data(name='ref', shape=[3, 5, 9, 10], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int32', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter_nd op. 
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            index = fluid.layers.data(name='index', shape=[3, 2], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Q
Qingsheng Li 已提交
9142 9143 9144 9145 9146 9147 9148 9149 9150
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
9151

Q
Qingsheng Li 已提交
9152
    Given the following input:
H
haowang101779990 已提交
9153

Q
Qingsheng Li 已提交
9154
    .. code-block:: text
H
haowang101779990 已提交
9155

Q
Qingsheng Li 已提交
9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
9168

Q
Qingsheng Li 已提交
9169
    .. code-block:: text
H
haowang101779990 已提交
9170

Q
Qingsheng Li 已提交
9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
9186
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
9187 9188 9189 9190

    Examples:

        .. code-block:: python
9191
	
9192
            import paddle.fluid as fluid
9193
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
9194

9195 9196 9197
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
9198 9199 9200
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
9201
    assert not in_dygraph_mode(), (
9202
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
9203 9204
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9205
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
9206 9207 9208 9209 9210 9211 9212 9213 9214
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
9228

9229
    Examples:
9230
        >>> import paddle.fluid as fluid
9231 9232
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
9233
    """
F
stash  
fengjiayi 已提交
9234
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
9235
    dtype = x.dtype
X
Xin Pan 已提交
9236
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
9237
    if seed is None:
9238
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
9239
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
9240
    if isinstance(seed, int):
F
fengjiayi 已提交
9241 9242 9243 9244 9245
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
9246 9247 9248 9249
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
9250
        inputs={"X": x,
F
stash  
fengjiayi 已提交
9251 9252
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
9253 9254
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
9255
    return out
W
whs 已提交
9256 9257


9258
def log(x, name=None):
W
wanghaoshuang 已提交
9259 9260 9261 9262 9263
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

9264
        Out = \\ln(x)
W
wanghaoshuang 已提交
9265 9266

    Args:
9267
        x (Variable): Input tensor.
9268 9269
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
9270 9271 9272 9273 9274 9275 9276 9277

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

9278
            import paddle.fluid as fluid
9279
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
9280
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
9281 9282
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
9283
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9284
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
9285
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
9286 9287 9288
    return out


9289
def relu(x, name=None):
W
wanghaoshuang 已提交
9290 9291
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
9292
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
9293 9294 9295 9296
    the tensor elementwise.

    .. math::

9297
        Out = \\max(0, x)
W
wanghaoshuang 已提交
9298 9299

    Args:
9300
        x (Variable): The input tensor.
9301 9302
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
9303 9304 9305 9306 9307 9308 9309 9310

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

9311
            import paddle.fluid as fluid
9312
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
9313
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
9314 9315
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
9316
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9317
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
9318 9319
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
9320
    return out
9321 9322


C
chengduo 已提交
9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
9347 9348 9349 9350 9351 9352
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
9368 9369 9370
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
9371 9372 9373 9374
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
9375
    .. math::
9376

H
haowang101779990 已提交
9377
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
9378

9379
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
9380 9381 9382 9383 9384
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
9385
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
9386
                           Its shape should be the same as input.
9387
        num_classes (int): The possible number of labels.
W
whs 已提交
9388 9389

    Returns:
M
minqiyang 已提交
9390 9391
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
9392
                     Three variables:
M
minqiyang 已提交
9393

H
haowang101779990 已提交
9394 9395 9396
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
9397 9398 9399 9400

    Examples:

        .. code-block:: python
9401

B
Bai Yifan 已提交
9402
            import paddle.fluid as fluid
9403 9404 9405 9406
            iou_shape = [32, 32]
            num_classes = 5
            predict = fluid.layers.data(name='predict', shape=iou_shape)
            label = fluid.layers.data(name='label', shape=iou_shape)
B
Bai Yifan 已提交
9407
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
9408
                                                          num_classes)
W
whs 已提交
9409 9410 9411
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
9412 9413 9414
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
9415 9416
    helper.append_op(
        type="mean_iou",
W
whs 已提交
9417 9418
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
9419
        outputs={
W
whs 已提交
9420 9421 9422
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
9423 9424 9425
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
9426 9427 9428 9429 9430 9431


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

9432 9433 9434 9435 9436
    **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
    Instructions for updating: Use `fluid.layers.crop_tensor
    <https://www.paddlepaddle.org.cn/documentation/docs/en/api/layers/nn.html#crop_tensor>`_
    instead.

9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
9468
            by `shape`, which can be a Variable or a list/tuple of integer.
9469 9470
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
9471
            iteration. If a list/tuple of integer, it's length must be the same
9472
            as the rank of `x`
S
SunGaofeng 已提交
9473
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
9474
            offsets at each dimension. It can be a Variable or a list/tuple
S
SunGaofeng 已提交
9475
            of integers. If a tensor Variable, it's rank must be the same as `x`.
9476
            This way is suitable for the case that the offsets may be changed
9477
            each iteration. If a list/tuple of integer, it's length must be the
9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
9493
            import paddle.fluid as fluid
9494 9495 9496 9497 9498 9499
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
9500
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
9501 9502 9503 9504 9505

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
9506
            isinstance(shape, Variable)):
9507 9508 9509 9510 9511
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
9512
    out = helper.create_variable_for_type_inference(x.dtype)
9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
9530 9531


9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X =  [[[0, 1, 2, 3]
                       [0, 5, 6, 7]
                       [0, 0, 0, 0]],

                      [[0, 3, 4, 5]
                       [0, 6, 7, 8]
                       [0, 0, 0, 0]]].
            and
                shape = [2, 2, 3],
                offsets = [0, 0, 1],
            output is:
                Out = [[[1, 2, 3]
                        [5, 6, 7]],

                        [[3, 4, 5]
                         [6, 7, 8]]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list|tuple of integer): The output shape is specified
            by `shape`. It can be a 1-D tensor Variable or a list/tuple. If a 
            1-D tensor Variable, it's rank must be the same as `x`. If a 
            list/tuple, it's length must be the same as the rank of `x`. Each 
            element of list can be an integer or a tensor Variable of shape: [1].
            If Variable contained, it is suitable for the case that the shape may 
            be changed each iteration. Only the first element of list/tuple can be 
            set to -1, it means that the first dimension of the output is the same 
            as the input.
        offsets (Variable|list|tuple of integer|None): Specifies the cropping
            offsets at each dimension. It can be a 1-D tensor Variable or a list/tuple.
            If a 1-D tensor Variable, it's rank must be the same as `x`. If a list/tuple, 
            it's length must be the same as the rank of `x`. Each element of list can be
            an integer or a tensor Variable of shape: [1]. If Variable contained, it is 
            suitable for the case that the offsets may be changed each iteration. If None, 
            the offsets are 0 at each dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.
        ValueError: If offsets is not None and not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

