Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ae7d2286
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ae7d2286
编写于
11月 22, 2018
作者:
D
Dun
提交者:
qingqing01
11月 22, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Group Norm (#13843)
Add group normalization operator.
上级
de2db117
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
880 addition
and
5 deletion
+880
-5
AUTHORS.md
AUTHORS.md
+1
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/group_norm_op.cc
paddle/fluid/operators/group_norm_op.cc
+162
-0
paddle/fluid/operators/group_norm_op.cu
paddle/fluid/operators/group_norm_op.cu
+292
-0
paddle/fluid/operators/group_norm_op.h
paddle/fluid/operators/group_norm_op.h
+197
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+79
-0
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+5
-5
python/paddle/fluid/tests/unittests/test_group_norm_op.py
python/paddle/fluid/tests/unittests/test_group_norm_op.py
+143
-0
未找到文件。
AUTHORS.md
浏览文件 @
ae7d2286
...
...
@@ -25,6 +25,7 @@
| kexinzhao | Ke-Xin Zhao |
| kuke | Yi-Bing Liu |
| lcy-seso | Ying Cao |
| cjld | Dun Liang |
| lipeng-unisound | Peng Li |
| liuyuan | Yuan Liu |
| livc | Zhao Li |
...
...
paddle/fluid/API.spec
浏览文件 @
ae7d2286
...
...
@@ -103,6 +103,7 @@ paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 's
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.layer_norm ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None))
paddle.fluid.layers.group_norm ArgSpec(args=['input', 'groups', 'epsilon', 'param_attr', 'bias_attr', 'act', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None, 'NCHW', None))
paddle.fluid.layers.softmax_with_cross_entropy ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index', 'numeric_stable_mode', 'return_softmax'], varargs=None, keywords=None, defaults=(False, -100, False, False))
paddle.fluid.layers.smooth_l1 ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.one_hot ArgSpec(args=['input', 'depth'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/operators/group_norm_op.cc
0 → 100644
浏览文件 @
ae7d2286
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/group_norm_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
class
GroupNormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
"Output(Y) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Mean"
),
"Output(Mean) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Variance"
),
"Output(Variance) of GroupNormOp should not be null."
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
channel_num
=
x_dim
[
1
];
auto
batch_size
=
x_dim
[
0
];
auto
groups
=
ctx
->
Attrs
().
Get
<
int
>
(
"groups"
);
PADDLE_ENFORCE_LE
(
groups
,
channel_num
,
"'groups' must be less equal than the number of channels."
);
PADDLE_ENFORCE_GE
(
groups
,
1
,
"'groups' must be greater equal than 1."
);
if
(
ctx
->
HasInput
(
"Scale"
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
channel_num
);
}
if
(
ctx
->
HasInput
(
"Bias"
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
)[
0
],
channel_num
);
}
ctx
->
SetOutputDim
(
"Y"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
"Mean"
,
{
batch_size
,
groups
});
ctx
->
SetOutputDim
(
"Variance"
,
{
batch_size
,
groups
});
ctx
->
ShareLoD
(
"X"
,
"Y"
);
}
};
class
GroupNormOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input tensor."
);
AddInput
(
"Scale"
,
"Scale is a 1-dimensional tensor of size C"
"that is applied to the output."
)
.
AsDispensable
();
AddInput
(
"Bias"
,
"Bias is a 1-dimensional tensor of size C "
"that is applied to the output"
)
.
AsDispensable
();
AddOutput
(
"Y"
,
"Result after normalization."
);
AddOutput
(
"Mean"
,
"Mean of each group."
).
AsIntermediate
();
AddOutput
(
"Variance"
,
"Variance of each group."
).
AsIntermediate
();
AddAttr
<
float
>
(
"epsilon"
,
"Constant for numerical stability [default 1e-5]."
)
.
SetDefault
(
1e-5
)
.
