nn.py 444.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
205
    'deformable_conv',
206
    'unfold',
C
cjt222 已提交
207
    'deformable_roi_pooling',
Y
Yu Yang 已提交
208 209
]

J
jerrywgz 已提交
210 211
kIgnoreIndex = -100

Y
Yu Yang 已提交
212 213 214 215 216 217 218

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
219
       is_test=False,
220
       name=None):
Y
Yu Yang 已提交
221
    """
222
    **Fully Connected Layer**
Y
Yu Yang 已提交
223

224
    This function creates a fully connected layer in the network. It can take
225
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
226
    Args in detail). It creates a variable called weights for each input tensor,
227 228 229 230
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
231
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
232 233
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
234

235
    When the input is single tensor:
C
caoying03 已提交
236

237 238 239 240 241
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
242 243 244

    .. math::

245
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
246 247 248

    In the above equation:

249 250 251
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
252
    * :math:`b`: The bias parameter created by this layer (if needed).
253
    * :math:`Act`: The activation function.
C
caoying03 已提交
254
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
274
    Args:
R
ranqiu 已提交
275 276 277 278 279 280 281 282 283 284
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
285
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
286 287 288 289
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
290 291
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
292
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
293
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
294
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
295

296
    Returns:
F
fengjiayi 已提交
297
        Variable: The transformation result.
298 299

    Raises:
C
caoying03 已提交
300
        ValueError: If rank of the input tensor is less than 2.
301 302 303 304

    Examples:
        .. code-block:: python

305
          # when input is single tensor
F
fengjiayi 已提交
306
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
307
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
308 309 310 311 312

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
313
    """
C
caoying03 已提交
314
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
315 316 317 318

    dtype = helper.input_dtype()

    mul_results = []
319 320
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
321 322 323
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
324

Y
Yu Yang 已提交
325
        w = helper.create_parameter(
326
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
327
        tmp = helper.create_variable_for_type_inference(dtype)
328
        helper.append_op(
329 330 331
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
332
            outputs={"Out": tmp},
M
mozga-intel 已提交
333 334
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
335 336 337 338
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
339
    else:
X
Xin Pan 已提交
340
        pre_bias = helper.create_variable_for_type_inference(dtype)
341
        helper.append_op(
342 343 344
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
345
            attrs={"use_mkldnn": False})
346 347 348 349
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
350 351


352 353 354
def embedding(input,
              size,
              is_sparse=False,
355
              is_distributed=False,
356 357 358
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
359
    """
360 361
    **Embedding Layer**

362
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
363 364
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
365 366 367

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
368 369

    Args:
370 371 372 373 374
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
375
        is_distributed(bool): Whether to run lookup table from remote parameter server.
376 377
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
378
            with zeros whenever lookup encounters it in :attr:`input`. If
379
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
380 381
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
382
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
383

384 385 386
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
387

388 389
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
390

B
bdzhuxiaoning 已提交
391 392 393
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
394 395 396
    """

    helper = LayerHelper('embedding', **locals())
397
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
398 399
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
400 401
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
402
    tmp = helper.create_variable_for_type_inference(dtype)
403 404
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
405 406 407 408 409
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
410 411 412
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
413
            'remote_prefetch': remote_prefetch,
414 415
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
416 417 418
    return tmp


W
wopeizl 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
435

W
wopeizl 已提交
436 437 438 439 440 441 442 443 444 445 446
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
447

W
wopeizl 已提交
448 449 450 451
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
452

W
wopeizl 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
489 490 491
            
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
492
            hidden_dim = 512
493 494 495 496 497 498
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
499
                                           bias_attr=False)
500

W
wopeizl 已提交
501 502 503
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
504
    assert in_dygraph_mode(
505
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
549 550


P
phlrain 已提交
551 552 553 554 555 556
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
557
         dropout_prob=0.0,
P
phlrain 已提交
558 559 560 561 562
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
563
    """
P
phlrain 已提交
564
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
565 566

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
567
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
568 569
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
570
    .. math::
M
minqiyang 已提交
571 572 573 574 575 576 577

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
578
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
579 580 581 582

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
583 584

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
585 586 587 588 589 590
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
591 592 593
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
594
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
595

M
minqiyang 已提交
596
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
597 598 599 600 601
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
602
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
603 604 605 606 607
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
608
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
609 610
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
611 612
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
613 614 615 616 617 618
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
619
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
620

L
liuhongyu 已提交
621 622

    Returns:
M
minqiyang 已提交
623 624
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
625
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
626

H
haowang101779990 已提交
627 628 629 630
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
631
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
632 633
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
634
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
635 636 637 638


    Examples:
        .. code-block:: python
639 640 641 642 643 644
            
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
645 646 647 648 649 650
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
651 652 653 654 655
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
656 657 658 659
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
660 661 662
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
722 723 724 725 726 727 728 729 730 731
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
732
                  proj_activation='tanh',
733
                  dtype='float32',
X
xuezhong 已提交
734 735 736 737 738
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
739 740 741
    """
    **Dynamic LSTMP Layer**

742 743 744 745 746 747
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
748 749 750 751 752

    The formula is as follows:

    .. math::

753
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
754

755
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
756

757
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
758

759
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
760

761
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
762

763
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
764

765
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
766

Y
Yibing Liu 已提交
767 768 769 770 771 772
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
773
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
774
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
775
          bias vector).
Y
Yibing Liu 已提交
776 777 778
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
779
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
780
    * :math:`h`: The hidden state.
781
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
782 783
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
784
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
785
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
786
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
787 788
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
789 790 791 792

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
793

Y
Yibing Liu 已提交
794 795 796 797 798 799 800 801 802 803 804 805
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
806
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
807 808
                               hidden-hidden weight and projection weight.

809 810
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
811 812
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
813 814
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
815
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
816 817 818 819 820

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
821
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
822 823 824 825 826 827
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
828
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
829 830 831
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
832
                                - The shape is (1 x 7D).
C
chengduo 已提交
833 834 835 836 837

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
838 839 840 841 842 843 844 845 846
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
847
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
848 849
                              default "tanh".
        proj_activation(str): The activation for projection output.
850
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
851
                              default "tanh".
Y
Yibing Liu 已提交
852
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
853 854
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
855 856 857 858 859 860 861 862 863 864 865
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
866 867

    Returns:
868 869 870 871
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
872 873

    Examples:
874

Y
Yibing Liu 已提交
875 876
        .. code-block:: python

877 878 879 880
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
881
            hidden_dim, proj_dim = 512, 256
882
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
883
                                     act=None, bias_attr=None)
884 885 886
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
887 888 889 890
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
891
    """
892

L
lujun 已提交
893
    assert in_dygraph_mode(
894 895
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
896
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
897
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
898
    size = size // 4
Y
Yibing Liu 已提交
899 900 901 902 903 904 905 906 907 908
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
909 910 911 912 913 914
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
930

X
xuezhong 已提交
931 932 933 934 935
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
936 937
    helper.append_op(
        type='lstmp',
938
        inputs=inputs,
Y
Yibing Liu 已提交
939 940 941 942 943 944 945 946 947
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
948 949
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
950 951 952 953 954 955 956 957 958
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
959 960 961 962 963 964 965
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
966 967
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
968
    """
969
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
970

971 972 973
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
974

G
guosheng 已提交
975 976 977 978 979 980 981 982 983
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
984

G
guosheng 已提交
985
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
986

Q
Qiao Longfei 已提交
987 988 989

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
990 991 992 993 994 995 996 997 998 999 1000 1001
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1002
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1003 1004
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1005 1006 1007 1008
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1009
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1010 1011

    Args:
1012 1013
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1014
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1015
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1016 1017
            is the hidden size.
        size(int): The dimension of the gru cell.
1018
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1019 1020
            hidden-hidden weight matrix. Note:

1021
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1022
              :math:`D` is the hidden size.
1023
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1024
              The first part are weights of the update gate and reset gate with
1025
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1026
              candidate hidden state with shape :math:`(D \\times D)`.
1027 1028 1029 1030 1031

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1032
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1033
            the bias in the update gate, reset gate and candidate calculations.
1034 1035 1036
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1037 1038
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1039
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1040 1041 1042
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1043
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1044
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1045 1046 1047 1048
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1049 1050

    Returns:
G
guosheng 已提交
1051
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1052
            and sequence length is the same with the input.
1053

G
guosheng 已提交
1054
    Examples:
1055

G
guosheng 已提交
1056 1057
        .. code-block:: python

1058 1059
            import paddle.fluid as fluid

1060 1061 1062 1063
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1064
            hidden_dim = 512
1065
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1066
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1067 1068
    """

L
lujun 已提交
1069
    assert in_dygraph_mode(
1070 1071
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1072 1073 1074 1075 1076 1077 1078
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1079
    batch_size = input.shape[0]
G
guosheng 已提交
1080
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1081
    if h_0:
G
guosheng 已提交
1082
        assert h_0.shape == (
Y
Yancey 已提交
1083 1084 1085
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1086

X
Xin Pan 已提交
1087 1088 1089 1090
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1104 1105
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1106 1107 1108 1109
        })
    return hidden


Y
Yu Yang 已提交
1110 1111 1112
def gru_unit(input,
             hidden,
             size,
1113 1114
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1115
             activation='tanh',
Q
Qiao Longfei 已提交
1116 1117
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1118
    """
1119 1120 1121
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1122
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1123
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1124

1125 1126
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1127

1128
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1129

1130
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1147 1148

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1149 1150 1151
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1152 1153
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1154 1155
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1156 1157 1158
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1159 1160 1161

    Args:
        input (Variable): The fc transformed input value of current step.
1162
        hidden (Variable): The hidden value of gru unit from previous step.
1163
        size (integer): The input dimension value.
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1178
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1179
            the bias in the update gate, reset gate and candidate calculations.
1180 1181 1182
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1183 1184
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1185 1186 1187 1188
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1189

1190 1191 1192 1193 1194 1195
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1220
    size = size // 3
Y
Yu Yang 已提交
1221 1222

    # create weight
1223 1224
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1225

X
Xin Pan 已提交
1226 1227 1228
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1229
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1230
    # create bias
1231
    if helper.bias_attr:
Y
Yu Yang 已提交
1232 1233 1234
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1235
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1236 1237 1238

    helper.append_op(
        type='gru_unit',
1239
        inputs=inputs,
Y
Yu Yang 已提交
1240 1241 1242 1243 1244 1245
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1246 1247
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1248 1249 1250 1251 1252
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1253
@templatedoc()
1254
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1255 1256 1257 1258 1259 1260 1261
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1262
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1263 1264 1265 1266
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1267 1268 1269
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1270

J
JesseyXujin 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1284
    """
Y
Yu Yang 已提交
1285 1286 1287 1288 1289 1290
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1291 1292 1293 1294 1295 1296 1297 1298
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1314 1315 1316 1317
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1318

W
wopeizl 已提交
1319 1320
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1321

W
wopeizl 已提交
1322
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1323

W
wopeizl 已提交
1324
        label(${label_type}): ${label_comment}
1325

W
wopeizl 已提交
1326 1327
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1328

W
wopeizl 已提交
1329 1330
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1331

Y
Yibing Liu 已提交
1332 1333 1334 1335 1336 1337 1338
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1339 1340 1341 1342 1343 1344 1345 1346
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1347
                "Transition": transition,
W
wopeizl 已提交
1348 1349
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1350

W
wopeizl 已提交
1351
    return viterbi_path
Y
Yu Yang 已提交
1352 1353


Y
yi.wu 已提交
1354
@templatedoc()
F
fengjiayi 已提交
1355
def cos_sim(X, Y):
Y
Yu Yang 已提交
1356
    """
Y
yi.wu 已提交
1357 1358 1359
    ${comment}

    Args:
1360 1361
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1362

Y
yi.wu 已提交
1363
    Returns:
1364
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1365 1366 1367 1368 1369 1370 1371

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1372
    """
F
fengjiayi 已提交
1373
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1374 1375 1376
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1387 1388 1389 1390 1391
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1392
            dropout_implementation="downgrade_in_infer"):
1393 1394 1395 1396 1397
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1398
    training. The dropout operator randomly sets (according to the given dropout
1399 1400 1401
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1402 1403
    dropout op can be removed from the program to make the program more efficient.

