Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
01d568e5
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
01d568e5
编写于
1月 18, 2018
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into ctc_evaluator_py
上级
4673a4a9
2360dd20
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
93 addition
and
60 deletion
+93
-60
paddle/operators/math/sequence_padding.cc
paddle/operators/math/sequence_padding.cc
+20
-18
paddle/operators/math/sequence_padding.cu
paddle/operators/math/sequence_padding.cu
+12
-10
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+61
-32
未找到文件。
paddle/operators/math/sequence_padding.cc
浏览文件 @
01d568e5
...
...
@@ -32,7 +32,8 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
auto
seq_dims
=
seq
.
dims
();
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
abs_offset_lod
[
level
].
back
(),
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
static_cast
<
int64_t
>
(
abs_offset_lod
[
level
].
back
()),
"The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."
);
...
...
@@ -41,32 +42,32 @@ class PaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
"The input padding should be a 3-D Tensor of shape "
"[max_sequence_length, num_sequences, sequence_width]."
);
const
size
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
const
int64
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
"The first dimension of Tensor padding should be the "
"maximum length of all sequences in LoDTensor seq."
);
const
size
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
const
int64
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
"The second dimension of Tensor padding should be the "
"number of sequences in LoDTensor seq."
);
const
size
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
const
int64
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
"The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."
);
const
T
*
seq_data
=
seq
.
data
<
T
>
();
T
*
padding_data
=
padding
.
data
<
T
>
();
for
(
size
_t
i
=
0
;
i
<
max_sequence_length
;
++
i
)
{
for
(
size
_t
j
=
0
;
j
<
num_sequences
;
++
j
)
{
size
_t
start_pos
=
abs_offset_lod
[
level
][
j
];
size
_t
sequence_length
=
abs_offset_lod
[
level
][
j
+
1
]
-
start_pos
;
for
(
int64
_t
i
=
0
;
i
<
max_sequence_length
;
++
i
)
{
for
(
int64
_t
j
=
0
;
j
<
num_sequences
;
++
j
)
{
int64
_t
start_pos
=
abs_offset_lod
[
level
][
j
];
int64
_t
sequence_length
=
abs_offset_lod
[
level
][
j
+
1
]
-
start_pos
;
if
(
i
<
sequence_length
)
{
// i > 0 => sequence_length > 0
T
scale
=
norm_by_times
?
(
1.0
f
/
static_cast
<
T
>
(
sequence_length
))
:
1.0
f
;
for
(
size
_t
k
=
0
;
k
<
sequence_width
;
++
k
)
{
for
(
int64
_t
k
=
0
;
k
<
sequence_width
;
++
k
)
{
padding_data
[(
i
*
num_sequences
+
j
)
*
sequence_width
+
k
]
=
seq_data
[(
start_pos
+
i
)
*
sequence_width
+
k
]
*
scale
;
}
...
...
@@ -93,7 +94,8 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
auto
seq_dims
=
seq
.
dims
();
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
abs_offset_lod
[
level
].
back
(),
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
static_cast
<
int64_t
>
(
abs_offset_lod
[
level
].
back
()),
"The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."
);
...
...
@@ -102,31 +104,31 @@ class UnpaddingLoDTensorFunctor<platform::CPUDeviceContext, T> {
"The input padding should be a 3-D Tensor of shape "
"[max_sequnece_length, num_sequences, sequence_width]."
);
const
size
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
const
int64
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
"The first dimension of Tensor padding should be "
"the maximum length of all sequences in LoDTensor seq."
);
const
size
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
const
int64
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
"The second dimension of Tensor padding should be "
"the number of sequences in LoDTensor seq."
);
const
size
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
const
int64
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
"The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."
);
const
T
*
padding_data
=
padding
.
data
<
T
>
();
T
*
seq_data
=
seq
.
data
<
T
>
();
for
(
size
_t
i
=
0
;
i
<
num_sequences
;
++
i
)
{
size
_t
start_pos
=
abs_offset_lod
[
level
][
i
];
size
_t
sequence_length
=
abs_offset_lod
[
level
][
i
+
1
]
-
start_pos
;
for
(
size
_t
j
=
0
;
j
<
sequence_length
;
++
j
)
{
for
(
int64
_t
i
=
0
;
i
<
num_sequences
;
++
i
)
{
int64
_t
start_pos
=
abs_offset_lod
[
level
][
i
];
int64
_t
sequence_length
=
abs_offset_lod
[
level
][
i
+
1
]
-
start_pos
;
for
(
int64
_t
j
=
0
;
j
<
sequence_length
;
++
j
)
{
// sequence_width > j > 0
T
scale
=
norm_by_times
?
(
1.0
f
/
static_cast
<
T
>
(
sequence_length
))
:
1.0
f
;
for
(
size
_t
k
=
0
;
k
<
sequence_width
;
++
k
)
{
for
(
int64
_t
k
=
0
;
k
<
sequence_width
;
++
k
)
{
seq_data
[(
start_pos
+
j
)
*
sequence_width
+
k
]
=
padding_data
[(
j
*
num_sequences
+
i
)
*
sequence_width
+
k
]
*
scale
;
...
...
paddle/operators/math/sequence_padding.cu
浏览文件 @
01d568e5
...
...
@@ -71,7 +71,8 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
auto
seq_dims
=
seq
.
dims
();
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
abs_offset_lod
[
level
].
back
(),
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
static_cast
<
int64_t
>
(
abs_offset_lod
[
level
].
back
()),
"The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."