AddCustomChecker
([](
const
float
&
epsilon
)
{
PADDLE_ENFORCE
(
epsilon
>=
0.0
f
&&
epsilon
<=
1.0
f
,
"'epsilon' should be between 0.0 and 1.0."
);
});
AddAttr
<
int
>
(
"groups"
,
"The number of groups that divided from channels."
)
.
AddCustomChecker
([](
const
int
&
groups
)
{
PADDLE_ENFORCE_GT
(
groups
,
0
,
"'groups' should be greater than zero."
);
});
AddComment
(
R"DOC(
Group Normalization
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_
)DOC"
);
}
};
class
GroupNormGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
// check input
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Mean"
),
"Input(Mean) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Variance"
),
"Input(Variance) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
"Input(Y@GRAD) of GroupNormOp should not be null."
);
// check output
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Scale"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Scale"
),
ctx
->
GetInputDim
(
"Scale"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
var
=
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
));
if
(
var
==
nullptr
)
{
PADDLE_THROW
(
"can't find Y@GRAD"
);
}
const
Tensor
*
t
=
nullptr
;
if
(
var
->
IsType
<
Tensor
>
())
{
t
=
&
var
->
Get
<
Tensor
>
();
}
else
if
(
var
->
IsType
<
LoDTensor
>
())
{
t
=
&
var
->
Get
<
LoDTensor
>
();
}
if
(
t
==
nullptr
)
{
PADDLE_THROW
(
"can't find Y@GRAD"
);
}
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
t
->
type
()),
ctx
.
GetPlace
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
group_norm
,
ops
::
GroupNormOp
,
ops
::
GroupNormOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
group_norm_grad
,
ops
::
GroupNormGradOp
);
REGISTER_OP_CPU_KERNEL
(
group_norm
,
ops
::
GroupNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GroupNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
group_norm_grad
,
ops
::
GroupNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GroupNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/group_norm_op.cu
0 → 100644
浏览文件 @
ae7d2286
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cub/cub.cuh>
#include "paddle/fluid/operators/group_norm_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__global__
void
GroupNormForwardGetMeanAndVar
(
const
T
*
x
,
int
N
,
int
C
,
int
imsize
,
int
groups
,
int
group_size
,
T
*
mean
,
T
*
var
)
{
int
gid
=
blockIdx
.
y
;
int
cid
=
blockIdx
.
x
;
int
bid
=
blockIdx
.
z
;
int
number
=
min
(
group_size
,
static_cast
<
int
>
(
C
-
gid
*
group_size
));
int
ccid
=
gid
*
group_size
+
cid
;
if
(
ccid
>=
C
)
return
;
T
x_mean
=
0
,
x_var
=
0
;
for
(
int
imid
=
threadIdx
.
x
;
imid
<
imsize
;
imid
+=
blockDim
.
x
)
{
T
val
=
x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
];
x_mean
+=
val
;
x_var
+=
val
*
val
;
}
x_mean
/=
number
*
imsize
;
x_var
/=
number
*
imsize
;
__shared__
T
s_mem
[
2
];
if
(
threadIdx
.
x
==
0
)
{
s_mem
[
0
]
=
s_mem
[
1
]
=
0
;
}
__syncthreads
();
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
0
],
x_mean
);
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
1
],
x_var
);
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
paddle
::
platform
::
CudaAtomicAdd
(
&
mean
[
bid
*
groups
+
gid
],
s_mem
[
0
]);
paddle
::
platform
::
CudaAtomicAdd
(
&
var
[
bid
*
groups
+
gid
],
s_mem
[
1
]);
}
}
template
<
typename
T
>
__global__
void
GroupNormForward
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
const
T
*
bias
,
int
N
,
int
C
,
int
imsize
,
int
groups
,
int
group_size
,
T
epsilon
,
T
*
y
,
T
*
real_var
)
{
int
gid
=
blockIdx
.
y
;
int
cid
=
blockIdx
.
x
;
int
bid
=
blockIdx
.