1404
    Args:
1405 1406
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1407 1408 1409 1410 1411 1412 1413
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1414 1415
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1416
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1417 1418

                                           - train: out = input * mask
C
ceci3 已提交
1419
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1420 1421 1422

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1423
                                        2. upscale_in_train, upscale the outcome at training time
1424

H
haowang101779990 已提交
1425 1426
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1427

H
haowang101779990 已提交
1428 1429
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1430

M
minqiyang 已提交
1431

1432
    Returns:
1433
        Variable: A tensor variable is the shape with `x`.
1434 1435

    Examples:
1436

1437 1438
        .. code-block:: python

1439 1440
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1441 1442
    """

F
fengjiayi 已提交
1443
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1444 1445
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1446
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1447 1448 1449 1450

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1451 1452 1453 1454 1455
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1456 1457 1458 1459
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1460 1461
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1462
        })
1463 1464 1465
    return out


J
jerrywgz 已提交
1466
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1467
    """
Y
Yibing Liu 已提交
1468 1469
    **Cross Entropy Layer**

1470 1471 1472
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1473 1474

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1475
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1476

Y
Yibing Liu 已提交
1477
        .. math::
Y
yangyaming 已提交
1478

Y
Yibing Liu 已提交
1479 1480 1481
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1482 1483
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1484 1485 1486 1487 1488

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1489
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1490 1491 1492
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1493 1494
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1495
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1496

Y
Yibing Liu 已提交
1497
    Args:
Y
yangyaming 已提交
1498
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1499 1500 1501 1502
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1503
        label (Variable|list): the ground truth which is a 2-D tensor. When
1504 1505 1506 1507
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1508
        soft_label (bool): a flag indicating whether to
1509
                                           interpretate the given labels as soft
1510
                                           labels. Default: `False`.
M
minqiyang 已提交
1511 1512
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1513
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1514 1515 1516 1517 1518

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1519 1520 1521
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1522

H
haowang101779990 已提交
1523 1524
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1525

H
haowang101779990 已提交
1526 1527
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1528 1529 1530 1531

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1532 1533 1534 1535
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1536
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1537
    """
S
sneaxiy 已提交
1538 1539
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1540
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1541
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1542 1543 1544 1545 1546
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1547 1548
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1549 1550 1551
    return out


S
sneaxiy 已提交
1552 1553 1554 1555
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1556
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1557 1558 1559 1560 1561
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1562
                 'MatchX': [match_x],
S
sneaxiy 已提交
1563 1564 1565 1566 1567
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1568
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1569
    """
1570
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1571

1572
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1573
    The loss at a given point in one session is defined as:
1574 1575 1576

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1577 1578

    Learn more details by reading paper <session-based recommendations with recurrent
1579
    neural networks>.
F
frankwhzhang 已提交
1580

1581 1582 1583 1584 1585 1586
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1587 1588
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1589 1590 1591
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1592 1593 1594
    Examples:
        .. code-block:: python

1595 1596 1597 1598 1599 1600 1601
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1602
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1603
    """
1604 1605 1606 1607 1608
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1609
                'Label': [label]},
1610 1611 1612 1613
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1614
def square_error_cost(input, label):
Y
Yu Yang 已提交
1615
    """
1616 1617
    **Square error cost layer**

1618 1619
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1620

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1634 1635
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1636 1637

    Returns:
G
guosheng 已提交
1638
        Variable: The tensor variable storing the element-wise squared error \
1639
                  difference of input and label.
1640 1641 1642 1643

    Examples:
        .. code-block:: python

R
ruri 已提交
1644 1645 1646
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1647

Y
Yu Yang 已提交
1648
    """
F
fengjiayi 已提交
1649
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1650
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1651 1652 1653 1654 1655 1656
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1657
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1658
    helper.append_op(
F
fengjiayi 已提交
1659 1660
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1661 1662 1663
    return square_out


Y
yi.wu 已提交
1664
@templatedoc()
Y
Yu Yang 已提交
1665 1666 1667 1668
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1669
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1670
    """
Y
yi.wu 已提交
1671
    **Chunk Evaluator**
Y
yi.wu 已提交
1672

Y
yangyaming 已提交
1673
    This function computes and outputs the precision, recall and
1674
    F1-score of chunk detection.
Y
yi.wu 已提交
1675

M
minqiyang 已提交
1676
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1677
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1678 1679 1680 1681 1682 1683

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1684

Y
yi.wu 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1710

Y
yi.wu 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1735
    Args:
1736 1737 1738 1739 1740
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1741

Y
yi.wu 已提交
1742
    Returns:
Y
update  
yi.wu 已提交
1743 1744 1745
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1746

Y
yi.wu 已提交
1747 1748 1749
    Examples:
        .. code-block:: python

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1761
            crf = fluid.layers.linear_chain_crf(
1762
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1763
            crf_decode = fluid.layers.crf_decoding(
1764
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1765 1766 1767 1768 1769
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1770
    """
F
fengjiayi 已提交
1771
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1772 1773

    # prepare output
X
Xin Pan 已提交
1774 1775 1776 1777 1778 1779 1780
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1781 1782 1783 1784 1785 1786 1787 1788

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1789 1790 1791 1792
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1793 1794 1795
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1796 1797
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1798
        })
1799 1800
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1801 1802


1803
@templatedoc()
Y
Yu Yang 已提交
1804 1805 1806 1807 1808 1809 1810
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1811 1812
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1813 1814 1815 1816
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1817 1818 1819 1820 1821 1822 1823

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1837

1838 1839
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1840 1841 1842 1843 1844 1845 1846

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1847 1848
    """

L
lujun 已提交
1849
    assert not in_dygraph_mode(), (
1850
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1851 1852 1853 1854 1855
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1856
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1867
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1868 1869 1870 1871 1872 1873
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1874
def sequence_softmax(input, use_cudnn=False, name=None):
1875 1876 1877
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1878
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1895 1896 1897
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1910
    assert not in_dygraph_mode(), (
1911
        "sequence layer is not supported in dygraph mode yet.")
1912 1913
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1914
    softmax_out = helper.create_variable_for_type_inference(dtype)
1915 1916 1917 1918 1919 1920 1921 1922
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1923
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1924
    """
1925
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1926
    has the same shape as the input.
Q
qiaolongfei 已提交
1927

D
dengkaipeng 已提交
1928
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1929
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1930
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1931 1932 1933
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1934
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1935
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1936 1937 1938 1939 1940 1941 1942

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1943
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1944 1945 1946 1947 1948 1949 1950 1951

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1952 1953
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1954 1955
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1956 1957 1958
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1959 1960 1961 1962 1963 1964 1965 1966

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1967 1968
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1969
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1970
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1971
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1972 1973
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1974 1975

    """
1976 1977
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1978
    softmax_out = helper.create_variable_for_type_inference(dtype)
1979 1980 1981 1982
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1983 1984
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1985 1986 1987
    return softmax_out


Y
Yu Yang 已提交
1988 1989 1990
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1991 1992
           stride=1,
           padding=0,
1993
           dilation=1,
Y
Yu Yang 已提交
1994 1995 1996
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1997
           use_cudnn=True,
1998 1999
           act=None,
           name=None):
Y
Yu Yang 已提交
2000
    """
C
chengduoZH 已提交
2001
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2002 2003
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2004
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2005 2006 2007 2008 2009 2010 2011
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2012 2013 2014
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2015

2016
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2017

C
chengduoZH 已提交
2018 2019
    .. math::

C
refine  
chengduoZH 已提交
2020
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2021

T
tensor-tang 已提交
2022
    Where:
C
chengduoZH 已提交
2023

2024 2025 2026 2027 2028
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2029
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2030 2031 2032

    Example:

2033 2034
        - Input:

W
weixing02 已提交
2035
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2036

W
weixing02 已提交
2037
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2038

2039
        - Output:
T
tensor-tang 已提交
2040

W
weixing02 已提交
2041
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2042

C
chengduoZH 已提交
2043
        Where
2044 2045

        .. math::
C
chengduoZH 已提交
2046

W
weixing02 已提交
2047 2048
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2049 2050

    Args:
2051
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2052
        num_filters(int): The number of filter. It is as same as the output
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2070 2071 2072 2073 2074
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2075
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2076 2077 2078 2079 2080
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2081 2082
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2083 2084
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2085
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2086
            will be named automatically. Default: None
C
chengduoZH 已提交
2087 2088

    Returns:
G
guosheng 已提交
2089
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2090 2091
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2092
    Raises:
2093 2094
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2095

C
chengduoZH 已提交
2096 2097 2098
    Examples:
        .. code-block:: python

2099 2100
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2101 2102 2103
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2104
    assert param_attr is not False, "param_attr should not be False here."
2105
    l_type = 'conv2d'
X
xzl 已提交
2106 2107
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2108
        l_type = 'depthwise_conv2d'
2109 2110 2111 2112

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2113 2114 2115 2116 2117
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2118
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2119

C
chengduoZH 已提交
2120 2121 2122
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2123
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2124

C
chengduoZH 已提交
2125 2126
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2127 2128

    input_shape = input.shape
M
minqiyang 已提交
2129
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2130 2131

    def _get_default_param_initializer():
C
chengduo 已提交
2132 2133
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2134 2135 2136 2137 2138 2139 2140 2141
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2142
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2143

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2158
    helper.append_op(
2159
        type=l_type,
Y
Yu Yang 已提交
2160 2161 2162 2163 2164
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2165 2166 2167
        attrs={
            'strides': stride,
            'paddings': padding,
2168
            'dilations': dilation,
C
chengduoZH 已提交
2169
            'groups': groups,
2170
            'use_cudnn': use_cudnn,
2171
            'use_mkldnn': False,
2172
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2173
        })
Y
Yu Yang 已提交
2174 2175 2176 2177 2178 2179

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2197 2198 2199 2200 2201 2202
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2212 2213
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2214 2215 2216
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2217
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2243
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2244 2245
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2246
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2247 2248
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2249
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2250 2251
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2252
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2253 2254 2255 2256 2257 2258
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2269 2270
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2271 2272
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2273
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2274
            will be named automatically. Default: None.
C
chengduoZH 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2287 2288
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2289 2290 2291
    """

    l_type = 'conv3d'
C
chengduo 已提交
2292
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2303
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2317 2318 2319
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2320 2321 2322 2323 2324 2325 2326 2327
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2328
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2343
            'use_mkldnn': False
C
chengduoZH 已提交
2344 2345
        })

2346
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2347 2348 2349 2350

    return helper.append_activation(pre_act)


2351
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2352
    """
Y
yangyaming 已提交
2353 2354 2355
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2366 2367
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2368 2369 2370 2371
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2372
         out.dim = [4, 1]
2373
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2374 2375

       for different pool_type:
2376 2377 2378
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2379
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2380 2381 2382 2383 2384
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2385

L
Luo Tao 已提交
2386
    Args:
2387
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2388
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2389
            It supports average, sum, sqrt and max.
2390 2391
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2392 2393 2394 2395 2396 2397 2398

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2399

2400 2401
             import paddle.fluid as fluid

Y
yangyaming 已提交
2402
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2403 2404 2405 2406 2407
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2408 2409
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2410
    """
L
lujun 已提交
2411
    assert not in_dygraph_mode(), (
2412
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2413
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2414
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2415 2416
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2417 2418 2419 2420 2421 2422

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2423 2424 2425 2426 2427
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2428

Y
yangyaming 已提交
2429 2430 2431 2432 2433
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2434 2435 2436
    return pool_out


C
add doc  
chengduoZH 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2453 2454 2455 2456
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2457
    """
L
lujun 已提交
2458
    assert not in_dygraph_mode(), (
2459
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2460
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2461
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2462 2463 2464 2465 2466
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2467
def sequence_first_step(input):
L
Luo Tao 已提交
2468
    """
L
Luo Tao 已提交
2469
    This function gets the first step of sequence.
L
Luo Tao 已提交
2470 2471 2472 2473

    .. code-block:: text

       x is a 1-level LoDTensor:
2474
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2475 2476 2477 2478 2479
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2480
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2481
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2482

L
Luo Tao 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2492

Y
yangyaming 已提交
2493
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2494 2495 2496
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2497 2498 2499
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2500
def sequence_last_step(input):
L
Luo Tao 已提交
2501
    """
L
Luo Tao 已提交
2502
    This function gets the last step of sequence.
L
Luo Tao 已提交
2503 2504 2505 2506

    .. code-block:: text

       x is a 1-level LoDTensor:
2507
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2508 2509 2510 2511 2512
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2513
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2514
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2515

L
Luo Tao 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2525

Y
yangyaming 已提交
2526
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2527 2528 2529
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2530 2531 2532
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2533 2534 2535 2536
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2537
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2538 2539 2540 2541 2542
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2543

H
haowang101779990 已提交
2544
              - Case:
Y
Yibing Liu 已提交
2545

2546
            Given the input Variable **input**:
2547

2548 2549 2550
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2551

2552
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2553

2554
            the output Variable will be
2555

2556 2557 2558
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2559

M
minqiyang 已提交
2560
    Note:
H
haowang101779990 已提交
2561
          The first dimension size of **input**, **offset** and **length**
2562
          should be equal. The **offset** should start from 0.
2563