            # shape is a 1-D tensor variable
            crop_shape = fluid.layers.data(name="crop_shape", shape=[3], dtype="int32", append_batch_size=False)
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3])
            # crop1.shape = [-1, 2, 3]

            # or shape is a list in which each element is a constant or variable
            y = fluid.layers.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            crop2 = fluid.layers.crop_tensor(y, shape=[-1, 3, dim1, 4])
            # crop2.shape = [-1, 3, -1, 4]

            # offsets is a 1-D tensor variable
            crop_offsets = fluid.layers.data(name="crop_offsets", shape=[3], dtype="int32", append_batch_size=False)
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

            # offsets is a list in which each element is a constant or variable
            offsets_var =  fluid.layers.data(name="dim1", shape=[1], dtype="int32", append_batch_size=False)
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
            isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    if not (isinstance(offsets, list) or isinstance(offsets, tuple) or \
            isinstance(offsets, Variable)):
        raise ValueError("The offsets should be a list, tuple or Variable.")

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def contain_var(input_list):
        for ele in input_list:
            if isinstance(ele, Variable):
                return True
        return False

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
    elif contain_var(offsets):
        new_offsets_tensor = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                assert dim >= 0, ("offsets should be greater or equal to zero.")
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
        ipts['OffsetsTensor'] = new_offsets_tensor
    else:
        attrs['offsets'] = offsets

    unk_dim_idx = -1
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_idx, dim_size in enumerate(shape):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(-1)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one element in shape can be unknown.")
                    assert dim_idx == 0, (
                        "Only the first element in shape can be -1.")
                    unk_dim_idx = dim_idx
                else:
                    assert dim_size > 0, (
                        "Each dimension size given in shape must be greater than zero."
                    )
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
9731

W
whs 已提交
9732
              out_shape = [2, 3, 5, 5]
9733

W
whs 已提交
9734
          Step 1:
9735

W
whs 已提交
9736 9737 9738
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
9739

W
whs 已提交
9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
9785
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
9786
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
9799

S
SunGaofeng 已提交
9800
            import paddle.fluid as fluid
W
whs 已提交
9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
9812
            isinstance(out_shape, Variable)):
W
whs 已提交
9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


9834 9835
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
9836

9837 9838
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
9839
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
9840 9841 9842
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
9843

9844 9845
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
9846

H
haowang101779990 已提交
9847 9848
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
9849 9850
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
9851

H
haowang101779990 已提交
9852 9853 9854 9855 9856 9857 9858 9859
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
9860 9861 9862

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

9880
            import paddle.fluid as fluid
9881 9882 9883
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
9898
    out = helper.create_variable_for_type_inference("float32")
9899 9900 9901 9902 9903 9904 9905 9906

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
9907 9908


M
minqiyang 已提交
9909 9910
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
9911
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
9912
    which compares left score and right score passed in.
M
minqiyang 已提交
9913
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
9914 9915 9916

    .. math::

H
haowang101779990 已提交
9917
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
9918 9919

    Args:
M
minqiyang 已提交
9920
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
9921 9922
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
9923
       margin (float): Indicates the given margin.
M
minqiyang 已提交
9924 9925
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
9926

M
minqiyang 已提交
9927
    Returns:
M
minqiyang 已提交
9928
       Variable: The ranking loss.
H
haowang101779990 已提交
9929

M
minqiyang 已提交
9930
    Raises:
M
minqiyang 已提交
9931
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
9932

M
minqiyang 已提交
9933
    Examples:
H
haowang101779990 已提交
9934

M
minqiyang 已提交
9935
        .. code-block:: python
H
haowang101779990 已提交
9936

9937
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
9938 9939 9940
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
9941 9942
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
9943
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
9944 9945 9946 9947 9948 9949
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
9950 9951
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
9975
        .. code-block:: text
W
whs 已提交
9976

T
Tink_Y 已提交
9977
	      Given that X is a channel of image from input:
M
minqiyang 已提交
9978

T
Tink_Y 已提交
9979 9980
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
9981

T
Tink_Y 已提交
9982
	      Case 0:
M
minqiyang 已提交
9983

T
Tink_Y 已提交
9984 9985 9986
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
9987

T
Tink_Y 已提交
9988 9989 9990
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
9991

T
Tink_Y 已提交
9992
	      Case 1:
M
minqiyang 已提交
9993

T
Tink_Y 已提交
9994 9995
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
9996

T
Tink_Y 已提交
9997 9998 9999
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
10000

T
Tink_Y 已提交
10001
	      Case 2:
M
minqiyang 已提交
10002

T
Tink_Y 已提交
10003 10004
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
10005

T
Tink_Y 已提交
10006 10007 10008
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
10009 10010


W
whs 已提交
10011 10012
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
10013
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
10031 10032 10033 10034 10035
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
10036 10037 10038 10039
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
10040
    out = helper.create_variable_for_type_inference(dtype)
10041 10042 10043 10044 10045 10046 10047 10048 10049
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
10050
    helper.append_op(
10051
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
10052 10053 10054 10055

    return out


10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10068 10069 10070 10071 10072

    Examples:

        .. code-block:: python

10073
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10074 10075
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
10076 10077
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
10078
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10099 10100 10101 10102 10103

    Examples:

        .. code-block:: python

10104
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10105 10106
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
10107 10108
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
10109
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
10124
        factor(float|Variable|1.0): The exponential factor of Pow.
10125 10126 10127 10128 10129
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10130 10131 10132 10133 10134

    Examples:

        .. code-block:: python

10135
            import paddle.fluid as fluid
10136

Z
ZhenWang 已提交
10137
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
10138 10139 10140 10141 10142 10143 10144

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
10145 10146
    """
    helper = LayerHelper('pow', **locals())
10147 10148 10149 10150 10151 10152 10153 10154
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
10155
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10156
    helper.append_op(
10157
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10174 10175 10176 10177 10178

    Examples:

        .. code-block:: python

10179
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10180
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
10181
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
10182 10183
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
10184
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10207 10208 10209 10210 10211