z
;
int
ccid
=
gid
*
group_size
+
cid
;
if
(
ccid
>=
C
)
return
;
T
x_mean
=
mean
[
bid
*
groups
+
gid
];
T
x_var
=
var
[
bid
*
groups
+
gid
];
x_var
=
x_var
-
x_mean
*
x_mean
;
T
var_inv
=
1.0
/
sqrt
(
x_var
+
epsilon
);
if
(
cid
==
0
&&
threadIdx
.
x
==
0
)
real_var
[
bid
*
groups
+
gid
]
=
x_var
;
for
(
int
imid
=
threadIdx
.
x
;
imid
<
imsize
;
imid
+=
blockDim
.
x
)
{
T
val
=
x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
];
val
=
(
val
-
x_mean
)
*
var_inv
;
if
(
scale
)
val
*=
scale
[
gid
*
group_size
+
cid
];
if
(
bias
)
val
+=
bias
[
gid
*
group_size
+
cid
];
y
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
]
=
val
;
}
}
template
<
typename
T
>
class
GroupNormKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
const
auto
x_dims
=
x
->
dims
();
const
int
group_size
=
(
x_dims
[
1
]
-
1
)
/
groups
+
1
;
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
Tensor
temp_var
;
temp_var
.
mutable_data
<
T
>
(
var
->
dims
(),
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
mean
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
&
temp_var
,
static_cast
<
T
>
(
0
));
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
y
->
data
<
T
>
();
auto
*
mean_data
=
mean
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
auto
*
temp_var_data
=
temp_var
.
data
<
T
>
();
const
T
*
scale_data
=
nullptr
;
if
(
scale
)
scale_data
=
scale
->
data
<
T
>
();
const
T
*
bias_data
=
nullptr
;
if
(
bias
)
bias_data
=
bias
->
data
<
T
>
();
int
imsize
=
x_dims
[
2
]
*
x_dims
[
3
];
int
block_size
=
std
::
min
(
512
,
imsize
);
dim3
grid
(
group_size
,
groups
,
x_dims
[
0
]);
dim3
threads
(
block_size
,
1
,
1
);
GroupNormForwardGetMeanAndVar
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
x_dims
[
0
],
x_dims
[
1
],
imsize
,
groups
,
group_size
,
mean_data
,
temp_var_data
);
GroupNormForward
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
mean_data
,
temp_var_data
,
scale_data
,
bias_data
,
x_dims
[
0
],
x_dims
[
1
],
imsize
,
groups
,
group_size
,
epsilon
,
y_data
,
var_data
);
}
};
template
<
typename
T
>
__global__
void
GroupNormBackwardGetMeanAndVar
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
const
T
*
d_y
,
int
N
,
int
C
,
int
imsize
,
int
groups
,
int
group_size
,
T
epsilon
,
T
*
d_x
,
T
*
d_mean
,
T
*
d_var
,
T
*
d_scale
,
T
*
d_bias
)
{
int
gid
=
blockIdx
.
y
;
int
cid
=
blockIdx
.
x
;
int
bid
=
blockIdx
.
z
;
int
number
=
min
(
group_size
,
static_cast
<
int
>
(
C
-
gid
*
group_size
));
int
ccid
=
gid
*
group_size
+
cid
;
if
(
ccid
>=
C
)
return
;
T
x_mean
=
mean
[
bid
*
groups
+
gid
];
T
x_var
=
var
[
bid
*
groups
+
gid
];
T
var_inv
=
1.0
/
sqrt
(
x_var
+
epsilon
);
T
d_var_inv
=
0
,
d_x_mean
=
0
;
T
d_mean_data
=
0
,
d_var_data
=
0
,
d_scale_data
=
0
,
d_bias_data
=
0
;
for
(
int
imid
=
threadIdx
.
x
;
imid
<
imsize
;
imid
+=
blockDim
.