Y
Yibing Liu 已提交
2564
    Args:
2565
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2566
                         sequences.
Y
Yibing Liu 已提交
2567 2568 2569 2570 2571 2572
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2573
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2584
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2585 2586
                                                   length=length)
    """
L
lujun 已提交
2587
    assert not in_dygraph_mode(), (
2588
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2589 2590
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2591
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2606
@templatedoc()
Y
Yu Yang 已提交
2607
def pool2d(input,
C
chengduoZH 已提交
2608 2609
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2610 2611
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2612
           global_pooling=False,
C
chengduoZH 已提交
2613
           use_cudnn=True,
2614
           ceil_mode=False,
2615 2616
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2617
    """
F
fengjiayi 已提交
2618
    ${comment}
2619 2620

    Args:
2621 2622 2623
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2624
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2625
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2626 2627
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2628
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2629 2630 2631 2632 2633 2634
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2635 2636 2637
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2638
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2639
                        layer will be named automatically.
2640
        exclusive (bool): Whether to exclude padding points in average pooling
2641
                          mode, default is true
F
fengjiayi 已提交
2642

2643
    Returns:
F
fengjiayi 已提交
2644
        Variable: The pooling result.
F
fengjiayi 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2657
          pool2d = fluid.layers.pool2d(
2658 2659 2660 2661
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2662
                            global_pooling=False)
Y
Yu Yang 已提交
2663 2664 2665 2666 2667
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2668

C
chengduoZH 已提交
2669 2670 2671 2672 2673
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2674 2675 2676 2677
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2678 2679
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2680

C
Add doc  
chengduoZH 已提交
2681
    l_type = 'pool2d'
2682 2683

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2684
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2685
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2686 2687

    helper.append_op(
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2699 2700
            "use_mkldnn": False,
            "exclusive": exclusive,
2701 2702 2703 2704 2705
        })

    return pool_out


D
dengkaipeng 已提交
2706
@templatedoc()
2707 2708 2709 2710 2711 2712 2713 2714
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2715 2716
           name=None,
           exclusive=True):
2717
    """
2718
    ${comment}
2719 2720

    Args:
D
dengkaipeng 已提交
2721 2722 2723 2724 2725
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2726 2727 2728 2729 2730
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2731 2732 2733 2734 2735 2736 2737
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2738
        exclusive (bool): Whether to exclude padding points in average pooling
2739
                          mode, default is true
2740

2741
    Returns:
2742
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2756 2757 2758 2759 2760
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2761

C
chengduoZH 已提交
2762 2763 2764 2765 2766
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2767 2768 2769
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2770

C
chengduoZH 已提交
2771 2772
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2773

2774 2775
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2776
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2777
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2778 2779

    helper.append_op(
2780
        type=l_type,
Y
Yu Yang 已提交
2781 2782 2783 2784 2785 2786 2787
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2788
            "paddings": pool_padding,
2789
            "use_cudnn": use_cudnn,
2790
            "ceil_mode": ceil_mode,
2791 2792
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2793 2794 2795 2796 2797
        })

    return pool_out


2798 2799 2800 2801 2802 2803 2804
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2805 2806 2807 2808 2809 2810 2811
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2812

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2826 2827 2828 2829 2830 2831 2832 2833 2834

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2835 2836
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2851
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2852
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2853
          # of input data into m * n grids averagely and performs poolings in each
2854 2855
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2856
          #
2857 2858 2859 2860 2861 2862 2863 2864
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2865 2866
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2867
          pool_out = fluid.layers.adaptive_pool2d(
2868 2869
                            input=data,
                            pool_size=[3, 3],
2870
                            pool_type='avg')
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2881
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2907
    return (pool_out, mask) if require_index else pool_out
2908 2909 2910 2911 2912 2913 2914 2915 2916


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2917 2918 2919 2920 2921 2922 2923
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2942 2943 2944

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2945 2946 2947
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2948
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2949
            it must contain three integers, (Depth, Height, Width).
2950
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2951 2952
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2967 2968
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2969
          # of input data into l * m * n grids averagely and performs poolings in each
2970 2971
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2972
          #
2973 2974 2975 2976 2977 2978 2979 2980 2981
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2982
          #                 output[:, :, i, j, k] =
2983 2984
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2985 2986 2987

          import paddle.fluid as fluid

2988
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
2989 2990
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
2991
                            input=data,
D
dengkaipeng 已提交
2992
                            pool_size=[3, 3, 3],
2993
                            pool_type='avg')
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3004
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3030
    return (pool_out, mask) if require_index else pool_out
3031 3032


Y
Yu Yang 已提交
3033 3034 3035 3036 3037 3038 3039
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3040
               data_layout='NCHW',
Y
Yang Yang 已提交
3041
               in_place=False,
3042 3043
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3044
               moving_variance_name=None,
3045
               do_model_average_for_mean_and_var=False,
3046 3047
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3048
    """
Q
qiaolongfei 已提交
3049 3050 3051 3052
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3053

Q
qiaolongfei 已提交
3054
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3055

Q
qiaolongfei 已提交
3056 3057
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3058 3059 3060
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3073

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3087
    Args:
Q
qingqing01 已提交
3088
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3089
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3099 3100 3101 3102 3103 3104 3105 3106
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3107
        data_layout(string, default NCHW): NCHW|NHWC
3108
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3109 3110 3111 3112
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3113
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3114
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3115 3116 3117 3118 3119
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3120 3121

    Returns:
Q
qiaolongfei 已提交
3122
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3123 3124 3125 3126 3127

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3128
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3129 3130
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3131
    """
C
chengduo 已提交
3132
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3133 3134 3135
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3136 3137 3138 3139
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3158
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3159

3160 3161
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3162 3163 3164
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3165
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3166
        shape=param_shape,
W
Wu Yi 已提交
3167
        dtype=dtype)
3168 3169 3170 3171 3172 3173
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3174
            trainable=False,
W
wanghaoshuang 已提交
3175
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3176
        shape=param_shape,
W
Wu Yi 已提交
3177
        dtype=dtype)
3178
    variance.stop_gradient = True
Y
Yu Yang 已提交
3179 3180 3181 3182 3183 3184

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3185 3186 3187 3188
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3189

X
Xin Pan 已提交
3190 3191
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3209 3210 3211 3212
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3213
            "data_layout": data_layout,
X
Xin Pan 已提交
3214
            "use_mkldnn": False,
3215 3216
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3217
        })
Y
Yu Yang 已提交
3218 3219 3220 3221

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3273 3274
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3275

3276 3277
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3343
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3344 3345 3346 3347

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3348
@templatedoc()
G
guosheng 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3359
    ${comment}
G
guosheng 已提交
3360 3361 3362

    The formula is as follows:

Y
yuyang18 已提交
3363
    ..  math::
G
guosheng 已提交
3364 3365 3366 3367 3368 3369 3370

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3371 3372 3373 3374 3375 3376 3377 3378
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3379

G
guosheng 已提交
3380 3381
    Args:
        input(Variable): The input tensor variable.
3382
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3383
            normalization. Default True.
3384
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3385 3386
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3387
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3388
            Default 1.
3389
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3390
            division by zero. Default 1e-05.
G
guosheng 已提交
3391
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3392 3393
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3394 3395
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3396
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3397 3398
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3399
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3400
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3401
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3402 3403 3404
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3405 3406

    Returns:
Y
yuyang18 已提交
3407
        ${y_comment}
G
guosheng 已提交
3408 3409 3410

    Examples:

Y
yuyang18 已提交
3411 3412 3413
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3414
    """
L
lujun 已提交
3415
    assert in_dygraph_mode(
L
lujun 已提交
3416
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3431
    if shift:
G
guosheng 已提交
3432 3433 3434 3435 3436 3437
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3438 3439 3440 3441 3442
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3470
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3518 3519
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3537
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3538 3539 3540
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3541
    This layer calculates the spectral normalization value of weight parameters of
3542
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3543
    Parameters. Calculations are showed as follows.
3544

D
dengkaipeng 已提交
3545 3546 3547
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3548
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3561
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3562 3563 3564 3565

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3566

D
dengkaipeng 已提交
3567
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3568 3569
                

D
dengkaipeng 已提交
3570 3571 3572 3573
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3574 3575 3576
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3577 3578 3579
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3580
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3581 3582

    Examples:
K
Kaipeng Deng 已提交
3583
       .. code-block:: python
D
dengkaipeng 已提交
3584

K
Kaipeng Deng 已提交
3585 3586 3587 3588 3589
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3590 3591
    """
    helper = LayerHelper('spectral_norm', **locals())
3592
    dtype = weight.dtype
D
dengkaipeng 已提交
3593 3594 3595

    # create intput and parameters
    inputs = {'Weight': weight}
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3614 3615

    # create output
3616
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3617 3618

    helper.append_op(
3619
        type="spectral_norm",
D
Dun 已提交
3620
        inputs=inputs,
3621 3622 3623 3624 3625 3626
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3627

3628
    return out
D
Dun 已提交
3629 3630


Y
Yu Yang 已提交
3631 3632 3633 3634
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3635 3636 3637
                     padding=0,
                     stride=1,
                     dilation=1,
3638
                     groups=None,
C
caoying03 已提交
3639
                     param_attr=None,
3640
                     bias_attr=None,
C
chengduoZH 已提交
3641
                     use_cudnn=True,
3642
                     act=None,
C
caoying03 已提交
3643
                     name=None):
Y
Yu Yang 已提交
3644
    """
3645 3646 3647 3648 3649 3650 3651 3652
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3653 3654
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3655 3656 3657
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3658 3659 3660 3661 3662

    For each input :math:`X`, the equation is:

    .. math::

3663
        Out = \sigma (W \\ast X + b)
3664

3665
    Where:
3666 3667 3668

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3669 3670 3671 3672
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3673

3674 3675 3676 3677
    Example:

        - Input:

3678
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3679

3680
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3681 3682 3683

        - Output:

3684
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3685 3686

        Where
Y
Yu Yang 已提交
3687

3688 3689
        .. math::

3690 3691
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3692 3693
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3694 3695

    Args:
3696 3697 3698 3699
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3700 3701 3702 3703
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3732
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3733 3734 3735
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3736
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3737
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3738 3739

    Returns:
3740
        Variable: The tensor variable storing the convolution transpose result.
3741 3742

    Raises:
3743 3744
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3745 3746 3747 3748

    Examples:
       .. code-block:: python

3749 3750
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3751
    """
C
chengduo 已提交
3752
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3753 3754 3755 3756 3757 3758 3759 3760
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3761 3762 3763
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3764 3765 3766
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3767

C
chengduoZH 已提交
3768 3769
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3770

Y
Yu Yang 已提交
3771 3772 3773 3774 3775
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3776

Y
Yu Yang 已提交
3777 3778
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3779

C
chengduoZH 已提交
3780
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3781
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3782
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3783
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3784
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3785 3786 3787
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3788

3789 3790 3791 3792 3793 3794 3795
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3796
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3797
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3798

Y
Yu Yang 已提交
3799 3800 3801
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3802
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3803
    helper.append_op(
3804
        type=op_type,
Y
Yu Yang 已提交
3805 3806
        inputs={'Input': [input],
                'Filter': [img_filter]},
3807
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3808
        attrs={
3809
            'output_size': output_size,
3810 3811 3812 3813 3814
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3815 3816
        })

3817 3818 3819
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3820 3821


3822
def conv3d_transpose(input,
Y
Yu Yang 已提交
3823 3824 3825
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3826 3827 3828
                     padding=0,
                     stride=1,
                     dilation=1,
3829
                     groups=None,
C
caoying03 已提交
3830
                     param_attr=None,
3831
                     bias_attr=None,
C
chengduoZH 已提交
3832
                     use_cudnn=True,
3833
                     act=None,
C
caoying03 已提交
3834
                     name=None):
Y
Yu Yang 已提交
3835
    """
3836
    **Convlution3D transpose layer**
3837

3838
    The convolution3D transpose layer calculates the output based on the input,
3839
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3840 3841 3842 3843 3844 3845
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3846 3847 3848
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3849 3850 3851 3852 3853

    For each input :math:`X`, the equation is:

    .. math::

3854
        Out = \sigma (W \\ast X + b)
3855 3856 3857

    In the above equation:

3858 3859
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3860 3861 3862 3863
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3864

3865 3866 3867 3868
    Example:

        - Input:

3869
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3870

3871
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3872 3873 3874

        - Output:

3875
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3876 3877

        Where
Y
Yu Yang 已提交
3878

3879 3880
        .. math::

3881 3882 3883
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3884 3885

    Args:
3886
        input(Variable): The input image with [N, C, D, H, W] format.
3887 3888 3889
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3890
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3891 3892
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3893
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3894 3895 3896
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3897 3898
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3899
        stride(int|tuple): The stride size. If stride is a tuple, it must
3900 3901
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3902
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3903 3904 3905
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3906 3907 3908 3909 3910
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3911 3912 3913 3914 3915 3916 3917 3918 3919
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3920 3921
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3922 3923
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3924 3925
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3926 3927