    Examples:

        .. code-block:: python

10212
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10213 10214
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
10215 10216
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
10217
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
10239 10240 10241 10242 10243

    Examples:

        .. code-block:: python

10244
            import paddle.fluid as fluid
Z
ZhenWang 已提交
10245 10246
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
10247 10248
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
10249
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10250 10251 10252 10253 10254 10255 10256 10257
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
10258 10259 10260 10261
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
10262 10263
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
10264

J
jerrywgz 已提交
10265 10266 10267 10268 10269 10270 10271 10272
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
10273 10274
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
10275
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
10276
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
10277
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
10278
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
10279
          will be named automatically.
J
jerrywgz 已提交
10280 10281 10282 10283 10284 10285 10286 10287

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
10288 10289 10290
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
10291
            mode = 'channel'
J
jerrywgz 已提交
10292 10293 10294
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
10306
        attr=helper.param_attr,
J
jerrywgz 已提交
10307 10308 10309 10310
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
10311
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
10312 10313 10314 10315 10316 10317 10318 10319 10320
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


10321 10322 10323 10324 10325 10326 10327 10328 10329 10330
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10331
    Returns:
10332
        output(${out_type}): ${out_comment}
10333 10334 10335

    Examples:

10336
    .. code-block:: python
10337

10338
            import paddle.fluid as fluid
H
haowang101779990 已提交
10339 10340
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
10341 10342
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
10343
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10362
    Returns:
10363
        output(${out_type}): ${out_comment}
10364 10365 10366 10367 10368

    Examples:

        .. code-block:: python

10369
            import paddle.fluid as fluid
H
haowang101779990 已提交
10370 10371
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
10372 10373
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
10374
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
10392
    Returns:
10393
        output(${out_type}): ${out_comment}
10394 10395 10396

    Examples:

10397 10398 10399 10400 10401
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
10402
            y = fluid.layers.soft_relu(x, threshold=20.0)
10403 10404
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
10405
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10406 10407 10408 10409 10410 10411 10412 10413
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


10414 10415 10416 10417
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
10418

H
haowang101779990 已提交
10419
    For Example:
M
minqiyang 已提交
10420

H
haowang101779990 已提交
10421
    .. code-block:: text
10422

H
haowang101779990 已提交
10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
10444 10445 10446

    Args:
        x (Variable): A tensor of rank >= axis.
10447 10448
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
10449 10450 10451 10452 10453 10454 10455 10456
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
10457 10458 10459
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
10460 10461 10462 10463
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
10464
        ValueError: If axis is not in range [0, rank(x)].
10465 10466 10467 10468 10469

    Examples:

        .. code-block:: python

10470
            import paddle.fluid as fluid
10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
10482 10483
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
10484
    helper.append_op(
10485
        type='flatten2',
10486
        inputs={"X": x},
10487 10488
        outputs={'Out': out,
                 'XShape': x_shape},
10489 10490
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
10491 10492


C
chenweihang 已提交
10493
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
10494
    """
C
chenweihang 已提交
10495
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
10496
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
10497 10498
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
10499

H
haowang101779990 已提交
10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
10517 10518

    Args:
C
chenweihang 已提交
10519 10520 10521
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
10522 10523 10524 10525 10526 10527 10528

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

10529 10530 10531
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
10532 10533
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
10534
    assert not in_dygraph_mode(), (
10535
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
10536
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
10537 10538
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
10539 10540 10541 10542 10543 10544
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
10545
    return out
10546

10547

S
sneaxiy 已提交
10548 10549 10550 10551 10552 10553 10554 10555 10556
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
10557

S
sneaxiy 已提交
10558
    .. math::
10559

S
sneaxiy 已提交
10560 10561 10562
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
10563
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
10564 10565 10566 10567
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
10568 10569 10570
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
10571 10572
    Returns:
        Variable: The output sequence mask.
10573

10574 10575 10576
    Examples:
        .. code-block:: python
	
10577
            import paddle.fluid as fluid
10578 10579 10580 10581 10582
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
10583
    """
Q
qingqing01 已提交
10584
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
10585
    if name is None:
X
Xin Pan 已提交
10586
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
10587
    else:
X
Xin Pan 已提交
10588
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
10589

10590 10591 10592 10593 10594 10595 10596 10597
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
10598
    helper.append_op(
10599 10600 10601
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
10602
    return out
S
sneaxiy 已提交
10603 10604


X
Xin Pan 已提交
10605
def stack(x, axis=0):
S
sneaxiy 已提交
10606 10607 10608 10609
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
10610 10611 10612 10613 10614 10615 10616

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
10617
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
10618
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
10619

C
chengduozh 已提交
10620 10621
    For Example:

C
chengduozh 已提交
10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
10660
    Args:
10661
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
10662
        axis (int|None): The axis along which all inputs are stacked.
10663

S
sneaxiy 已提交
10664 10665
    Returns:
        Variable: The stacked variable.
10666

10667 10668 10669
    Examples:
        .. code-block:: python

10670
            import paddle.fluid as fluid
10671
            import paddle.fluid.layers as layers
10672 10673
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
10674 10675
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
10676 10677
    """

X
Xin Pan 已提交
10678 10679 10680 10681 10682 10683
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
10684
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
10685
    helper.append_op(
S
sneaxiy 已提交
10686 10687
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
10688

X
Xin Pan 已提交
10689
    return out
D
dzhwinter 已提交
10690 10691


J
Jiawei Wang 已提交
10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
10762 10763 10764 10765 10766
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
10767

D
dzhwinter 已提交
10768 10769 10770
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
10771
    raised.
D
dzhwinter 已提交
10772 10773

    Args:
M
minqiyang 已提交
10774
        x (Variable): Input variable.
D
dzhwinter 已提交
10775 10776
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
10777

D
dzhwinter 已提交
10778 10779
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
10780

10781 10782 10783 10784 10785 10786
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
10787 10788 10789 10790 10791 10792 10793 10794 10795 10796
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
10797
    for _ in range(num):
X
Xin Pan 已提交
10798
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
10799 10800 10801 10802 10803 10804 10805 10806

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
10819

W
whs 已提交
10820 10821 10822 10823
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
10824

W
whs 已提交
10825
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
10826

W
whs 已提交
10827
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
10828

W
whs 已提交
10829 10830 10831 10832
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
10833

W
whs 已提交
10834 10835
    Args:
        x (Variable): A tensor with rank in [1, 6].
L
liym27 已提交
10836
        expand_times (list|tuple|Variable): Expand times number for each dimension.
W
whs 已提交
10837 10838 10839 10840 10841 10842 10843

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
L
liym27 已提交
10844

W
wangchaochaohu 已提交
10845
            import paddle.fluid as fluid
L
liym27 已提交
10846 10847 10848 10849 10850 10851 10852 10853 10854

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
W
whs 已提交
10855
    """
L
liym27 已提交
10856 10857 10858 10859 10860

    if not isinstance(expand_times, (list, tuple, Variable)):
        raise ValueError(
            "Input expand_times must be an Variable, python list or tuple.")