x
)
{
T
tmp
=
x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
];
T
val
=
(
tmp
-
x_mean
)
*
var_inv
;
T
dval
=
d_y
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
];
if
(
d_bias
)
d_bias_data
+=
dval
;
if
(
d_scale
)
d_scale_data
+=
val
*
dval
;
if
(
scale
)
dval
=
dval
*
scale
[
ccid
];
d_var_data
+=
(
tmp
-
x_mean
)
*
dval
;
T
d_tmp
=
dval
*
var_inv
;
if
(
d_x
)
d_x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
]
=
d_tmp
;
d_mean_data
-=
d_tmp
;
}
__shared__
T
s_mem
[
4
];
if
(
threadIdx
.
x
==
0
)
{
s_mem
[
0
]
=
s_mem
[
1
]
=
0
;
if
(
d_scale
)
s_mem
[
2
]
=
0
;
if
(
d_bias
)
s_mem
[
3
]
=
0
;
}
__syncthreads
();
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
0
],
d_mean_data
);
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
1
],
d_var_data
);
if
(
d_scale
)
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
2
],
d_scale_data
);
if
(
d_bias
)
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
3
],
d_bias_data
);
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
paddle
::
platform
::
CudaAtomicAdd
(
&
d_mean
[
bid
*
groups
+
gid
],
s_mem
[
0
]);
paddle
::
platform
::
CudaAtomicAdd
(
&
d_var
[
bid
*
groups
+
gid
],
s_mem
[
1
]);
if
(
d_scale
)
paddle
::
platform
::
CudaAtomicAdd
(
&
d_scale
[
ccid
],
s_mem
[
2
]);
if
(
d_bias
)
paddle
::
platform
::
CudaAtomicAdd
(
&
d_bias
[
ccid
],
s_mem
[
3
]);
}
}
template
<
typename
T
>
__global__
void
GroupNormBackward
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
d_mean
,
const
T
*
d_var
,
int
N
,
int
C
,
int
imsize
,
int
groups
,
int
group_size
,
T
epsilon
,
T
*
d_x
)
{
int
gid
=
blockIdx
.
y
;
int
cid
=
blockIdx
.
x
;
int
bid
=
blockIdx
.
z
;
int
number
=
min
(
group_size
,
static_cast
<
int
>
(
C
-
gid
*
group_size
));
int
ccid
=
gid
*
group_size
+
cid
;
if
(
ccid
>=
C
)
return
;
T
x_mean
=
mean
[
bid
*
groups
+
gid
];
T
x_var
=
var
[
bid
*
groups
+
gid
];
T
d_x_mean
=
d_mean
[
bid
*
groups
+
gid
];
T
d_var_inv
=
d_var
[
bid
*
groups
+
gid
];
T
d_x_var
=
-
1.0
/
(
2
*
(
x_var
+
epsilon
)
*
sqrt
(
x_var
+
epsilon
))
*
d_var_inv
;
d_x_mean
-=
2
*
d_x_var
*
x_mean
;
d_x_var
/=
number
*
imsize
;
d_x_mean
/=
number
*
imsize
;
for
(
int
imid
=
threadIdx
.
x
;
imid
<
imsize
;
imid
+=
blockDim
.
x
)
{
T
tmp
=
x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
];
if
(
d_x
)
d_x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
]
+=
d_x_mean
+
tmp
*
2
*
d_x_var
;
}
}
template
<
typename
T
>
class
GroupNormGradKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
auto
&
x_dims
=
x
->
dims
();
const
int
group_size
=
(
x_dims
[
1
]
-
1
)
/
groups
+
1
;
T
*
d_x_data
=
nullptr
;
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_x_data
=
d_x
->
data
<
T
>
();
}
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
Tensor
temp_var
;
temp_var
.
mutable_data
<
T
>
(
var
->
dims
(),
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
&
temp_var
,
static_cast
<
T
>
(
0
));
T
*
temp_var_data
=
temp_var
.
data
<
T
>
();
Tensor
temp_mean
;
temp_mean
.