    Returns:
3928
        Variable: The tensor variable storing the convolution transpose result.
3929 3930

    Raises:
3931 3932
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3933 3934 3935 3936

    Examples:
       .. code-block:: python

3937 3938
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3939
    """
C
chengduo 已提交
3940
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3941 3942
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3943
    if not isinstance(input, Variable):
3944
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3945 3946
    input_channel = input.shape[1]

3947 3948 3949
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3950

C
chengduoZH 已提交
3951 3952 3953
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3954 3955 3956 3957 3958 3959
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3960 3961 3962
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3963

3964
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3965
                         padding[0] - 1) // dilation[0] + 1
3966
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3967
                         padding[1] - 1) // dilation[1] + 1
3968
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3969
                         padding[2] - 1) // dilation[2] + 1
3970
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3971
    else:
3972 3973
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3974

3975
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3976
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3977 3978 3979
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3980
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3981
    helper.append_op(
3982
        type=l_type,
Y
Yu Yang 已提交
3983 3984
        inputs={'Input': [input],
                'Filter': [img_filter]},
3985
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3986 3987 3988 3989
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3990
            'groups': groups,
C
chengduoZH 已提交
3991 3992
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3993

3994 3995
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3996
    return out
Y
yangyaming 已提交
3997 3998


Y
yangyaming 已提交
3999
def sequence_expand(x, y, ref_level=-1, name=None):
4000
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4001 4002 4003 4004
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4005 4006 4007 4008 4009

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4010
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4011
                x.data = [[a], [b], [c], [d]]
4012 4013 4014
                x.dims = [4, 1]

            y is a LoDTensor:
4015 4016
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4017

Y
yangyaming 已提交
4018
            ref_level: 0
4019

Y
yangyaming 已提交
4020
            then output is a 1-level LoDTensor:
4021
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4022
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4023 4024 4025 4026
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4027
                x.data = [[a], [b], [c]]
4028 4029 4030
                x.dims = [3, 1]

            y is a LoDTensor:
4031
                y.lod = [[2, 0, 3]]
4032

Y
yangyaming 已提交
4033
            ref_level: -1
4034

Y
yangyaming 已提交
4035 4036 4037
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4038 4039 4040
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4041 4042
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4043
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4044
                        will be named automatically.
4045 4046 4047 4048 4049 4050

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4051 4052
	
            import paddle.fluid.layers as layers
4053 4054 4055
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4056
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4057
    """
L
lujun 已提交
4058
    assert not in_dygraph_mode(), (
4059
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4060
    helper = LayerHelper('sequence_expand', input=x, **locals())
4061
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4062
    tmp = helper.create_variable_for_type_inference(dtype)
4063
    helper.append_op(
Y
yangyaming 已提交
4064 4065 4066 4067 4068
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4069
    return tmp
4070 4071


C
chengduo 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4120
            import paddle.fluid.layers as layers
C
chengduo 已提交
4121 4122 4123 4124 4125 4126

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4127
    assert not in_dygraph_mode(), (
4128
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4129 4130
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4131
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4132 4133 4134 4135 4136 4137 4138 4139
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4140
@templatedoc()
4141
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4142 4143 4144 4145 4146
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4147 4148 4149
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4150
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4151 4152 4153 4154
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4155 4156 4157
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4158

F
fengjiayi 已提交
4159
    Returns:
M
minqiyang 已提交
4160
        Variable: The padded sequence batch and the original lengths before
4161
                  padding. All sequences has the same length.
M
minqiyang 已提交
4162

F
fengjiayi 已提交
4163 4164 4165 4166 4167 4168 4169
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4170
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4171
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4172 4173 4174
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4175
    assert not in_dygraph_mode(), (
4176
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4177 4178
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4179 4180
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4181 4182 4183 4184

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4185 4186 4187 4188 4189 4190
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4191 4192
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4193
        attrs={'padded_length': maxlen})
4194
    return out, length
F
fengjiayi 已提交
4195 4196


4197
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4198
    """
4199
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4200

4201 4202
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4203 4204 4205 4206 4207 4208 4209 4210 4211
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4212 4213 4214
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4215
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4216 4217 4218 4219 4220 4221

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4222
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4223 4224 4225 4226 4227 4228

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4229 4230
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4243
    assert not in_dygraph_mode(), (
4244
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4245 4246
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4247
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4259 4260 4261 4262 4263 4264 4265
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4266
                is_accumulated=True,
4267 4268
                name=None,
                return_parent_idx=False):
4269
    """
4270 4271
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4272 4273 4274

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4275 4276

    This layer does the search in beams for one time step. Specifically, it
4277 4278 4279
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4291 4292 4293 4294

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4295

4296
    Args:
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4320 4321
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4322 4323
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4324 4325 4326 4327
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4328

4329
    Returns:
4330 4331 4332 4333
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4334 4335 4336 4337

    Examples:
        .. code-block:: python

4338 4339
            import paddle.fluid as fluid

4340 4341 4342
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4355
                axis=0)
4356
            selected_ids, selected_scores = fluid.layers.beam_search(
4357 4358 4359 4360 4361 4362 4363
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4364
    helper = LayerHelper('beam_search', **locals())
4365 4366 4367 4368 4369 4370
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4371

X
Xin Pan 已提交
4372 4373 4374
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4375 4376 4377 4378 4379
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4380 4381 4382

    helper.append_op(
        type='beam_search',
4383
        inputs=inputs,
Q
Qiao Longfei 已提交
4384 4385 4386
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4387
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4388 4389 4390 4391 4392 4393
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4394
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4395
        })
4396 4397 4398 4399
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4400 4401


4402 4403 4404 4405 4406 4407 4408
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4409

4410 4411 4412 4413 4414 4415 4416 4417 4418
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4419

4420 4421 4422 4423 4424 4425
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4426

4427 4428
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4429

4430 4431
            import paddle.fluid as fluid

4432 4433
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4434 4435 4436
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4437 4438 4439
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4440 4441
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4457 4458 4459 4460
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4461
              param_attr=None,
C
caoying03 已提交
4462 4463
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4464 4465 4466 4467
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4468
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4469

4470
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4471

4472
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4473

4474
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4475 4476 4477

            h_t & = o_t tanh(c_t)

4478 4479 4480 4481 4482 4483
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4484 4485 4486

        .. math::

4487
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4488 4489 4490 4491 4492 4493 4494 4495

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4496
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4497 4498

    Args:
Y
yangyaming 已提交
4499 4500 4501 4502 4503 4504
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4505
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4518 4519
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4520 4521

    Returns:
Y
yangyaming 已提交
4522
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4523 4524

    Raises:
4525 4526 4527 4528
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4529 4530 4531 4532 4533

    Examples:

        .. code-block:: python

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4561
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4562 4563 4564 4565
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4566 4567
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4568 4569 4570
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4571
    size = cell_t_prev.shape[1]
4572
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4573 4574
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4575
                param_attr=param_attr,
4576
                bias_attr=bias_attr)
Y
yangyaming 已提交
4577
    dtype = x_t.dtype
X
Xin Pan 已提交
4578 4579
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4589
    return h, c
G
guosheng 已提交
4590 4591


C
caoying03 已提交
4592
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4593
    """
Y
yangyaming 已提交
4594
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4595 4596 4597

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4598
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4599 4600
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4601 4602
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4603
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4604
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4605
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4606 4607
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4608 4609 4610

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4611

G
guosheng 已提交
4612 4613 4614
    Examples:
        .. code-block:: python

4615
            import paddle.fluid as fluid
G
guosheng 已提交
4616 4617 4618
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4619
            # Each example is followed by the corresponding output tensor.
4620
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4621 4622 4623 4624
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4625

4626
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4627 4628
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4629
            # Each example is followed by the corresponding output tensor.
4630 4631 4632
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4633

G
guosheng 已提交
4634 4635
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4636
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4637 4638
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4639 4640 4641 4642 4643
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4644
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4645 4646 4647 4648
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4649 4650


C
caoying03 已提交
4651
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4652
    """
Y
Yibing Liu 已提交
4653
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4654 4655 4656

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4657 4658 4659
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4660
            must be in the range :math:`[-rank(input), rank(input))`. If
4661
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4662
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4663 4664
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4665
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4666
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4667
                       will be named automatically.
G
guosheng 已提交
4668 4669

    Returns:
Y
Yibing Liu 已提交
4670
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4671

G
guosheng 已提交
4672 4673 4674
    Examples:
        .. code-block:: python

4675
            import paddle.fluid as fluid
G
guosheng 已提交
4676 4677 4678 4679
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4680
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4681 4682 4683
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4684
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4685

4686
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4687 4688 4689
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4690 4691 4692
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4693 4694
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4695
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4696 4697
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4698 4699 4700 4701 4702
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4703
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4704 4705 4706 4707
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4708 4709


C
caoying03 已提交
4710
def reduce_max(input, dim=None, keep_dim=False, name=None):
4711
    """
Y
yangyaming 已提交
4712
    Computes the maximum of tensor elements over the given dimension.
4713 4714 4715

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4716
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4717 4718 4719
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4720
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4721 4722
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4723
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4724 4725
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4726 4727 4728

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4729

4730 4731 4732
    Examples:
        .. code-block:: python

4733
            import paddle.fluid as fluid
4734 4735 4736 4737
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4738
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4739 4740 4741 4742
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4743

4744
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4745 4746 4747
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4748 4749 4750
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4751 4752
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4753
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4754 4755
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4756 4757 4758 4759 4760
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4761
            'dim': dim if dim != None else [0],
4762 4763 4764 4765 4766 4767
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4768
def reduce_min(input, dim=None, keep_dim=False, name=None):
4769
    """
Y
yangyaming 已提交
4770
    Computes the minimum of tensor elements over the given dimension.
4771 4772 4773

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4774
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4775 4776 4777
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4778
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4779 4780
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4781
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4782 4783
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4784 4785 4786

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4787

4788 4789 4790
    Examples:
        .. code-block:: python

4791
            import paddle.fluid as fluid
4792 4793 4794 4795
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4796
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4797 4798 4799 4800
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4801

4802
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4803 4804 4805
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4806 4807 4808
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4809 4810
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4811
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4812 4813
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4814 4815 4816 4817 4818
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4819
            'dim': dim if dim != None else [0],
4820 4821 4822 4823
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4824 4825


4826 4827 4828 4829 4830 4831
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4832
        dim (list|int|None): The dimensions along which the product is performed. If
4833 4834
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4835 4836
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4837 4838 4839
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4840
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4841
            layer will be named automatically.
4842 4843 4844 4845 4846 4847 4848

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4849
            import paddle.fluid as fluid
4850 4851 4852 4853
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4854
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4855 4856 4857
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4858
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4859
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4860

4861
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4862 4863 4864
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4865 4866 4867
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4868 4869
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4870
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4871 4872
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4873 4874 4875 4876 4877
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4878
            'dim': dim if dim != None else [0],
4879 4880 4881 4882 4883 4884
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4885 4886
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4887
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4907
        
Z
zhoukunsheng 已提交
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4937
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4957

Z
zhoukunsheng 已提交
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4980 4981 4982 4983 4984
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4985
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4986
    """
C
caoying03 已提交
4987
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4988 4989 4990

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4991 4992 4993 4994 4995
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4996
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4997
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4998
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4999 5000
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5001 5002

    Returns:
D
dzhwinter 已提交
5003
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5004 5005 5006 5007

    Examples:
        .. code-block:: python

5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5023 5024 5025 5026 5027 5028 5029 5030
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5031
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5032 5033 5034
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5035
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5049 5050 5051 5052 5053 5054 5055 5056 5057


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5058
    .. math::
5059 5060

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5061 5062 5063 5064 5065

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5066
        x(Variable|list): The input tensor to l2_normalize layer.
5067
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5068 5069
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5070
        epsilon(float): The epsilon value is used to avoid division by zero, \
5071
            the defalut value is 1e-12.
5072
        name(str|None): A name for this layer(optional). If set None, the layer \
5073
            will be named automatically.
C
caoying03 已提交
5074 5075

    Returns:
5076
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5077 5078

    Examples:
5079

C
caoying03 已提交
5080 5081
        .. code-block:: python

5082 5083 5084 5085
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5086 5087
    """

F
fengjiayi 已提交
5088 5089
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5090 5091
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5092 5093
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5094
    helper.append_op(
5095 5096 5097 5098
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5099
        attrs={
5100 5101
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5102 5103
        })
    return out
5104 5105


S
sneaxiy 已提交
5106
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5107
    """
Y
ying 已提交
5108 5109 5110 5111
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5112

C
chengduoZH 已提交
5113
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5114
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5115

5116 5117 5118 5119 5120
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5121
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5122

C
chengduoZH 已提交
5123
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5124
      performs in the following way.
G
guosheng 已提交
5125