W
whs 已提交
10861
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893
    inputs = {"X": x}
    attrs = {}

    def contain_var(expand_times):
        for ele in expand_times:
            if isinstance(ele, Variable):
                return True
        return False

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
                    "Each element given in expand_times must not be negtive.")
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
10894 10895 10896 10897 10898

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:
L
liym27 已提交
10899 10900 10901 10902 10903 10904 10905 10906
        if isinstance(expand_times, Variable):
            expand_times.stop_gradient = True
            inputs['ExpandTimes'] = expand_times
        elif isinstance(expand_times, (list, tuple)):
            attrs['expand_times'] = get_attr_expand_times(expand_times)
            if contain_var(expand_times):
                inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                    expand_times)
10907

L
liym27 已提交
10908 10909
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
10910
    helper.append_op(
10911
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
10912
    return out
S
sneaxiy 已提交
10913 10914


G
fix  
gongweibao 已提交
10915 10916 10917
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
10918
@templatedoc()
G
fix  
gongweibao 已提交
10919 10920 10921 10922 10923 10924 10925 10926 10927
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
10928
    ${comment}
G
fix  
gongweibao 已提交
10929 10930

    Args:
G
gongweibao 已提交
10931 10932 10933
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10934
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
10935 10936 10937
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10938 10939
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
10940
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10941

10942 10943 10944
    Examples:
        .. code-block:: python

10945
            import paddle.fluid as fluid
10946 10947
            import paddle.fluid.layers as layers 

10948 10949
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
10950 10951 10952
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
10953
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
10970 10971


G
gongweibao 已提交
10972
@templatedoc()
X
Xin Pan 已提交
10973
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10974
    """
G
gongweibao 已提交
10975
    ${comment}
G
fix  
gongweibao 已提交
10976 10977

    Args:
G
gongweibao 已提交
10978 10979 10980 10981
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10982 10983 10984
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
10985
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10986

10987 10988 10989
    Examples:
        .. code-block:: python

10990
            import paddle.fluid as fluid
J
JesseyXujin 已提交
10991
            import paddle.fluid.layers as layers
10992
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
10993 10994 10995
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
10996
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10997 10998 10999 11000 11001 11002 11003 11004 11005 11006
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
11007
            'use_mkldnn': False
G
fix  
gongweibao 已提交
11008 11009 11010 11011 11012
        })

    return out


G
gongweibao 已提交
11013
@templatedoc()
G
fix  
gongweibao 已提交
11014
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
11015
    """
G
gongweibao 已提交
11016
    ${comment}
G
fix  
gongweibao 已提交
11017 11018

    Args:
G
gongweibao 已提交
11019 11020 11021 11022
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
11023
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
11024 11025

    Returns:
G
gongweibao 已提交
11026
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11027

11028 11029 11030
    Examples:
        .. code-block:: python

11031
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11032
            x = fluid.layers.data(
11033 11034 11035 11036 11037
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
11038
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
11039 11040 11041
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
11042
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
11054
@templatedoc()
G
fix  
gongweibao 已提交
11055 11056 11057 11058 11059 11060 11061 11062 11063
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
11064
    ${comment}
G
fix  
gongweibao 已提交
11065 11066

    Args:
G
gongweibao 已提交
11067 11068
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
11069
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
11070 11071 11072 11073
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
11074
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
11075 11076

    Returns:
G
gongweibao 已提交
11077
        out (Variable): ${out_comment}
11078 11079 11080 11081

    Examples:
        .. code-block:: python

11082
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11083
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
11084

Y
Yibing Liu 已提交
11085
            out = fluid.layers.gaussian_random_batch_size_like(
11086
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
11087 11088 11089
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
11090
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
11109
@templatedoc()
X
Xin Pan 已提交
11110
def sum(x):
G
fix  
gongweibao 已提交
11111
    """
G
gongweibao 已提交
11112
    ${comment}
G
fix  
gongweibao 已提交
11113 11114

    Args:
G
gongweibao 已提交
11115
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
11116 11117

    Returns:
G
gongweibao 已提交
11118
        out (Variable): ${out_comment}
11119 11120 11121 11122

    Examples:
        .. code-block:: python

11123
            import paddle.fluid as fluid
11124 11125 11126 11127
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
11128 11129 11130
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
11131 11132
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
11133 11134 11135 11136
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
11137
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
11138 11139 11140 11141

    return out


G
gongweibao 已提交
11142
@templatedoc()
G
fix  
gongweibao 已提交
11143 11144
def slice(input, axes, starts, ends):
    """
11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
11160

11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
11178
    Args:
G
gongweibao 已提交
11179 11180
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
11181 11182
        starts (List|Variable): ${starts_comment}
        ends (List|Variable): ${ends_comment}
G
fix  
gongweibao 已提交
11183 11184

    Returns:
G
gongweibao 已提交
11185
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
11186

11187 11188 11189
    Examples:
        .. code-block:: python

11190
            import paddle.fluid as fluid
11191

11192
            input = fluid.layers.data(
11193 11194
                name="input", shape=[3, 4, 5, 6], dtype='float32')

11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
G
fix  
gongweibao 已提交
11206 11207
    """

11208 11209 11210 11211 11212 11213 11214
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
11215
    helper = LayerHelper('slice', **locals())
11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
            infer_flags = list(-1 for i in range(len(axes)))
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
11286 11287
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
11288
    helper.append_op(
11289
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
11290 11291 11292 11293

    return out


W
wangchaochaohu 已提交
11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
    Strided Slice OP

    The conceptualization that really helped me understand this was 
    that this function emulates the indexing behavior of numpy arrays.
    If you're familiar with numpy arrays, you'll know that you can make 
    slices via input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN]. 
    Basically, a very succinct way of writing for loops to get certain elements of the array.
    strided_slice just allows you to do this fancy indexing without the syntactic sugar. 
    The numpy (#input[start1:end1:step1, start2:end2:step2, ... startN:endN:stepN])
    example from above just becomes fluid.strided_slice(input,[0, 1, ..., N], 
    [start1, start2, ..., startN], [end1, end2, ..., endN], [strides1, strides2, ..., stridesN]),
    the axes which controls the dimension you want to slice makes it more flexible.