mutable_data
<
T
>
(
var
->
dims
(),
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
&
temp_mean
,
static_cast
<
T
>
(
0
));
T
*
temp_mean_data
=
temp_mean
.
data
<
T
>
();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
d_y
->
data
<
T
>
();
auto
*
mean_data
=
mean
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
T
*
d_scale_data
=
nullptr
;
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_scale
,
static_cast
<
T
>
(
0
));
d_scale_data
=
d_scale
->
data
<
T
>
();
}
T
*
d_bias_data
=
nullptr
;
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_bias
,
static_cast
<
T
>
(
0
));
d_bias_data
=
d_bias
->
data
<
T
>
();
}
const
T
*
scale_data
=
nullptr
;
if
(
scale
)
scale_data
=
scale
->
data
<
T
>
();
int
imsize
=
x_dims
[
2
]
*
x_dims
[
3
];
int
block_size
=
std
::
min
(
512
,
imsize
);
dim3
grid
(
group_size
,
groups
,
x_dims
[
0
]);
dim3
threads
(
block_size
,
1
,
1
);
GroupNormBackwardGetMeanAndVar
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
mean_data
,
var_data
,
scale_data
,
y_data
,
x_dims
[
0
],
x_dims
[
1
],
imsize
,
groups
,
group_size
,
epsilon
,
d_x_data
,
temp_mean_data
,
temp_var_data
,
d_scale_data
,
d_bias_data
);
GroupNormBackward
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
mean_data
,
var_data
,
temp_mean_data
,
temp_var_data
,
x_dims
[
0
],
x_dims
[
1
],
imsize
,
groups
,
group_size
,
epsilon
,
d_x_data
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
group_norm
,
ops
::
GroupNormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GroupNormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
group_norm_grad
,
ops
::
GroupNormGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GroupNormGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/group_norm_op.h
0 → 100644
浏览文件 @
ae7d2286
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
DeviceContext
,
typename
T
>
class
GroupNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
const
auto
x_dims
=
x
->
dims
();
const
int
group_size
=
(
x_dims
[
1
]
-
1
)
/
groups
+
1
;
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
y
->
data
<
T
>
();
auto
*
mean_data
=
mean
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
const
T
*
scale_data
=
nullptr
;
if
(
scale
)
scale_data
=
scale
->
data
<
T
>
();
const
T
*
bias_data
=
nullptr
;
if
(
bias
)
bias_data
=
bias
->
data
<
T
>
();
int
imsize
=
x_dims
[
2
]
*
x_dims
[
3
];
auto
*
iter_x_data
=
x_data
;
auto
*
iter_y_data
=
y_data
;
for
(
int
bid
=
0
;
bid
<
x_dims
[
0
];
bid
++
)
for
(
int
gid
=
0
;
gid
<
groups
;
gid
++
)
{
T
x_mean
=
0
,
x_var
=
0
;
int
number
=
std
::
min
(
group_size
,
static_cast
<
int
>
(
x_dims
[
1
]
-
gid
*
group_size
));
auto
*
tmp
=
iter_x_data
;
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
iter_x_data
++
)
{
x_mean
+=
iter_x_data
[
0
];
x_var
+=
iter_x_data
[
0
]
*
iter_x_data
[
0
];
}
}
x_mean
/=
number
*
imsize
;
x_var
/=
number
*
imsize
;
x_var
=
x_var
-
x_mean
*
x_mean
;
T
var_inv
=
1.0
/
sqrt
(
x_var
+
epsilon
);
mean_data
[
bid
*
groups
+
gid
]
=
x_mean
;
var_data
[
bid