5126
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5127
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5128
        last two dimensions and a batched matrix multiply supporting broadcast
5129
        applies on the two tensors.
G
guosheng 已提交
5130

Y
ying 已提交
5131 5132
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5133
    removed after matrix multiplication.
G
guosheng 已提交
5134 5135 5136

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5137 5138 5139
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5140
        alpha (float): The scale of output. Default 1.0.
5141
        name(str|None): A name for this layer(optional). If set None, the layer
5142
            will be named automatically.
G
guosheng 已提交
5143 5144

    Returns:
5145
        Variable: The product Tensor variable.
G
guosheng 已提交
5146

G
guosheng 已提交
5147 5148 5149
    Examples:
        .. code-block:: python

5150
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5151
            # x: [B, ..., M, K], y: [B, ..., K, N]
5152
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5153

5154
            # x: [B, M, K], y: [B, K, N]
5155
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5156

5157
            # x: [B, M, K], y: [K, N]
5158
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5159

5160
            # x: [M, K], y: [K, N]
5161
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5162 5163

            # x: [B, M, K], y: [K]
5164
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5165

5166
            # x: [K], y: [K]
5167
            # fluid.layers.matmul(x, y)  # out: [1]
5168

Y
ying 已提交
5169
            # x: [M], y: [N]
5170 5171 5172 5173 5174
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5175
    """
Y
ying 已提交
5176 5177 5178 5179 5180 5181 5182

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5183
            y_shape = y_shape + [1]
Y
ying 已提交
5184 5185 5186 5187 5188 5189 5190

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5191 5192
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5193

C
chengduo 已提交
5194
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5195
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5196 5197 5198
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5199
                if dim_x != y_shape[i]:
C
chengduo 已提交
5200 5201
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5202 5203 5204

    __check_input(x, y)

5205
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5206
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5207
    helper.append_op(
5208 5209 5210 5211
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5212 5213 5214
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5215
            'alpha': float(alpha),
S
sneaxiy 已提交
5216
        })
5217
    return out
5218 5219


5220
def topk(input, k, name=None):
Q
qingqing01 已提交
5221 5222 5223 5224
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5225
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5226 5227 5228 5229 5230 5231
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5253 5254 5255
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5256
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5257
                 of input.
5258
        name(str|None): A name for this layer(optional). If set None, the layer
5259
                       will be named automatically.
F
fengjiayi 已提交
5260
                       Default: None
Q
qingqing01 已提交
5261 5262

    Returns:
5263 5264 5265
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5266
        within the last dimension of input.
Q
qingqing01 已提交
5267

F
fengjiayi 已提交
5268 5269
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5270 5271 5272 5273

    Examples:
        .. code-block:: python

5274 5275
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5276 5277 5278
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5279 5280
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5281 5282 5283 5284 5285 5286
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5287 5288
    helper.append_op(
        type="top_k",
W
whs 已提交
5289
        inputs=inputs,
Q
qingqing01 已提交
5290 5291
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5292
        attrs=attrs)
Q
qingqing01 已提交
5293 5294 5295 5296 5297
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5298
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5299
    """
Y
ying 已提交
5300 5301 5302 5303 5304 5305 5306 5307 5308
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5309

Y
ying 已提交
5310
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5311

5312
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5313 5314
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5315
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5316

5317
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5318 5319
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5320

5321 5322 5323
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5324
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5325
                          the length of reference string.
5326
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5327
                                     calculating edit distance.
5328
        name (str): The name of this layer. It is optional.
5329

W
wanghaoshuang 已提交
5330
    Returns:
W
wanghaoshuang 已提交
5331
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5332 5333 5334 5335

    Examples:
        .. code-block:: python

T
tink2123 已提交
5336 5337
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5338
            cost = fluid.layers.edit_distance(input=x,label=y)
5339
    """
5340
    helper = LayerHelper("edit_distance", **locals())
5341

5342
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5343
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5344 5345
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5346 5347 5348 5349 5350

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5351
            attrs={"tokens": ignored_tokens})
5352 5353 5354 5355 5356
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5357
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5358
            attrs={"tokens": ignored_tokens})
5359 5360
        label = erased_label

5361
    # edit distance op
X
Xin Pan 已提交
5362 5363
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5364 5365 5366 5367
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5368 5369
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5370 5371
        attrs={"normalized": normalized})

5372
    return edit_distance_out, sequence_num
5373 5374 5375 5376 5377


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5378

Y
ying 已提交
5379 5380 5381 5382
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5400
        input.lod = [[4, 4]]
M
minqiyang 已提交
5401

W
whs 已提交
5402
        Computation:
5403

W
whs 已提交
5404 5405 5406 5407 5408 5409
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5410 5411 5412 5413 5414

        output.data = [[2],
                       [1],
                       [3]]

5415
        output.lod = [[2, 1]]
5416

W
whs 已提交
5417

5418 5419
    Args:

Y
ying 已提交
5420 5421 5422 5423 5424 5425 5426 5427 5428
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5429
        name (str): The name of this layer. It is optional.
5430 5431

    Returns:
H
haowang101779990 已提交
5432 5433 5434
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5435
                  LoD [[]] and dims [1, 1].
5436 5437 5438 5439

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5440
            import paddle.fluid as fluid
5441 5442
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5443
    """
5444
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5445
    _, topk_indices = topk(input, k=1)
5446 5447

    # ctc align op
X
Xin Pan 已提交
5448
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5449 5450 5451
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5452
        outputs={"Output": [ctc_out]},
5453 5454
        attrs={"merge_repeated": True,
               "blank": blank})
5455
    return ctc_out
5456 5457


W
Wu Yi 已提交
5458
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5459
    """
5460 5461
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5462
    to compute Connectionist Temporal Classification (CTC) loss.
5463 5464
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5465 5466 5467
    input tensor.

    Args:
5468
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5469 5470 5471 5472
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5473
       label (Variable): The ground truth of variable-length sequence,
5474 5475 5476
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5477 5478
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5479 5480 5481
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5482
         follewed by a mean_op.
W
Wu Yi 已提交
5483
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5484 5485

    Returns:
5486 5487
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5488 5489

    Examples:
5490

W
wanghaoshuang 已提交
5491
        .. code-block:: python
5492

B
Bai Yifan 已提交
5493 5494 5495 5496 5497
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5498
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5499 5500

    """
F
fengjiayi 已提交
5501
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5502 5503
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5504 5505 5506 5507 5508 5509
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5510 5511 5512 5513 5514
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5515
    return loss_out
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5531 5532 5533
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5534 5535 5536 5537 5538
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5539

5540
            out.lod  = [[0, 1, 3]]
5541 5542 5543 5544

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5545 5546 5547 5548 5549 5550 5551
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5552 5553 5554

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5555 5556

    Returns:
5557

5558 5559 5560 5561 5562
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5563 5564 5565
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5566
    """
L
lujun 已提交
5567
    assert not in_dygraph_mode(), (
5568
        "sequence layer is not supported in dygraph mode yet.")
5569
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5570
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5571 5572 5573 5574 5575 5576
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5577 5578


5579 5580 5581 5582
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5583 5584 5585 5586 5587 5588
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5589
        num_neg_samples=None,
5590 5591 5592
        name=None,
        sampler="uniform",
        custom_dist=None,
5593 5594
        seed=0,
        is_sparse=False):
5595 5596 5597 5598 5599 5600 5601
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5602 5603
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5604
            sample is 1.0.
C
chengduo 已提交
5605 5606 5607 5608 5609 5610 5611 5612 5613
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5614
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5615 5616
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5617 5618 5619
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5620
        custom_dist (float[]): A float[] with size=num_total_classes.
5621 5622 5623 5624
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5625
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5626

5627
    Returns:
Y
Yibing Liu 已提交
5628 5629 5630 5631 5632 5633
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5634
	    import numpy as np
Y
Yibing Liu 已提交
5635

Y
Yibing Liu 已提交
5636 5637 5638 5639 5640 5641 5642 5643
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5644

Y
Yibing Liu 已提交
5645 5646 5647 5648
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5649

Y
Yibing Liu 已提交
5650 5651 5652
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5653

Y
Yibing Liu 已提交
5654 5655 5656 5657
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5658

Y
Yibing Liu 已提交
5659 5660 5661 5662 5663 5664 5665 5666
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5667
    """
Y
Yang Yu 已提交
5668 5669 5670
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5671 5672

    dim = input.shape[1]
Y
Yang Yu 已提交
5673 5674 5675 5676 5677 5678
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5679
    inputs = {}
C
chengduo 已提交
5680 5681 5682 5683 5684 5685 5686
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5687 5688 5689
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5690

5691 5692 5693 5694
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5695 5696 5697 5698 5699 5700 5701

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5702 5703
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5704
        custom_dist_len = num_total_classes
5705 5706 5707 5708 5709 5710
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5711
            if normal_prob - 1.0 > 0:
5712
                bigs.append((i, normal_prob))
5713
            elif 1.0 - normal_prob > 0:
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5729
            if big_left - 1.0 > 0:
5730
                bigs.append((big_idx, big_left))
5731
            elif 1.0 - big_left > 0:
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5761 5762 5763 5764
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5765 5766 5767 5768 5769
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5770 5771 5772 5773
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5774

Y
Yang Yu 已提交
5775 5776
    attrs = {
        'num_total_classes': int(num_total_classes),
5777 5778
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5779
        'sampler': sampler,
5780 5781
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5782
    }
Y
Yang Yu 已提交
5783 5784 5785

    helper.append_op(
        type='nce',
C
chengduo 已提交
5786
        inputs=inputs,
Y
Yang Yu 已提交
5787 5788 5789 5790 5791 5792
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5793
    return cost / (num_neg_samples + 1)
5794 5795


C
chengduo 已提交
5796 5797
def hsigmoid(input,
             label,
5798
             num_classes,
C
chengduo 已提交
5799 5800
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5801
             name=None,
5802 5803 5804
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5805
             is_sparse=False):
W
weixing02 已提交
5806 5807
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5808
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5809
    complete binary tree, or you can use is_custom to pass your own tree to
5810
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5811 5812 5813 5814 5815 5816
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5817
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5818
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5819

5820 5821
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5822 5823 5824 5825
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5826
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5827
       related to the same batch of inputs.
5828

W
weixing02 已提交
5829
    Args:
M
minqiyang 已提交
5830
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5831 5832 5833 5834
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5835 5836
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5837
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5849
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5850
            it should be in leaf -> root order
M
minqiyang 已提交
5851 5852 5853
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5854
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5855
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5856
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5857
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5858
             of W and input will be sparse.
W
weixing02 已提交
5859 5860

    Returns:
J
JiabinYang 已提交
5861
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5862 5863 5864 5865 5866

    Examples:

        .. code-block:: python

5867
            import paddle.fluid as fluid
G
guosheng 已提交
5868 5869 5870
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5871 5872 5873 5874
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5875 5876
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5877
    dim = input.shape[1]
5878
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5879 5880 5881
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5882 5883 5884 5885 5886 5887 5888 5889 5890
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5891
    if (is_custom) and (path_code is None):
5892
        raise ValueError("path_code should not be None with custom tree")
5893
    elif (is_custom) and (path_table is None):
5894
        raise ValueError("path_table should not be None with custom tree")
5895
    elif (is_custom) and (num_classes is None):
5896
        raise ValueError("num_classes should not be None with custom tree")
5897 5898 5899
    else:
        pass

J
JiabinYang 已提交
5900
    weights = None
5901 5902 5903 5904
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5905
    if not is_custom:
J
JiabinYang 已提交
5906 5907 5908 5909 5910 5911 5912 5913
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5914
            shape=[num_classes, dim],
J
JiabinYang 已提交
5915 5916
            is_bias=False,
            dtype=input.dtype)
5917 5918 5919
    inputs = {
        "X": input,
        "W": weights,
5920
        "PathTable": path_table,
5921
        "PathCode": path_code,
5922 5923
        "Label": label
    }
W
weixing02 已提交
5924
    if helper.bias_attr:
5925
        if not is_custom:
J
JiabinYang 已提交
5926 5927
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5928
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5929 5930 5931 5932 5933 5934
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5935
                shape=[num_classes, 1],
J
JiabinYang 已提交
5936 5937 5938
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5939 5940
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5941
        inputs=inputs,
W
weixing02 已提交
5942
        outputs={"Out": out,
5943 5944 5945 5946 5947 5948 5949
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5950 5951 5952
    return out


Y
fix ci.  
ying 已提交
5953
def transpose(x, perm, name=None):
Y
ying 已提交
5954 5955 5956 5957 5958 5959 5960
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5961 5962 5963
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5964 5965 5966 5967 5968 5969 5970

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5971
            # use append_batch_size=False to avoid prepending extra
5972
            # batch size in shape
5973
            import paddle.fluid as fluid
5974
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5975
                            dtype='float32', append_batch_size=False)
5976
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5977 5978
    """