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7] ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, -1]
                ends = [-1, 0]
                strides = [1, -1]
            Then:
                result = [ [4, 3, 2] ]
    Atrgs:
       input (Varibale): the input variable.
       axes(List):axis we need to slice
       starts (List): the start index in axis
       ends (List): the end index in axis
       strides (List): the stride length when we do slice operation
    Returns
       out(Variable): the result by strided_slice Op
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
 
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]
            strides= [1, 1, 1]

            input = fluid.layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides)
    """
    helper = LayerHelper('strided_slice', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))

    helper.append_op(
        type='strided_slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides
        })

    return out


G
fix  
gongweibao 已提交
11373 11374
def shape(input):
    """
C
chengduozh 已提交
11375 11376
    **Shape Layer**

C
fix doc  
chengduozh 已提交
11377
    Get the shape of the input.
G
fix  
gongweibao 已提交
11378 11379

    Args:
C
chengduozh 已提交
11380
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
11381 11382

    Returns:
C
fix doc  
chengduozh 已提交
11383
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
11384

11385 11386 11387
    Examples:
        .. code-block:: python

11388 11389 11390
            import paddle.fluid as fluid

            input = fluid.layers.data(
11391
                name="input", shape=[3, 100, 100], dtype="float32")
11392
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
11393 11394 11395
    """

    helper = LayerHelper('shape', **locals())
11396
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
11397
    helper.append_op(
G
fix  
gongweibao 已提交
11398
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
11399 11400

    return out
G
merge  
gongweibao 已提交
11401 11402


Z
zhoukunsheng 已提交
11403 11404 11405 11406
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
11407
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
11408 11409 11410 11411 11412 11413 11414 11415 11416 11417

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

11418 11419 11420 11421
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
11422 11423 11424 11425 11426 11427 11428 11429
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
11459 11460 11461 11462
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
11463
    if in_dygraph_mode():
X
Xin Pan 已提交
11464 11465 11466
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
11467 11468 11469 11470
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
11471 11472
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
11473
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11474 11475 11476
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
11477

S
sneaxiy 已提交
11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
11489
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
11490 11491 11492 11493 11494 11495 11496 11497
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
11498
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
11499
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
11500 11501 11502

    Returns:
        out(${out_type}): ${out_comment}
11503 11504 11505 11506 11507 11508 11509 11510

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
11511 11512 11513
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
11514
    if name is None:
X
Xin Pan 已提交
11515
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11516 11517 11518
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
11519 11520 11521 11522 11523 11524 11525 11526 11527 11528

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
11529
    return helper.append_activation(out)
S
sneaxiy 已提交
11530 11531


X
Xin Pan 已提交
11532
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11533 11534 11535
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
11536
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11537 11538 11539
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
11540
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11541 11542 11543
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
11544
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11545 11546 11547
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
11548
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11549 11550 11551
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
11552
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11553 11554 11555
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
11556
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
11557 11558 11559
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


11560 11561 11562 11563 11564 11565 11566 11567
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
11568
for func in [
11569 11570 11571 11572 11573 11574 11575 11576 11577
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
11578 11579 11580 11581 11582
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
11583 11584
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
11585
        ])
11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11623 11624


11625
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11626 11627
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11628 11629
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11630 11631 11632

    if out is None:
        if name is None:
X
Xin Pan 已提交
11633
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11649
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11661 11662 11663 11664

    Examples:
        .. code-block:: python

11665
            import paddle.fluid as fluid
11666
            left = fluid.layers.data(
石晓伟 已提交
11667
                name='left', shape=[1], dtype='bool')
11668
            right = fluid.layers.data(
石晓伟 已提交
11669
                name='right', shape=[1], dtype='bool')
11670
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
11671 11672 11673 11674 11675 11676 11677
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11678
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11690 11691 11692 11693

    Examples:
        .. code-block:: python

11694
            import paddle.fluid as fluid
11695
            left = fluid.layers.data(
石晓伟 已提交
11696
                name='left', shape=[1], dtype='bool')
11697
            right = fluid.layers.data(
石晓伟 已提交
11698
                name='right', shape=[1], dtype='bool')
11699
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
11700 11701 11702 11703 11704 11705 11706
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11707
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11719 11720 11721 11722

    Examples:
        .. code-block:: python

11723
            import paddle.fluid as fluid
11724
            left = fluid.layers.data(
石晓伟 已提交
11725
                name='left', shape=[1], dtype='bool')
11726
            right = fluid.layers.data(
石晓伟 已提交
11727
                name='right', shape=[1], dtype='bool')
11728
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
11729 11730 11731 11732 11733 11734 11735
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11736
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11737 11738 11739 11740 11741 11742 11743 11744 11745 11746
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11747 11748 11749 11750

    Examples:
        .. code-block:: python

11751
            import paddle.fluid as fluid
11752
            left = fluid.layers.data(
石晓伟 已提交
11753
                name='left', shape=[1], dtype='bool')
11754
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
11755 11756 11757 11758
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11774 11775 11776 11777

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11778
            import paddle.fluid as fluid
11779 11780 11781
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11782 11783 11784 11785 11786
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11787 11788
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11789 11790 11791

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11815 11816 11817 11818

    Examples:
        .. code-block:: python

11819
            import paddle.fluid as fluid
11820 11821 11822
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11823 11824 11825 11826 11827
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11828 11829
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11830 11831 11832

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11833 11834 11835 11836 11837 11838 11839 11840

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11854 11855 11856 11857

    Examples:
        .. code-block:: python

11858
            import paddle.fluid as fluid
11859 11860 11861
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11862 11863 11864 11865 11866
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
11867
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11868 11869 11870 11871 11872 11873 11874 11875 11876 11877
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11889 11890 11891 11892