*
groups
+
gid
]
=
x_var
;
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
tmp
++
,
iter_y_data
++
)
{
T
val
=
(
tmp
[
0
]
-
x_mean
)
*
var_inv
;
if
(
scale_data
)
val
*=
scale_data
[
gid
*
group_size
+
cid
];
if
(
bias_data
)
val
+=
bias_data
[
gid
*
group_size
+
cid
];
iter_y_data
[
0
]
=
val
;
}
}
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
GroupNormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
auto
&
x_dims
=
x
->
dims
();
const
int
group_size
=
(
x_dims
[
1
]
-
1
)
/
groups
+
1
;
// TODO(liangdun): need to check d_x is null
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
T
*
d_x_data
=
nullptr
;
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_x
,
static_cast
<
T
>
(
0
));
d_x_data
=
d_x
->
data
<
T
>
();
}
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
d_y
->
data
<
T
>
();
auto
*
mean_data
=
mean
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
T
*
d_scale_data
=
nullptr
;
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_scale
,
static_cast
<
T
>
(
0
));
d_scale_data
=
d_scale
->
data
<
T
>
();
}
T
*
d_bias_data
=
nullptr
;
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_bias
,
static_cast
<
T
>
(
0
));
d_bias_data
=
d_bias
->
data
<
T
>
();
}
const
T
*
scale_data
=
nullptr
;
if
(
scale
)
scale_data
=
scale
->
data
<
T
>
();
int
imsize
=
x_dims
[
2
]
*
x_dims
[
3
];
auto
*
iter_x_data
=
x_data
;
auto
*
iter_d_x_data
=
d_x_data
;
auto
*
iter_y_data
=
y_data
;
for
(
int
bid
=
0
;
bid
<
x_dims
[
0
];
bid
++
)
for
(
int
gid
=
0
;
gid
<
groups
;
gid
++
)
{
T
x_mean
=
mean_data
[
bid
*
groups
+
gid
];
T
x_var
=
var_data
[
bid
*
groups
+
gid
];
T
var_inv
=
1.0
/
sqrt
(
x_var
+
epsilon
);
int
number
=
std
::
min
(
group_size
,
static_cast
<
int
>
(
x_dims
[
1
]
-
gid
*
group_size
));
auto
*
tmp
=
iter_x_data
;
auto
*
tmp2
=
iter_d_x_data
;
T
d_var_inv
=
0
,
d_x_mean
=
0
;
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
tmp
++
,
iter_y_data
++
,
iter_d_x_data
++
)
{
T
val
=
(
tmp
[
0
]
-
x_mean
)
*
var_inv
;
T
dval
=
iter_y_data
[
0
];
if
(
d_bias_data
)
d_bias_data
[
gid
*
group_size
+
cid
]
+=
dval
;
if
(
d_scale_data
)
d_scale_data
[
gid
*
group_size
+
cid
]
+=
val
*
dval
;
if
(
scale_data
)
dval
=
scale_data
[
gid
*
group_size
+
cid
]
*
dval
;
d_var_inv
+=
(
tmp
[
0
]
-
x_mean
)
*
dval
;
T
d_tmp
=
dval
*
var_inv
;
if
(
d_x_data
)
iter_d_x_data
[
0
]
+=
d_tmp
;
d_x_mean
-=
d_tmp
;
}
}
T
d_x_var
=
-
1.0
/
(
2
*
(
x_var
+
epsilon
)
*
sqrt
(
x_var
+
epsilon
))
*
d_var_inv
;
d_x_mean
-=
2
*
d_x_var
*
x_mean
;
d_x_var
/=
number
*
imsize
;
d_x_mean
/=
number
*
imsize
;
iter_d_x_data
=
tmp2
;
if
(
d_x_data
)
{
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
iter_x_data
++
,
iter_d_x_data
++
)
{
iter_d_x_data
[
0
]
+=
d_x_mean
;
iter_d_x_data
[
0
]
+=
iter_x_data
[
0
]
*
2
*
d_x_var
;
}
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
ae7d2286
...
...
@@ -85,6 +85,7 @@ __all__ = [
'row_conv'
,
'multiplex'
,
'layer_norm'
,
'group_norm'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
'one_hot'
,
...
...