);
...
...
@@ -80,17 +81,17 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
"The input padding should be a 3-D Tensor of shape "
"[max_sequence_length, num_sequences, sequence_width]."
);
size
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
int64
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
"The first dimension of Tensor padding should be the "
"maximum length of all sequences in LoDTensor seq."
);
const
size
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
const
int64
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
"The second dimension of Tensor padding should be the "
"number of sequences in LoDTensor seq."
);
const
size
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
const
int64
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
"The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."
);
...
...
@@ -101,7 +102,7 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
return
;
}
const
size
_t
kBlockSize
=
512
;
const
int64
_t
kBlockSize
=
512
;
/* At least use 32 threads to copy sequence_width elements,
* and at least 8 elements for each thread.
...
...
@@ -143,7 +144,8 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
framework
::
LoD
abs_offset_lod
=
framework
::
ToAbsOffset
(
lod
);
auto
seq_dims
=
seq
.
dims
();
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
abs_offset_lod
[
level
].
back
(),
PADDLE_ENFORCE_EQ
(
seq_dims
[
0
],
static_cast
<
int64_t
>
(
abs_offset_lod
[
level
].
back
()),
"The first dimension of LoDTensor seq should be "
"equal to the sum of all sequences's length."
);
...
...
@@ -152,17 +154,17 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
"The input padding should be a 3-D Tensor of shape "
"[max_sequnece_length, num_sequences, sequence_width]."
);
size
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
int64
_t
max_sequence_length
=
MaximumSequenceLength
(
lod
,
level
);
PADDLE_ENFORCE_EQ
(
padding_dims
[
0
],
max_sequence_length
,
"The first dimension of Tensor padding should be "
"the maximum length of all sequences in LoDTensor seq."
);
const
size
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
const
int64
_t
num_sequences
=
abs_offset_lod
[
level
].
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
padding_dims
[
1
],
num_sequences
,
"The second dimension of Tensor padding should be "
"the number of sequences in LoDTensor seq."
);
const
size
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
const
int64
_t
sequence_width
=
seq
.
numel
()
/
seq_dims
[
0
];
PADDLE_ENFORCE_EQ
(
padding_dims
[
2
],
sequence_width
,
"The third dimension of Tensor padding should be the "
"width of sequence in LoDTensor seq."
);
...
...
@@ -173,7 +175,7 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
return
;
}
const
size
_t
kBlockSize
=
512
;
const
int64
_t
kBlockSize
=
512
;
/* At least use 32 threads to copy sequence_width elements,
* and at least 8 elements for each thread.
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
01d568e5
...
...
@@ -22,38 +22,14 @@ from ..param_attr import ParamAttr
from
tensor
import
concat
__all__
=
[
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'accuracy'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'pool2d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'ctc_greedy_decoder'
,
'edit_distance_error'
,
'l2_normalize'
,
'matmul'
,
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'accuracy'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'pool2d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'ctc_greedy_decoder'
,
'edit_distance_error'
,
'l2_normalize'
,
'matmul'
,
'warpctc'
]
...
...
@@ -1903,3 +1879,56 @@ def ctc_greedy_decoder(input, blank, name=None):
attrs
=
{
"merge_repeated"
:
True
,
"blank"
:
blank
})
return
ctc_out
def
warpctc
(
input
,
label
,
blank
=
0
,
norm_by_times
=
False
,
**
kwargs
):
"""
An operator integrating the open source Warp-CTC library
(https://github.com/baidu-research/warp-ctc)
to compute Connectionist Temporal Classification (CTC) loss.
It can be aliased as softmax with CTC, since a native softmax activation is
interated to the Warp-CTC library, to to normlize values for each row of the
input tensor.
Args:
input(Variable): (LodTensor, default: LoDTensor<float>),
the unscaled probabilities of variable-length sequences,
which is a 2-D Tensor with LoD information.
It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
sequences' length and num_classes is the true number of classes.
(not including the blank label).
label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
of variable-length sequence, which is a 2-D Tensor with LoD
information. It is of the shape [Lg, 1], where Lg is th sum of
all labels' length.
blank: (int, default: 0), the blank label index of Connectionist
Temporal Classification (CTC) loss, which is in the
half-opened interval [0, num_classes + 1).
norm_by_times: (bool, default: false), whether to normalize
the gradients by the number of time-step,which is also the
sequence's length. There is no need to normalize the gradients
if warpctc layer was follewed by a mean_op.
Returns:
Variable: The Connectionist Temporal Classification (CTC) loss,
which is a 2-D Tensor of the shape [batch_size, 1].
Examples:
.. code-block:: python
y = layers.data(name='y', shape=[11, 8], dtype='float32', lod_level=1)
y_predict = layers.data(name='y_predict', shape=[11, 1], dtype='float32')
cost = layers.warpctc(input=y_predict, label=y)
"""
helper
=
LayerHelper
(
'warpctc'
,
**
kwargs
)
loss_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
grad_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'warpctc'
,
inputs
=
{
'Logits'
:
[
input
],
'Label'
:
[
label
]},
outputs
=
{
'WarpCTCGrad'
:
[
grad_out
],
'Loss'
:
[
loss_out
]},
attrs
=
{
'blank'
:
blank
,
'norm_by_times'
:
norm_by_times
})
return
loss_out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录