    Examples:
        .. code-block:: python

11893
            import paddle.fluid as fluid
11894 11895 11896 11897 11898
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11937 11938 11939 11940 11941
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
11942
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11943 11944 11945 11946 11947 11948 11949 11950 11951
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
11952 11953
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
11954 11955 11956 11957 11958 11959
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
11960 11961 11962
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
11963 11964
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
11965 11966 11967 11968 11969 11970
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
11971
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
11972
        name(basestring|None): Name of the output.
11973 11974
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
11975 11976 11977

    Returns:
        out(${out_type}): ${out_comment}
11978 11979 11980 11981

    Examples:
        .. code-block:: python

11982
            import paddle.fluid as fluid
11983 11984 11985 11986 11987 11988 11989 11990 11991 11992
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
11993 11994 11995 11996 11997
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
11998
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11999 12000 12001 12002 12003 12004 12005 12006
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
12007 12008
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
12025 12026 12027 12028

    Examples:
        .. code-block:: python

12029
            import paddle.fluid as fluid
J
jerrywgz 已提交
12030 12031 12032 12033 12034
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
12035 12036 12037 12038
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
12039
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
12040 12041 12042 12043 12044 12045 12046 12047 12048 12049
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
12050 12051


J
JiabinYang 已提交
12052
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
12053
    """
J
JiabinYang 已提交
12054
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
12055 12056 12057

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
12058
    The attr blocksize indicates the input block size.
12059 12060

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
12061
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
12062 12063

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
12064
    (but keeping all data)
J
JiabinYang 已提交
12065

J
JiabinYang 已提交
12066
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
12067
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
12068 12069 12070 12071 12072
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
12073
    Args:
J
JiabinYang 已提交
12074
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
12075
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
12076 12077

    Returns:
J
JiabinYang 已提交
12078
        Variable: The output LoDtensor.
J
JiabinYang 已提交
12079 12080

    Raises:
J
JiabinYang 已提交
12081
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
12082 12083 12084

    Examples:
        .. code-block:: python
12085 12086 12087
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
12088 12089

            data = fluid.layers.data(
12090
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
12091
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
12092
                x=data, blocksize=2)
12093

12094
            exe = fluid.Executor(fluid.CPUPlace())
12095 12096 12097 12098
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
12099

J
JiabinYang 已提交
12100 12101
    """

J
JiabinYang 已提交
12102
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
12103

J
JiabinYang 已提交
12104 12105
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
12106 12107

    if name is None:
J
JiabinYang 已提交
12108 12109
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
12110 12111 12112 12113 12114
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
12115
        type="space_to_depth",
J
JiabinYang 已提交
12116
        inputs={"X": x},
J
JiabinYang 已提交
12117
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
12118
        outputs={"Out": out})
J
JiabinYang 已提交
12119 12120
    return out

J
JiabinYang 已提交
12121

S
sneaxiy 已提交
12122 12123
@templatedoc()
def sequence_reverse(x, name=None):
12124
    """
S
sneaxiy 已提交
12125 12126 12127 12128 12129 12130 12131 12132
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
12133 12134 12135 12136 12137 12138 12139

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
12140
    """
L
lujun 已提交
12141
    assert not in_dygraph_mode(), (
12142
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
12143 12144
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
12145
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
12146 12147 12148 12149 12150 12151 12152 12153 12154 12155
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
12156 12157


12158 12159 12160 12161 12162 12163
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
12164 12165 12166 12167 12168
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
12169

12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
12182
        act (str, default None): Activation to be applied to the output of this layer.
12183 12184 12185

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

12200 12201 12202 12203
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
12204
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
12216
    return helper.append_activation(out)
12217 12218


B
barrierye 已提交
12219
def similarity_focus(input, axis, indexes, name=None):
12220
    """
B
barrierye 已提交
12221
    SimilarityFocus Operator
B
barrierye 已提交
12222 12223

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
12224

12225 12226 12227
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
12228
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
12229 12230 12231 12232 12233 12234 12235
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
12236
       each index.
B
barrierye 已提交
12237 12238 12239 12240
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
12290
    Args:
12291
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
12292
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
12293
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
12294
            1, 2 or 3.
B
barrierye 已提交
12295
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
12296 12297

    Returns:
H
haowang101779990 已提交
12298 12299
        Variable: A tensor variable with the same shape and same type \
                  as the input.
12300

B
barrierye 已提交
12301 12302
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
12303

12304
            import paddle.fluid as fluid
B
barrierye 已提交
12305
            data = fluid.layers.data(
Y
Yibing Liu 已提交
12306 12307
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
12320 12321 12322 12323 12324
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
12325 12326 12327 12328 12329 12330 12331
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
12332 12333


M
minqiyang 已提交
12334 12335
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
12336 12337
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
12338 12339
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
12340 12341 12342 12343 12344 12345 12346 12347

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
12348
        input.data = 
12349
            [[1, 2],
12350
             [3, 4]]
M
minqiyang 已提交
12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
12364 12365
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
12366 12367 12368 12369
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
12370
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
12371 12372
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
12373
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
12374
        name (str, default None): The name of this layer.
M
minqiyang 已提交
12375 12376

    Returns:
12377
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
12378 12379 12380

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
12381

12382 12383
            import paddle.fluid as fluid

12384 12385 12386 12387
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
12388 12389


12390 12391 12392 12393
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
12394 12395
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
12396 12397
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
12398 12399 12400 12401 12402 12403 12404
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
12405 12406


D
dengkaipeng 已提交
12407
@templatedoc()
12408 12409
def grid_sampler(x, grid, name=None):
    """
12410
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
12411
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
12412 12413 12414 12415
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
12416
    interpolation value of 4 nearest corner points.
12417

H
haowang101779990 已提交
12418
    .. code-block:: text
12419

H
haowang101779990 已提交
12420 12421
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
12422

H
haowang101779990 已提交
12423 12424
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
12425

H
haowang101779990 已提交
12426 12427 12428
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
12429

H
haowang101779990 已提交
12430 12431 12432 12433 12434 12435 12436 12437 12438
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
12439

H
haowang101779990 已提交
12440 12441 12442 12443
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
12444

H
haowang101779990 已提交
12445 12446 12447 12448
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
12449

H
haowang101779990 已提交
12450 12451 12452 12453
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
12454

H
haowang101779990 已提交
12455 12456
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
12457 12458

    Args:
12459 12460 12461
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
12462 12463

    Returns:
H
haowang101779990 已提交
12464
        Variable: Output of shape [N, C, H, W] data samples input X
12465 12466
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
12467 12468 12469 12470
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
12471 12472 12473 12474 12475
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
12476
            out = fluid.layers.grid_sampler(x=x, grid=grid)
12477