Y
fix ci.  
ying 已提交
5979
    if len(perm) != len(x.shape):
Y
ying 已提交
5980 5981 5982
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5983 5984 5985 5986 5987 5988
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5989 5990

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5991 5992
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5993
    helper.append_op(
5994
        type='transpose2',
Y
fix ci.  
ying 已提交
5995
        inputs={'X': [x]},
5996 5997
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5998 5999
        attrs={'axis': perm})
    return out
6000 6001


6002 6003 6004 6005 6006 6007 6008
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6009
    """
6010 6011 6012 6013 6014 6015 6016
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6045 6046 6047 6048 6049 6050 6051 6052 6053
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6054 6055 6056
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6057 6058 6059 6060 6061
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6089 6090 6091
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6104
            output.dims = {8, 8}
6105

6106
            output.lod = [[4, 4]]
6107

T
Tink_Y 已提交
6108
    Examples:
6109 6110 6111

        .. code-block:: python

B
Bai Yifan 已提交
6112 6113 6114
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6115
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6116 6117
                input=data, stride=[1, 1], filter_size=[2, 2])

6118 6119

    """
L
lujun 已提交
6120
    assert not in_dygraph_mode(), (
6121
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6132
    inputs = {"X": input}
6133
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6134 6135 6136 6137 6138
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6139
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6140
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6141
    helper.append_op(
6142
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6143
    return out
6144 6145


Y
yuyang18 已提交
6146
@templatedoc()
6147
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6148 6149
    """
    ${comment}
6150 6151

    Args:
Y
yuyang18 已提交
6152
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6153 6154
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6155 6156 6157 6158 6159
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6160
        ${out_comment}.
6161 6162

    Examples:
Y
yuyang18 已提交
6163 6164 6165 6166
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6167 6168 6169 6170 6171 6172
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6173
    out = helper.create_variable_for_type_inference(dtype)
6174 6175 6176 6177 6178
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6179
    return helper.append_activation(out)
6180 6181


Y
yuyang18 已提交
6182
@templatedoc()
6183 6184
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6185 6186
    ${comment}

L
lujun 已提交
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6230 6231

    Args:
Y
yuyang18 已提交
6232 6233
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6234 6235

    Returns:
Y
yuyang18 已提交
6236
        ${out_comment}.
6237 6238
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6239 6240 6241 6242 6243

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6244
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6245 6246 6247 6248 6249 6250
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6251 6252


6253 6254 6255
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6256
                               ignore_index=kIgnoreIndex,
6257
                               numeric_stable_mode=True,
6258 6259
                               return_softmax=False,
                               axis=-1):
6260 6261
    """
    **Softmax With Cross Entropy Operator.**
6262

6263
    Cross entropy loss with softmax is used as the output layer extensively. This
6264 6265 6266
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6267

6268 6269 6270
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6271

6272 6273 6274 6275
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6276

6277
    The equation is as follows:
6278

6279
    1) Hard label (one-hot label, so every sample has exactly one class)
6280

6281 6282 6283 6284
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6285

6286 6287 6288
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6289

6290 6291 6292 6293
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6294 6295
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6296 6297

    .. math::
6298

H
haowang101779990 已提交
6299
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6300

H
haowang101779990 已提交
6301
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6302

H
haowang101779990 已提交
6303
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6304 6305 6306

    and then cross entropy loss is calculated by softmax and label.

6307
    Args:
6308 6309 6310 6311 6312 6313
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6314
        soft_label (bool): A flag to indicate whether to interpretate the given
6315
            labels as soft labels. Default False.
M
minqiyang 已提交
6316 6317
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6318 6319
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6320 6321
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6322 6323 6324 6325
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6326
                                    Note that the speed may be slower when use
6327
                                    stable algorithm. Default: True
6328
        return_softmax (bool): A flag indicating whether to return the softmax
6329
                               along with the cross entropy loss. Default: False
6330 6331 6332
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6333

6334
    Returns:
H
haowang101779990 已提交
6335 6336
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6337 6338 6339 6340
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6341 6342 6343 6344 6345 6346 6347

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6348 6349
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6350 6351
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6352 6353
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6354 6355 6356 6357 6358 6359
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6360 6361 6362
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6363 6364
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6365
        })
6366 6367 6368 6369

    if return_softmax:
        return loss, softmax

6370 6371 6372
    return loss


6373 6374 6375
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6376
                                       num_true=1,
6377
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6378 6379 6380
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6381
                                       seed=0):
X
xuezhong 已提交
6382 6383 6384 6385 6386
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6387
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6388 6389 6390 6391 6392 6393 6394 6395
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6396
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6397 6398 6399 6400 6401 6402 6403 6404
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6405
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6417
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6418 6419 6420 6421 6422
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6423
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6424
            logits.
X
xuezhong 已提交
6425 6426 6427 6428 6429
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6430 6431 6432
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6433 6434 6435 6436 6437 6438 6439
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6440 6441 6442
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
X
xuezhong 已提交
6443
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
6444
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6445
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6446
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6447 6448 6449 6450 6451 6452 6453 6454
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6455 6456
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6457 6458
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6459 6460 6461 6462 6463

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6464
            'Labels': label,
X
xuezhong 已提交
6465 6466
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6467 6468 6469 6470
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6471
            'SampledLabels': sampled_label,
6472 6473 6474
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6475 6476
        },
        attrs={
X
xuezhong 已提交
6477
            'use_customized_samples': use_customized_samples,
6478
            'uniq': True,
X
xuezhong 已提交
6479 6480 6481 6482
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6483 6484
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6485 6486 6487 6488 6489 6490
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6491 6492
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6493
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6494
                'Label': sampled_softlabel},
X
xuezhong 已提交
6495 6496 6497
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6498
            'soft_label': True,
X
xuezhong 已提交
6499 6500 6501
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6502
    return loss / num_true
X
xuezhong 已提交
6503 6504


6505 6506
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6507 6508
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6509
    For each instance, it computes the smooth L1 loss element by element first
6510
    and then sums all the losses. So the shape of ouput Variable is
6511
    [batch_size, 1].
6512

6513 6514
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6515
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6516
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6517
            L1 loss op with same shape as :attr:`x`.
6518
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6519 6520
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6521
            by this tensor element by element.
6522
        outside_weight (Variable|None): A tensor with rank at least 2. This
6523 6524
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6525
            element by element.
6526
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6527 6528
           scalar with default value 1.0.

6529
    Returns:
6530
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6531 6532 6533 6534 6535

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6536 6537
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6538
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6539
            out = fluid.layers.smooth_l1(x=fc, y=label)
6540
    """
6541

6542
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6543 6544
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6555
        attrs={'sigma': sigma if sigma is not None else 1.0})
6556
    return loss
6557 6558 6559 6560


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6561
    This layer creates the one-hot representations for input indices.
6562 6563

    Args:
Y
Yibing Liu 已提交
6564 6565
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6566 6567

    Returns:
Y
Yibing Liu 已提交
6568
        Variable: The one-hot representations of input.
6569 6570

    Examples:
C
caoying03 已提交
6571
        .. code-block:: python
6572

Y
Yibing Liu 已提交
6573 6574
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6575 6576
    """
    helper = LayerHelper("one_hot", **locals())
6577

X
Xin Pan 已提交
6578
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6589
            depth.stop_gradient = True
6590 6591
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6592 6593
    helper.append_op(
        type="one_hot",
6594 6595
        inputs=inputs,
        attrs=attrs,
6596 6597
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6598
    return one_hot_out
Y
Yu Yang 已提交
6599 6600


Y
Yu Yang 已提交
6601
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6602
    """
Y
yi.wu 已提交
6603 6604 6605
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6606 6607 6608 6609 6610 6611

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6612 6613
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6614 6615 6616 6617 6618

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6619
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6620 6621
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6622 6623
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6624 6625 6626 6627 6628
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6629
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6630
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6631 6632
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6633
            outputs={'Out': [counter]},
M
minqiyang 已提交
6634 6635
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6636 6637 6638
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6639 6640


6641
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6642
    """
C
caoying03 已提交
6643 6644
    Gives a new shape to the input Tensor without changing its data.

6645 6646 6647 6648 6649
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6650

6651
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6652

6653 6654 6655 6656
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6657
    2. 0 means the actual dimension value is going to be copied from the
6658 6659 6660 6661
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6662 6663

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6664
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6665
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6666

6667
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6668 6669
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6670 6671
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6672
    dimensions.
C
caoying03 已提交
6673

6674
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6675 6676 6677 6678
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6679 6680

    Args:
6681
        x(variable): The input tensor.
C
caoying03 已提交
6682 6683
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6684 6685 6686 6687 6688
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6689 6690
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6691 6692 6693
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6694
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6695
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6696

6697
    Returns:
G
guosheng 已提交
6698 6699 6700 6701
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6702

X
Xin Pan 已提交
6703 6704 6705
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6706 6707
    Examples:
        .. code-block:: python
G
guosheng 已提交
6708

6709
            data = fluid.layers.data(
6710
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6711
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6712
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6713 6714 6715
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6716
        raise ValueError("Input shape must be a python list or tuple.")
6717

X
Xin Pan 已提交
6718 6719 6720 6721 6722
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6723

6724 6725
    # Validate the shape
    unk_dim_idx = -1
6726
    contain_var = False
6727
    for dim_idx, dim_size in enumerate(shape):
6728 6729 6730 6731
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6744
    helper = LayerHelper("reshape2", **locals())
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6767 6768
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6769
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6770
    helper.append_op(
6771
        type="reshape2",
X
Xin Pan 已提交
6772
        inputs=inputs,
6773
        attrs=attrs,
6774 6775
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6776

D
dzhwinter 已提交
6777
    return helper.append_activation(out)
6778

6779

6780
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6781
    """
M
minqiyang 已提交
6782 6783 6784
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6785
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6786

H
haowang101779990 已提交
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6808

Y
Yibing Liu 已提交
6809
    Args:
6810
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6811
        axes (list): List of integers, indicating the dimensions to be squeezed.
6812
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6813 6814 6815 6816 6817 6818 6819

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6820
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6821
            x = layers.data(name='x', shape=[5, 1, 10])
6822
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6823
    """
L
lujun 已提交
6824
    assert not in_dygraph_mode(), (
L
lujun 已提交
6825
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6826
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6827 6828
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6829
    helper.append_op(
6830
        type="squeeze2",
6831
        inputs={"X": input},
Y
Yibing Liu 已提交
6832
        attrs={"axes": axes},
6833 6834
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6835

6836 6837 6838
    return out


6839
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6840
    """
M
minqiyang 已提交
6841 6842 6843
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6844

M
minqiyang 已提交
6845
    For example:
H
haowang101779990 已提交
6846 6847 6848

    .. code-block:: text

M
minqiyang 已提交
6849
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6850
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6851

Y
Yibing Liu 已提交
6852
    Args:
6853
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6854
        axes (list): List of integers, indicating the dimensions to be inserted.
6855
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6856 6857 6858 6859 6860 6861 6862

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

6863 6864 6865
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6866 6867
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6868 6869
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6870
    helper.append_op(
6871
        type="unsqueeze2",
6872
        inputs={"X": input},
Y
Yibing Liu 已提交
6873
        attrs={"axes": axes},
6874 6875
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6876

6877 6878
    return out

6879

Y
yangyaming 已提交
6880
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6881
    """
Y
Yibing Liu 已提交
6882
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6883 6884 6885 6886
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6887
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6888 6889 6890 6891 6892 6893

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6894
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6895 6896 6897
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6898
            target_lod: [4, 2]
Y
yangyaming 已提交
6899 6900

            then we get a 1-level LoDTensor:
6901
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6902 6903 6904 6905 6906 6907
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6908
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6909 6910 6911 6912
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6913
                y.data = [[2, 4]]
Y
yangyaming 已提交
6914 6915 6916
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6917
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6918 6919 6920 6921 6922 6923
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6924
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6925 6926 6927 6928
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6929
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6930 6931 6932 6933
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6934
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6935 6936 6937 6938 6939
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6940
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6941
                           from :attr:`y`.
Y
yangyaming 已提交
6942
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6943
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6944 6945

    Returns:
Y
Yibing Liu 已提交
6946
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6947 6948

    Raises:
Y
Yibing Liu 已提交
6949
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6950 6951 6952 6953

    Examples:
        .. code-block:: python

6954 6955 6956
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6957 6958
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6959
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
6985
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
7014 7015
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7028 7029 7030
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7044 7045 7046 7047


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7048
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7049
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7050

G
guosheng 已提交
7051 7052 7053 7054
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7077
                         The length of :attr:paddings must be
G
guosheng 已提交
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7088

G
guosheng 已提交
7089
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7090 7091
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7092 7093 7094 7095 7096
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7097
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7098 7099 7100 7101 7102 7103 7104
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7105 7106


C
chengduo 已提交
7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7138 7139
		And
            pad_value = -1,
C
chengduo 已提交
7140

T
Tink_Y 已提交
7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7171 7172 7173
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7174 7175 7176 7177 7178
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7179
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7180 7181 7182 7183 7184 7185 7186 7187 7188
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7189 7190 7191 7192 7193 7194 7195
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7196 7197
    called label-smoothing regularization (LSR).