@@ -2547,6 +2548,84 @@ def layer_norm(input,
return
helper
.
append_activation
(
layer_norm_out
)
@
templatedoc
()
def
group_norm
(
input
,
groups
,
epsilon
=
1e-05
,
param_attr
=
None
,
bias_attr
=
None
,
act
=
None
,
data_layout
=
'NCHW'
,
name
=
None
):
"""
**Group Normalization Layer**
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`
Args:
input(Variable): The input tensor variable.
groups(int): The number of groups that divided from channels.
epsilon(float): The small value added to the variance to prevent
division by zero.
param_attr(ParamAttr|None): The parameter attribute for the learnable
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act(str): Activation to be applied to the output of group normalizaiton.
data_layout(string|NCHW): Only NCHW is supported.
name (str): The name of this layer. It is optional.
Returns:
Variable: A tensor variable which is the result after applying group normalization on the input.
Examples:
>>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
>>> dtype='float32')
>>> x = fluid.layers.group_norm(input=data, groups=4)
"""
helper
=
LayerHelper
(
'group_norm'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
# create intput and parameters
inputs
=
{
'X'
:
input
}
input_shape
=
input
.
shape
if
data_layout
!=
'NCHW'
:
raise
ValueError
(
"unsupported data layout:"
+
data_layout
)
param_shape
=
[
input_shape
[
1
]]
if
param_attr
:
scale
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
default_initializer
=
Constant
(
1.0
))
inputs
[
'Scale'
]
=
scale
if
bias_attr
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
is_bias
=
True
)
inputs
[
'Bias'
]
=
bias
# create output
mean_out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
variance_out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
group_norm_out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"group_norm"
,
inputs
=
inputs
,
outputs
=
{
"Y"
:
group_norm_out
,
"Mean"
:
mean_out
,
"Variance"
:
variance_out
,
},
attrs
=
{
"epsilon"
:
epsilon
,
"groups"
:
groups
})
return
helper
.
append_activation
(
group_norm_out
)
def
conv2d_transpose
(
input
,
num_filters
,
output_size
=
None
,
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
ae7d2286
...
...
@@ -381,8 +381,8 @@ class OpTest(unittest.TestCase):
outs
.
sort
(
key
=
len
)
checker
(
outs
)
def
_
_
assert_is_close
(
self
,
numeric_grads
,
analytic_grads
,
names
,
max_relative_error
,
msg_prefix
):
def
_assert_is_close
(
self
,
numeric_grads
,
analytic_grads
,
names
,
max_relative_error
,
msg_prefix
):
for
a
,
b
,
name
in
six
.
moves
.
zip
(
numeric_grads
,
analytic_grads
,
names
):
abs_a
=
np
.
abs
(
a
)
...
...
@@ -451,9 +451,9 @@ class OpTest(unittest.TestCase):
analytic_grads
=
self
.
_get_gradient
(
inputs_to_check
,
place
,
output_names
,
no_grad_set
)
self
.
_
_
assert_is_close
(
numeric_grads
,
analytic_grads
,
inputs_to_check
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
self
.
_assert_is_close
(
numeric_grads
,
analytic_grads
,
inputs_to_check
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
@
staticmethod
def
_numpy_to_lod_tensor
(
np_value
,
lod
,
place
):
...
...
python/paddle/fluid/tests/unittests/test_group_norm_op.py
0 → 100644
浏览文件 @
ae7d2286
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
operator
import
mul
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
op_test
import
OpTest
from
testsuite
import
create_op
def
group_norm_naive
(
x
,
scale
,
bias
,
epsilon
,
groups
):
N
,
C
,
H
,
W
=
x
.
shape
G
=
groups
x
=
x
.
reshape
((
N
*
G
,
-
1
))
mean
=
np
.
mean
(
x
,
axis
=
1
,
keepdims
=
True
)
var
=
np
.
var
(
x
,
axis
=
1
,
keepdims
=
True
)
output
=
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
)
output
=
output
.
reshape
((
N
,
C
,
H
,
W
))
*
scale
.
reshape
(
(
-
1
,
1
,
1
))
+
bias
.