D
dengkaipeng 已提交
12478 12479 12480 12481 12482 12483 12484 12485 12486
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

12487
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
12488 12489
    ipts = {'X': x, 'Grid': grid}

12490
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
12491 12492 12493
    return out


G
gmcather 已提交
12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

12521
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12522 12523
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
12562
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
12563 12564 12565 12566 12567 12568 12569
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
12570 12571
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12572

12573 12574 12575 12576 12577
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
12578
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
12579

H
heqiaozhi 已提交
12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
12593 12594 12595 12596
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
12597
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
12598 12599
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
12600
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12601 12602

    .. math::
H
haowang101779990 已提交
12603 12604 12605
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12606 12607

    Where:
H
haowang101779990 已提交
12608 12609
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

12623 12624 12625 12626 12627 12628 12629 12630 12631
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12632

G
gmcather 已提交
12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12649 12650 12651 12652 12653 12654 12655 12656 12657 12658


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
12659
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12660

Q
Qiao Longfei 已提交
12661
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12662 12663 12664
    For example:

    .. math::
H
haowang101779990 已提交
12665
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12666

Q
Qiao Longfei 已提交
12667
    In this formula:
12668 12669
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
12670
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
12671
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12672 12673 12674
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
12675 12676
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
12677 12678 12679
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
12680
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
12681
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
12682
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
12683 12684 12685 12686
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
12687
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
12688 12689 12690 12691

    Examples:
        .. code-block:: python

12692
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12693 12694 12695
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12696 12697
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12698
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12699 12700 12701 12702

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12703
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
12734 12735 12736 12737 12738 12739 12740 12741

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12742 12743 12744 12745 12746 12747 12748 12749 12750 12751
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12752 12753


S
shippingwang 已提交
12754
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12755 12756
    """
    **Shuffle Channel Operator**
12757

S
shippingwang 已提交
12758 12759 12760 12761 12762 12763
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12764
    
S
shippingwang 已提交
12765
    .. code-block:: text
12766

S
shippingwang 已提交
12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12795
    Args: 
S
shippingwang 已提交
12796 12797
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12798 12799

    Returns:
S
shippingwang 已提交
12800 12801
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12802 12803

    Raises:
S
shippingwang 已提交
12804
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12805 12806 12807

    Examples:
        .. code-block:: python
12808

12809
            import paddle.fluid as fluid
12810
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
12811
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12812 12813 12814
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12815
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12816 12817 12818 12819 12820 12821 12822 12823 12824

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12825
    return out
S
Add  
shippingwang 已提交
12826 12827


12828
@templatedoc()
D
dengkaipeng 已提交
12829
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12830 12831 12832 12833 12834 12835 12836 12837
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12838
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
12839
        name (str, default None): The name of this layer.
12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12851
            import paddle.fluid as fluid
12852
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
12853
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12866 12867
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12868 12869 12870
    return out


S
sneaxiy 已提交
12871
class PyFuncRegistry(object):
S
sneaxiy 已提交
12872 12873 12874
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12875
        if func is None or not callable(func):
S
sneaxiy 已提交
12876 12877 12878
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12879
        # find named args using reflection
S
sneaxiy 已提交
12880 12881 12882 12883 12884 12885 12886
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12887 12888 12889
        '''
        Why record self here?

M
minqiyang 已提交
12890 12891
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12892
           to find the registered function corresponding
M
minqiyang 已提交
12893
           to :code:`idx`.
S
sneaxiy 已提交
12894

M
minqiyang 已提交
12895 12896
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12897
           whose reference count is 1 would cause
M
minqiyang 已提交
12898
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12899 12900
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12901
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12916 12917 12918 12919 12920 12921 12922 12923 12924
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12925

S
sneaxiy 已提交
12926 12927
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12928 12929

        ret = []
S
sneaxiy 已提交
12930 12931 12932
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12933 12934
                continue

S
sneaxiy 已提交
12935 12936
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12937

S
sneaxiy 已提交
12938 12939 12940
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12941

S
sneaxiy 已提交
12942
        return tuple(ret)
S
sneaxiy 已提交
12943 12944


S
sneaxiy 已提交
12945 12946 12947 12948
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
12949

S
sneaxiy 已提交
12950 12951 12952 12953 12954 12955 12956 12957
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
12958
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
12959

S
sneaxiy 已提交
12960 12961
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
12962 12963 12964 12965
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
12966
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
12967
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
12968 12969
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
12970 12971 12972 12973 12974
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
12975
            should create :code:`out` beforehand.
S
sneaxiy 已提交
12976
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
12977
                                       None means no backward. Default None.
S
sneaxiy 已提交
12978
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
12979
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
12980 12981
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
12982
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
12983 12984 12985

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
12986 12987

    Examples:
M
minqiyang 已提交
12988

S
sneaxiy 已提交
12989 12990 12991 12992 12993
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
12994
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
12995 12996
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
12997
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
12998 12999 13000
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
13001
        >>>
S
sneaxiy 已提交
13002 13003 13004 13005 13006
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
13007
        >>>     print(x)
S
sneaxiy 已提交
13008 13009 13010 13011 13012 13013
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
13014
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
13015 13016
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
13017 13018
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
13019 13020 13021 13022 13023 13024 13025 13026
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
13027
    """
S
sneaxiy 已提交
13028
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
13029 13030 13031
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
13032
        x = [x]
S
sneaxiy 已提交
13033 13034
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
13035

S
sneaxiy 已提交
13036 13037 13038
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
13039
        out_list = [out]
S
sneaxiy 已提交
13040
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
13041
        out_list = out
S
sneaxiy 已提交
13042 13043 13044
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
13045

S
sneaxiy 已提交
13046 13047
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
13048
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
13049 13050

    for each_out in out_list:
S
sneaxiy 已提交
13051 13052
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
13053 13054
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
13055

S
sneaxiy 已提交
13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
13071 13072 13073 13074

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
13075 13076
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
13077 13078 13079
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
13080
        })
S
sneaxiy 已提交
13081
    return out
S
sneaxiy 已提交
13082 13083 13084


# For debug usage
S
sneaxiy 已提交
13085 13086 13087 13088
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
13102 13103 13104 13105 13106
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
13119 13120 13121 13122
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211


@templatedoc()
def prroi_pool(input,
               rois,
               output_channels,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
               name=None):
    """
    The precise roi pooling implementation for paddle?https://arxiv.org/pdf/1807.11590.pdf

    Args:
        input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        output_channels (integer): The output's channel.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
        name (str, default None): The name of this operation.