7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7221
                              be :math:`(1, class\_num)`.
7222 7223
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7224
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7225 7226 7227 7228 7229 7230 7231 7232 7233
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7234 7235
            
            import paddle.fluid.layers as layers
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7246
    smooth_label = helper.create_variable_for_type_inference(dtype)
7247 7248 7249 7250 7251 7252 7253
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7254 7255


W
wopeizl 已提交
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7304 7305


J
jerrywgz 已提交
7306 7307 7308 7309 7310 7311
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7312 7313
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7330 7331 7332 7333
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7334 7335 7336
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7337 7338 7339 7340 7341 7342
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7343
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7384 7385
        .. code-block:: python

S
SunGaofeng 已提交
7386 7387 7388
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7389
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7390
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7391 7392
    """
    label = one_hot(label, depth=input.shape[-1])
7393
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7394 7395 7396 7397 7398 7399
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7400 7401


7402 7403 7404 7405
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7406
                 resample='BILINEAR',
7407 7408
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7409
                 align_mode=1):
7410
    """
Q
qiaolongfei 已提交
7411
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7412

7413
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7414 7415 7416
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7417

7418
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7419

7420
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7421

7422 7423 7424 7425 7426 7427 7428 7429 7430 7431
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7432
    Align_corners and align_mode are optinal parameters,the calculation method 
7433 7434 7435 7436
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7437
    .. code-block:: text
7438

T
Tink_Y 已提交
7439
        For scale:
7440
          
T
Tink_Y 已提交
7441
            if align_corners = True && out_size > 1 :
7442

T
Tink_Y 已提交
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7454

T
Tink_Y 已提交
7455 7456
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7457

T
Tink_Y 已提交
7458 7459
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7460

T
Tink_Y 已提交
7461 7462
          else:
              align_corners = True
7463

T
Tink_Y 已提交
7464 7465
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7466

T
Tink_Y 已提交
7467 7468
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7469

T
Tink_Y 已提交
7470 7471 7472 7473 7474 7475 7476 7477 7478 7479
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7480

T
Tink_Y 已提交
7481 7482 7483 7484
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7485

T
Tink_Y 已提交
7486 7487
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7488 7489 7490 7491 7492 7493 7494 7495 7496

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7497
    Args:
7498
        input (Variable): The input tensor of image resize layer,
7499 7500
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7501
        out_shape(list|tuple|Variable|None): Output shape of image resize
7502 7503
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7504
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7505
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7506
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7507
             Default: None.
7508 7509
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7510
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7511
                       currently.
7512
                       Default: 'BILINEAR'
7513 7514 7515
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7516
                                :attr:`out_shape` and :attr:`scale` specifying
7517 7518 7519 7520 7521 7522 7523
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7524 7525
                                constructing stage.
                                Default: None
7526 7527 7528 7529
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7530
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7531 7532
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7533 7534

    Returns:
Q
update  
qiaolongfei 已提交
7535 7536
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7537

7538 7539 7540
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7541
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7542 7543 7544
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7545
        ValueError: scale should be greater than zero.
7546 7547
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7548

7549 7550 7551
    Examples:
        .. code-block:: python

R
ruri 已提交
7552
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7553
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7554
    """
7555 7556 7557 7558
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7559 7560
    if resample not in resample_methods:
        raise ValueError(
7561
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7562
        )
7563
    resample_type = resample_methods[resample]
7564 7565 7566 7567 7568 7569

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7570
    if out_shape is None and scale is None:
7571
        raise ValueError("One of out_shape and scale must not be None.")
7572
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7573
    dtype = helper.input_dtype()
7574 7575 7576 7577

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7578
    inputs = {"X": input}
D
dengkaipeng 已提交
7579
    attrs = {
D
dengkaipeng 已提交
7580 7581
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7582 7583 7584 7585 7586
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7587
    if out_shape is not None:
7588 7589 7590 7591
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7592
            inputs['OutSize'] = out_shape
7593 7594
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7595 7596
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7597 7598 7599 7600 7601 7602 7603
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7604
    else:
D
dengkaipeng 已提交
7605 7606
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7607
        attrs['scale'] = float(scale)
7608

7609 7610 7611 7612 7613
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7614
    out = helper.create_variable_for_type_inference(dtype)
7615
    helper.append_op(
7616
        type='{}_interp'.format(resample_type),
7617
        inputs=inputs,
7618
        outputs={"Out": out},
D
dengkaipeng 已提交
7619
        attrs=attrs)
7620
    return out
F
stash  
fengjiayi 已提交
7621 7622


7623
@templatedoc(op_type="bilinear_interp")
7624 7625 7626 7627
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7628 7629
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7630
                    align_mode=1):
7631
    """
7632 7633
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7634 7635
    in priority order.

7636 7637 7638 7639
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7640 7641
    again in the other direction.

7642
    For details of bilinear interpolation, please refer to Wikipedia:
7643
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7644

T
tink2123 已提交
7645
    Align_corners and align_mode are optinal parameters,the calculation 
7646 7647 7648 7649
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7650
    .. code-block:: text
7651

T
Tink_Y 已提交
7652
        For scale:
7653
          
T
Tink_Y 已提交
7654
            if align_corners = True && out_size > 1 :
7655

T
Tink_Y 已提交
7656 7657 7658 7659 7660
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7661

T
Tink_Y 已提交
7662 7663 7664 7665 7666 7667 7668 7669 7670 7671
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7672 7673


T
Tink_Y 已提交
7674
          else:
T
tink2123 已提交
7675

T
Tink_Y 已提交
7676 7677
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7678

T
Tink_Y 已提交
7679 7680
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7681 7682 7683



Y
yuyang18 已提交
7684 7685 7686
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7687 7688 7689
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7690

Y
yuyang18 已提交
7691
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7692
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7693
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7694
             Default: None.
Y
yuyang18 已提交
7695 7696

        name(str|None): The output variable name.
7697 7698 7699
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7700
                                :attr:`out_shape` and :attr:`scale` specifying
7701 7702 7703 7704 7705 7706 7707
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7708 7709
                                constructing stage.
                                Default: None
7710 7711
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7712 7713 7714

    Returns:
        ${out_comment}.
7715 7716 7717 7718

    Examples:
        .. code-block:: python

R
ruri 已提交
7719
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7720
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7721 7722
    """

7723 7724
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7725 7726


7727
@templatedoc(op_type="nearest_interp")
7728 7729 7730 7731
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7732 7733
                   actual_shape=None,
                   align_corners=True):
7734
    """
7735
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7736 7737
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7738 7739
    out_shape and scale in priority order.

7740 7741
    Example:

T
Tink_Y 已提交
7742 7743 7744 7745 7746
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7747

T
Tink_Y 已提交
7748 7749 7750 7751 7752 7753 7754 7755
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7756
          
T
Tink_Y 已提交
7757 7758
          if:
              align_corners = False
7759

T
Tink_Y 已提交
7760 7761
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7762

T
Tink_Y 已提交
7763 7764
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7765

T
Tink_Y 已提交
7766 7767
          else:
              align_corners = True
7768

T
Tink_Y 已提交
7769 7770
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7771

T
Tink_Y 已提交
7772 7773
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7774 7775


7776
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7777
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7778 7779 7780 7781

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7782 7783 7784
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7785

Y
yuyang18 已提交
7786
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7787
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7788
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7789
             Default: None.
Y
yuyang18 已提交
7790 7791

        name(str|None): The output variable name.
7792 7793 7794
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7795
                                :attr:`out_shape` and :attr:`scale` specifying
7796 7797 7798 7799 7800 7801 7802
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7803 7804
                                constructing stage.
                                Default: None
7805
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7806 7807 7808

    Returns:
        ${out_comment}.
7809 7810 7811 7812

    Examples:
        .. code-block:: python

R
ruri 已提交
7813
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7814
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7815 7816
    """

7817 7818
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7819 7820 7821 7822


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7823 7824 7825
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7826 7827 7828 7829 7830 7831 7832
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7833
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7834

7835
    Returns:
Q
update  
qiaolongfei 已提交
7836
        Variable: The output is a 4-D tensor of the shape
7837
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7838 7839 7840 7841 7842 7843

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7844 7845 7846 7847 7848 7849 7850 7851 7852 7853
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7854 7855 7856
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7857 7858 7859
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7860 7861
def gather(input, index):
    """
Q
qiaolongfei 已提交
7862 7863
    **Gather Layer**

7864
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7865 7866 7867 7868
    of X indexed by `index` and concatenate them together.

    .. math::

7869
        Out = X[Index]
W
whs 已提交
7870 7871 7872 7873 7874 7875 7876


    .. code-block:: text


                Given:

7877 7878
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7889
        input (Variable): The source input with rank>=1.
W
whs 已提交
7890 7891 7892 7893 7894 7895
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7896

W
whs 已提交
7897 7898
        .. code-block:: python

Y
Yibing Liu 已提交
7899 7900
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7901 7902 7903 7904
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7905
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7906 7907 7908 7909 7910 7911 7912 7913
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

7940 7941 7942 7943 7944
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
7945

7946
            output = fluid.layers.scatter(input, index, updates)
7947 7948 7949
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7950
    out = helper.create_variable_for_type_inference(dtype)
7951 7952 7953 7954 7955 7956 7957 7958 7959
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7960 7961 7962 7963 7964 7965 7966 7967 7968
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7969

Q
Qingsheng Li 已提交
7970
    Given the following input:
H
haowang101779990 已提交
7971

Q
Qingsheng Li 已提交
7972
    .. code-block:: text
H
haowang101779990 已提交
7973

Q
Qingsheng Li 已提交
7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7986

Q
Qingsheng Li 已提交
7987
    .. code-block:: text
H
haowang101779990 已提交
7988

Q
Qingsheng Li 已提交
7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8004
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8005 8006 8007 8008

    Examples:

        .. code-block:: python
8009 8010
	
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8011

8012 8013 8014
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8015 8016 8017
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8018
    assert not in_dygraph_mode(), (
8019
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8020 8021
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8022
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8023 8024 8025 8026 8027 8028 8029 8030 8031
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8045

8046 8047 8048
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8049
    """
F
stash  
fengjiayi 已提交
8050
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8051
    dtype = x.dtype
X
Xin Pan 已提交
8052
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8053
    if seed is None:
8054
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8055
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8056
    if isinstance(seed, int):
F
fengjiayi 已提交
8057 8058 8059 8060 8061
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8062 8063 8064 8065
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8066
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8067 8068
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8069 8070
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8071
    return out
W
whs 已提交
8072 8073


8074
def log(x, name=None):
W
wanghaoshuang 已提交
8075 8076 8077 8078 8079
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8080
        Out = \\ln(x)
W
wanghaoshuang 已提交
8081 8082

    Args:
8083
        x (Variable): Input tensor.
8084 8085
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8086 8087 8088 8089 8090 8091 8092 8093

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8094
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8095
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8096 8097
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8098
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8099
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8100
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8101 8102 8103
    return out


8104
def relu(x, name=None):
W
wanghaoshuang 已提交
8105 8106
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8107
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8108 8109 8110 8111
    the tensor elementwise.