reshape
((
-
1
,
1
,
1
))
return
output
,
mean
.
reshape
((
N
,
G
)),
var
.
reshape
((
N
,
G
))
class
TestGroupNormOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"group_norm"
self
.
data_format
=
"NCHW"
self
.
dtype
=
np
.
float32
self
.
shape
=
(
2
,
4
,
3
,
3
)
self
.
attrs
=
{
'epsilon'
:
1e-5
,
'groups'
:
2
}
self
.
compare_between_place
=
False
self
.
init_test_case
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
scale
=
np
.
random
.
random
([
self
.
shape
[
1
]]).
astype
(
self
.
dtype
)
bias
=
np
.
random
.
random
([
self
.
shape
[
1
]]).
astype
(
self
.
dtype
)
output
,
mean
,
var
=
group_norm_naive
(
input
,
scale
,
bias
,
self
.
attrs
[
'epsilon'
],
self
.
attrs
[
'groups'
])
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
'Scale'
:
OpTest
.
np_dtype_to_fluid_dtype
(
scale
),
'Bias'
:
OpTest
.
np_dtype_to_fluid_dtype
(
bias
)
}
self
.
outputs
=
{
'Y'
:
output
,
'Mean'
:
mean
,
'Variance'
:
var
}
def
test_check_output
(
self
):
atol
=
1e-4
place
=
core
.
CPUPlace
()
self
.
check_output_with_place
(
place
,
atol
=
atol
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
atol
)
def
do_compare_between_place
(
self
):
if
not
core
.
is_compiled_with_cuda
():
return
place
=
core
.
CPUPlace
()
place2
=
core
.
CUDAPlace
(
0
)
self
.
scope
=
core
.
Scope
()
op_inputs
=
self
.
inputs
if
hasattr
(
self
,
"inputs"
)
else
dict
()
op_outputs
=
self
.
outputs
if
hasattr
(
self
,
"outputs"
)
else
dict
()
op_attrs
=
self
.
attrs
if
hasattr
(
self
,
"attrs"
)
else
dict
()
self
.
op
=
create_op
(
self
.
scope
,
self
.
op_type
,
op_inputs
,
op_outputs
,
op_attrs
)
inputs_to_check
=
set
([
'X'
,
'Scale'
,
'Bias'
])
output_names
=
'Y'
cpu_grads
=
self
.
_get_gradient
(
inputs_to_check
,
place
,
output_names
,
None
)
gpu_grads
=
self
.
_get_gradient
(
inputs_to_check
,
place2
,
output_names
,
None
)
self
.
_assert_is_close
(
cpu_grads
,
gpu_grads
,
inputs_to_check
,
0.005
,
"Gradient Check On %s"
%
str
(
place
))
def
test_check_grad
(
self
):
if
self
.
compare_between_place
:
self
.
do_compare_between_place
()
return
place
=
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
set
([
'X'
,
'Scale'
,
'Bias'
]),
'Y'
,
max_relative_error
=
0.01
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
set
([
'X'
,
'Scale'
,
'Bias'
]),
'Y'
,
max_relative_error
=
0.01
)
def
init_test_case
(
self
):
pass
class
TestGroupNormOp1
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
attrs
[
'groups'
]
=
1
class
TestGroupNormOp2
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
attrs
[
'groups'
]
=
4
class
TestGroupNormOpBigEps1
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
attrs
[
'groups'
]
=
1
self
.
attrs
[
'epsilon'
]
=
0.5
class
TestGroupNormOpBigEps2
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
attrs
[
'groups'
]
=
4
self
.
attrs
[
'epsilon'
]
=
0.5
class
TestGroupNormOpBigEps3
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
attrs
[
'epsilon'
]
=
0.5
class
TestGroupNormOpLargeData
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
shape
=
(
2
,
32
,
64
,
64
)
self
.
attrs
[
'groups'
]
=
8
self
.
compare_between_place
=
True
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录