    Returns:
        Variable(Tensor): The shape of the returned Tensor is (num_rois, output_channels, pooled_h, pooled_w), with value type float32,float16..

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.prroi_pool(x, rois, 10, 1.0, 7, 7)
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='prroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13212

M
minqiyang 已提交
13213

M
minqiyang 已提交
13214
def huber_loss(input, label, delta):
13215
    """
M
minqiyang 已提交
13216 13217 13218
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
13219 13220 13221 13222

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
13223
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
13224 13225 13226 13227

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
13228
        huber\_loss = 0.5 * (label - input) * (label - input)
13229 13230 13231 13232 13233 13234 13235


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
13236
        delta (float): The parameter of huber loss, which controls
13237 13238 13239
                       the range of outliers

    Returns:
M
minqiyang 已提交
13240
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
13241 13242 13243 13244

    Examples:
        .. code-block:: python

13245 13246 13247 13248 13249 13250 13251 13252 13253
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

13254
    """
M
minqiyang 已提交
13255
    helper = LayerHelper('huber_loss', **locals())
13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
13267 13268


D
dengkaipeng 已提交
13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

13286
            import paddle.fluid as fluid
D
dengkaipeng 已提交
13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


C
ceci3 已提交
13302
from .ops import square
C
ceci3 已提交
13303
from .control_flow import equal
C
ceci3 已提交
13304 13305


C
ceci3 已提交
13306 13307 13308
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
13309

C
ceci3 已提交
13310
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
13311 13312

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
13313
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
13314 13315 13316 13317 13318
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
13319 13320
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
13321 13322 13323 13324 13325 13326 13327

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

13328
       import paddle.fluid as fluid
C
ceci3 已提交
13329 13330 13331 13332 13333 13334 13335 13336
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
13337 13338 13339 13340 13341 13342 13343
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
13344
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
13345 13346
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
13347 13348
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
13349 13350 13351 13352
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
13353 13354 13355
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
13356 13357 13358
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
13359 13360


R
ruri 已提交
13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

13390
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
13391 13392 13393 13394 13395 13396 13397 13398 13399

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

13400
            import paddle.fluid as fluid
R
ruri 已提交
13401
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
13452 13453 13454 13455 13456 13457
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
13458 13459 13460 13461 13462 13463 13464 13465
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
13466 13467 13468 13469


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
13470

H
heqiaozhi 已提交
13471
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
13472

H
fix doc  
heqiaozhi 已提交
13473
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
13474 13475 13476
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
13477
    
H
fix doc  
heqiaozhi 已提交
13478
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
13479

H
heqiaozhi 已提交
13480
    Args:
H
fix doc  
heqiaozhi 已提交
13481 13482

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
13483 13484
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
13485
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
13486
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
13487

H
heqiaozhi 已提交
13488
    Returns:
H
fix doc  
heqiaozhi 已提交
13489 13490 13491

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
13492
    Examples:
H
fix doc  
heqiaozhi 已提交
13493

H
heqiaozhi 已提交
13494
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
13495

13496
          import paddle.fluid as fluid
H
heqiaozhi 已提交
13497 13498 13499 13500 13501 13502 13503 13504 13505 13506
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
13507

H
heqiaozhi 已提交
13508 13509 13510 13511 13512 13513 13514 13515 13516
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
13517
    return out
Z
zhoukunsheng 已提交
13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

13536
             import paddle.fluid as fluid
13537 13538 13539
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
13540
             # condition is a tensor [True, False, True]
13541 13542 13543
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
13544 13545

             # condition is a tensor [[True, False], [False, True]]
13546 13547 13548
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
13549 13550

             # condition is a tensor [False, False, False]
13551 13552 13553 13554
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
13555 13556 13557 13558 13559 13560 13561 13562 13563
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

13581 13582 13583
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
13584
          # [1, 0, -1]
13585 13586
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
13599 13600


Z
zhoukunsheng 已提交
13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13705
                    modulated=True,
13706 13707 13708 13709 13710 13711
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13712 13713 13714
   
    
    Deformable Convolution v2: 
13715 13716 13717 13718
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13719 13720

    Deformable Convolution v1:
13721
    
13722 13723 13724 13725 13726 13727 13728
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
    which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
13754
        offset (Variable): The input coordinate offset of deformable convolution layer.
13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13793 13794
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13806 13807
          #deformable conv v2:
         
13808
          import paddle.fluid as fluid
13809 13810 13811 13812
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13813 13814 13815 13816 13817 13818 13819 13820 13821
                                             num_filters=2, filter_size=3, padding=1, modulated=True)

          #deformable conv v1:

          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
                                             num_filters=2, filter_size=3, padding=1, modulated=False)
13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13899 13900 13901

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

14065
        import paddle.fluid as fluid
C
cjt222 已提交
14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
14127 14128 14129 14130


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
14131 14132 14133 14134 14135 14136
    This function recomputes the `input` indices according to the offset of the
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
14137
        
14138 14139
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
14140

14141 14142
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
14143 14144

    Examples:
14145
    ::
14146
    
14147
        Input:
14148 14149
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
14150 14151 14152
          index_num = 20
          nshards = 2
          ignore_value = -1
14153
        
14154
        if shard_id == 0, we get:
14155 14156 14157
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
14158
        if shard_id == 1, we get:
14159 14160 14161 14162
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
14163 14164 14165 14166 14167
        - **input** (Variable): Input indices, last dimension must be 1.
        - **index_num** (scalar): An interger defining the range of the index.
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
        - **ignore_value** (scalar): An ingeter value out of sharded index range
14168 14169

    Returns:
14170
        Variable: The sharded index of input.
14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
    ${comment}
    Args:
        x(Varaible): Input of HardSwish operator.
        threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
        scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
        offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_swish(x)
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276


def mse_loss(input, label):
    """
    **Mean square error layer**

    This layer accepts input predications and target label and returns the mean square error.

    The loss can be described as:

    .. math::
        
        Out = mean((X - Y)^2)

    In the above equation:

        * :math:`X`: Input predications, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.

    Returns:
        Variable: The tensor variable storing the mean square error difference of input and label.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
            mse = fluid.layers.mse_loss(input=y_predict, label=y)

    """
    return reduce_mean(square_error_cost(input, label))