Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
58cd4fda
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
58cd4fda
编写于
1月 22, 2018
作者:
Y
ying
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add wrapper for transpose operator.
上级
c6b78e56
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
81 addition
and
18 deletion
+81
-18
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+81
-18
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
58cd4fda
...
...
@@ -22,13 +22,38 @@ from ..param_attr import ParamAttr
from
tensor
import
concat
__all__
=
[
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'accuracy'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'pool2d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'l2_normalize'
,
'matmul'
,
'warpctc'
,
'sequence_reshape'
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'accuracy'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'pool2d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'l2_normalize'
,
'matmul'
,
'warpctc'
,
'sequence_reshape'
,
]
...
...
@@ -43,14 +68,14 @@ def fc(input,
**Fully Connected Layer**
The fully connected layer can take multiple tensors as its inputs. It
creates a variable (one for each input tensor) called weights for each
input
tensor, which represents a fully connected weight matrix from each input
unit to each output unit. The fully connected layer multiplies each input
tensor with its coresponding weight to produce an output Tensor. If
multiple input tensors are given, the results of multiple multiplications
will be sumed up. If bias_attr is not None, a biases variable will be
created and added to the output. Finally, if activation is not None
,
it will be applied to the output as well.
creates a variable (one for each input tensor) called weights for each
input tensor, which represents a fully connected weight matrix from
each input unit to each output unit. The fully connected layer
multiplies each input tensor with its coresponding weight to produce
an output Tensor. If multiple input tensors are given, the results of
multiple multiplications will be sumed up. If bias_attr is not None,
a biases variable will be created and added to the output. Finally
,
i
f activation is not None, i
t will be applied to the output as well.
This process can be formulated as follows:
...
...
@@ -1813,11 +1838,11 @@ def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
- If both are 2-D, they are multiplied like conventional matrices.
- If either is n-D, it is treated as a stack of matrices residing in the
last two dimensions and a batched matrix multiply supporting broadcast
last two dimensions and a batched matrix multiply supporting broadcast
applies on the two tensors.
Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
nontransposed, the prepended or appended dimension :math:`1` will be
Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
nontransposed, the prepended or appended dimension :math:`1` will be
removed after matrix multiplication.
Args:
...
...
@@ -1971,3 +1996,41 @@ def sequence_reshape(input, new_dim):
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'new_dim'
:
new_dim
})
return
out
def
transpose
(
input
,
perm
,
name
=
None
):
"""
**transpose Layer**
Permute the dimensions of `input` according to `perm`.
The `i`-th dimension of the returned tensor will correspond to the
perm[i]-th dimension of `input`.
Args:
input (Variable): (Tensor), A Tensor.
perm (list): A permutation of the dimensions of `input`.
Returns:
Variable: A transposed Tensor.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
x_transposed = layers.transpose(input=x, perm=[1, 0, 2])
"""
if
len
(
perm
)
!=
len
(
input
.
shape
):
raise
ValueError
(
"Input(perm) is the permutation of dimensions of Input(input). "
"It's length shoud be equal to Input(input)'s rank."
)
helper
=
LayerHelper
(
'transpose'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'transpose'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'axis'
:
perm
})
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录