    .. math::

8112
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8113 8114

    Args:
8115
        x (Variable): The input tensor.
8116 8117
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8118 8119 8120 8121 8122 8123 8124 8125

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8126
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8127
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8128 8129
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8130
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8131
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8132 8133
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8134
    return out
8135 8136


C
chengduo 已提交
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8161 8162 8163 8164 8165 8166
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8182 8183 8184
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8185 8186 8187 8188
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8189
    .. math::
8190

H
haowang101779990 已提交
8191
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8192

8193
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8194 8195 8196 8197 8198
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8199
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8200
                           Its shape should be the same as input.
8201
        num_classes (int): The possible number of labels.
W
whs 已提交
8202 8203

    Returns:
M
minqiyang 已提交
8204 8205
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8206
                     Three variables:
M
minqiyang 已提交
8207

H
haowang101779990 已提交
8208 8209 8210
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8211 8212 8213 8214

    Examples:

        .. code-block:: python
8215

B
Bai Yifan 已提交
8216 8217 8218 8219 8220
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8221 8222 8223
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8224 8225 8226
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8227 8228
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8229 8230
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8231
        outputs={
W
whs 已提交
8232 8233 8234
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8235 8236 8237
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8280
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8281
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8282
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8300
            import paddle.fluid as fluid
8301 8302 8303 8304 8305 8306
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8307
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8308 8309 8310 8311 8312

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8313
            isinstance(shape, Variable)):
8314 8315 8316 8317 8318
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8319
    out = helper.create_variable_for_type_inference(x.dtype)
8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8337 8338


W
whs 已提交
8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8356

W
whs 已提交
8357
              out_shape = [2, 3, 5, 5]
8358

W
whs 已提交
8359
          Step 1:
8360

W
whs 已提交
8361 8362 8363
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8364

W
whs 已提交
8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8410
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8411
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8424

S
SunGaofeng 已提交
8425
            import paddle.fluid as fluid
W
whs 已提交
8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8437
            isinstance(out_shape, Variable)):
W
whs 已提交
8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8459 8460
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8461

8462 8463
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8464
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8465 8466 8467
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8468

8469 8470
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8471

H
haowang101779990 已提交
8472 8473
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8474 8475
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8476

H
haowang101779990 已提交
8477 8478 8479 8480 8481 8482 8483 8484
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8485 8486 8487

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8505 8506 8507
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8522
    out = helper.create_variable_for_type_inference("float32")
8523 8524 8525 8526 8527 8528 8529 8530

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8531 8532


M
minqiyang 已提交
8533 8534
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8535
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8536
    which compares left score and right score passed in.
M
minqiyang 已提交
8537
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8538 8539 8540

    .. math::

H
haowang101779990 已提交
8541
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8542 8543

    Args:
M
minqiyang 已提交
8544
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8545 8546
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8547
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8548 8549
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8550

M
minqiyang 已提交
8551
    Returns:
M
minqiyang 已提交
8552
       Variable: The ranking loss.
H
haowang101779990 已提交
8553

M
minqiyang 已提交
8554
    Raises:
M
minqiyang 已提交
8555
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8556

M
minqiyang 已提交
8557
    Examples:
H
haowang101779990 已提交
8558

M
minqiyang 已提交
8559
        .. code-block:: python
H
haowang101779990 已提交
8560

Y
Yibing Liu 已提交
8561 8562 8563
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8564 8565
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8566
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8567 8568 8569 8570 8571 8572
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8573 8574
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8598
        .. code-block:: text
W
whs 已提交
8599

T
Tink_Y 已提交
8600
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8601

T
Tink_Y 已提交
8602 8603
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8604

T
Tink_Y 已提交
8605
	      Case 0:
M
minqiyang 已提交
8606

T
Tink_Y 已提交
8607 8608 8609
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8610

T
Tink_Y 已提交
8611 8612 8613
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8614

T
Tink_Y 已提交
8615
	      Case 1:
M
minqiyang 已提交
8616

T
Tink_Y 已提交
8617 8618
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8619

T
Tink_Y 已提交
8620 8621 8622
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8623

T
Tink_Y 已提交
8624
	      Case 2:
M
minqiyang 已提交
8625

T
Tink_Y 已提交
8626 8627
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8628

T
Tink_Y 已提交
8629 8630 8631
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8632 8633


W
whs 已提交
8634 8635
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8636
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8654 8655 8656 8657 8658
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8659 8660 8661 8662
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8663
    out = helper.create_variable_for_type_inference(dtype)
8664 8665 8666 8667 8668 8669 8670 8671 8672
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8673
    helper.append_op(
8674
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8675 8676 8677 8678

    return out


8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8691 8692 8693 8694 8695

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8696 8697
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8698 8699
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8700
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8721 8722 8723 8724 8725

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8726 8727
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8728 8729
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8730
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8751 8752 8753 8754 8755

    Examples:

        .. code-block:: python

8756
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8757 8758
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8759 8760
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8761
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8783 8784 8785 8786 8787

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8788
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8789
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8790 8791
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8792
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8815 8816 8817 8818 8819

    Examples:

        .. code-block:: python

8820
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8821 8822
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8823 8824
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8825
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8847 8848 8849 8850 8851

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8852 8853
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8854 8855
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8856
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8857 8858 8859 8860 8861 8862 8863 8864
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8865 8866 8867 8868
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8869 8870
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8871

J
jerrywgz 已提交
8872 8873 8874 8875 8876 8877 8878 8879
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8880 8881
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8882
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
8883
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
8884
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
8885
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8886
          will be named automatically.
J
jerrywgz 已提交
8887 8888 8889 8890 8891 8892 8893 8894

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8895 8896 8897
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
8898
            mode = 'channel'
J
jerrywgz 已提交
8899 8900 8901
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8913
        attr=helper.param_attr,
J
jerrywgz 已提交
8914 8915 8916 8917
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8918
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8919 8920 8921 8922 8923 8924 8925 8926 8927
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8928 8929 8930 8931 8932 8933 8934 8935 8936 8937
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8938
    Returns:
8939
        output(${out_type}): ${out_comment}
8940 8941 8942

    Examples:

8943
    .. code-block:: python
8944

H
haowang101779990 已提交
8945 8946
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8947 8948
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8949
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8968
    Returns:
8969
        output(${out_type}): ${out_comment}
8970 8971 8972 8973 8974

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8975 8976
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8977 8978
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8979
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8997
    Returns:
8998
        output(${out_type}): ${out_comment}
8999 9000 9001

    Examples:

9002 9003 9004 9005 9006
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9007
            y = fluid.layers.soft_relu(x, threshold=20.0)
9008 9009
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9010
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9011 9012 9013 9014 9015 9016 9017 9018
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9019 9020 9021 9022
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9023

H
haowang101779990 已提交
9024
    For Example:
M
minqiyang 已提交
9025

H
haowang101779990 已提交
9026
    .. code-block:: text
9027

H
haowang101779990 已提交
9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9049 9050 9051

    Args:
        x (Variable): A tensor of rank >= axis.
9052 9053
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9054 9055 9056 9057 9058 9059 9060 9061
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9062 9063 9064
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9065 9066 9067 9068
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9069
        ValueError: If axis is not in range [0, rank(x)].
9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9086 9087
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9088
    helper.append_op(
9089
        type='flatten2',
9090
        inputs={"X": x},
9091 9092
        outputs={'Out': out,
                 'XShape': x_shape},
9093 9094
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9095 9096


C
chenweihang 已提交
9097
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9098
    """
C
chenweihang 已提交
9099
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9100
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9101 9102
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9103

H
haowang101779990 已提交
9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9121 9122

    Args:
C
chenweihang 已提交
9123 9124 9125
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9126 9127 9128 9129 9130 9131 9132

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9133
            x = fluid.layers.data(shape[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9134 9135
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9136
    assert not in_dygraph_mode(), (
9137
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9138
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9139 9140
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9141 9142 9143 9144 9145 9146
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9147
    return out
9148

9149

S
sneaxiy 已提交
9150 9151 9152 9153 9154 9155 9156 9157 9158
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9159

S
sneaxiy 已提交
9160
    .. math::
9161

S
sneaxiy 已提交
9162 9163 9164
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9165
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9166 9167 9168 9169
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9170 9171 9172
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9173 9174
    Returns:
        Variable: The output sequence mask.
9175

9176 9177 9178 9179 9180 9181 9182 9183
    Examples:
        .. code-block:: python
	
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9184
    """
L
lujun 已提交
9185
    assert not in_dygraph_mode(), (
9186
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9187

Q
qingqing01 已提交
9188
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9189
    if name is None:
X
Xin Pan 已提交
9190
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9191
    else:
X
Xin Pan 已提交
9192
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9193

Q
qingqing01 已提交
9194 9195 9196
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
9197 9198
        outputs={'Y': out},
        attrs={
9199
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
9200 9201 9202
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
9203 9204


X
Xin Pan 已提交
9205
def stack(x, axis=0):
S
sneaxiy 已提交
9206 9207 9208 9209
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9210 9211 9212 9213 9214 9215 9216

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9217
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9218
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9219

C
chengduozh 已提交
9220 9221
    For Example:

C
chengduozh 已提交
9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9260
    Args:
9261
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9262
        axis (int|None): The axis along which all inputs are stacked.
9263

S
sneaxiy 已提交
9264 9265
    Returns:
        Variable: The stacked variable.
9266

9267 9268 9269 9270
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
9271 9272
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9273 9274
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9275 9276
    """

X
Xin Pan 已提交
9277 9278 9279 9280 9281 9282
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9283
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9284
    helper.append_op(
S
sneaxiy 已提交
9285 9286
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9287

X
Xin Pan 已提交
9288
    return out
D
dzhwinter 已提交
9289 9290 9291 9292 9293 9294 9295


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9296

D
dzhwinter 已提交
9297 9298 9299
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9300
    raised.
D
dzhwinter 已提交
9301 9302

    Args:
M
minqiyang 已提交
9303
        x (Variable): Input variable.
D
dzhwinter 已提交
9304 9305
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9306

D
dzhwinter 已提交
9307 9308
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9309

9310 9311 9312 9313 9314 9315
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9316 9317 9318 9319 9320 9321 9322 9323 9324 9325
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9326
    for _ in range(num):
X
Xin Pan 已提交
9327
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9328 9329 9330 9331 9332 9333 9334 9335

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9348

W
whs 已提交
9349 9350 9351 9352
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9353

W
whs 已提交
9354
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9355

W
whs 已提交
9356
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9357

W
whs 已提交
9358 9359 9360 9361
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9362

W
whs 已提交
9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9379
    out = helper.create_variable_for_type_inference(dtype)
9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9397
                    ele.stop_gradient = True
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
                    temp_out = helper.create_variable_for_type_inference(dtype)
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9411
    helper.append_op(
9412
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9413
    return out
S
sneaxiy 已提交
9414 9415


G
fix  
gongweibao 已提交
9416 9417 9418
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9419
@templatedoc()
G
fix  
gongweibao 已提交
9420 9421 9422 9423 9424 9425 9426 9427 9428
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9429
    ${comment}
G
fix  
gongweibao 已提交
9430 9431

    Args:
G
gongweibao 已提交
9432 9433 9434
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9435
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9436 9437 9438
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9439 9440
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9441
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9442

9443 9444 9445
    Examples:
        .. code-block:: python

9446 9447
            import paddle.fluid.layers as layers 

9448 9449
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9450 9451 9452
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9453
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9470 9471


G
gongweibao 已提交
9472
@templatedoc()
X
Xin Pan 已提交
9473
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9474
    """
G
gongweibao 已提交
9475
    ${comment}
G
fix  
gongweibao 已提交
9476 9477

    Args:
G
gongweibao 已提交
9478 9479 9480 9481
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9482 9483 9484
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9485
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9486

9487 9488 9489
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9490
            import paddle.fluid.layers as layers
9491
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9492 9493 9494
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9495
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9496 9497 9498 9499 9500 9501 9502 9503 9504 9505
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9506
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9507 9508 9509 9510 9511
        })

    return out


G
gongweibao 已提交
9512
@templatedoc()
G
fix  
gongweibao 已提交
9513
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9514
    """
G
gongweibao 已提交
9515
    ${comment}
G
fix  
gongweibao 已提交
9516 9517

    Args:
G
gongweibao 已提交
9518 9519 9520 9521
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9522
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9523 9524

    Returns:
G
gongweibao 已提交
9525
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9526

9527 9528 9529
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9530
            x = fluid.layers.data(
9531 9532 9533 9534 9535
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9536
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9537 9538 9539
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9540
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9552
@templatedoc()
G
fix  
gongweibao 已提交
9553 9554 9555 9556 9557 9558 9559 9560 9561
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9562
    ${comment}
G
fix  
gongweibao 已提交
9563 9564

    Args:
G
gongweibao 已提交
9565 9566
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9567
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9568 9569 9570 9571
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9572
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9573 9574

    Returns:
G
gongweibao 已提交
9575
        out (Variable): ${out_comment}
9576 9577 9578 9579

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9580
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9581

Y
Yibing Liu 已提交
9582
            out = fluid.layers.gaussian_random_batch_size_like(
9583
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9584 9585 9586
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9587
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9606
@templatedoc()
X
Xin Pan 已提交
9607
def sum(x):
G
fix  
gongweibao 已提交
9608
    """
G
gongweibao 已提交
9609
    ${comment}
G
fix  
gongweibao 已提交
9610 9611

    Args:
G
gongweibao 已提交
9612
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9613 9614

    Returns:
G
gongweibao 已提交
9615
        out (Variable): ${out_comment}
9616 9617 9618 9619

    Examples:
        .. code-block:: python

9620 9621 9622 9623
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9624 9625 9626
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9627 9628
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9629 9630 9631 9632
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9633
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9634 9635 9636 9637

    return out


G
gongweibao 已提交
9638
@templatedoc()
G
fix  
gongweibao 已提交
9639 9640
def slice(input, axes, starts, ends):
    """
9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9656

9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9674
    Args:
G
gongweibao 已提交
9675 9676 9677 9678
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9679 9680

    Returns:
G
gongweibao 已提交
9681
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9682

9683 9684 9685
    Examples:
        .. code-block:: python

9686 9687
            import paddle.fluid as fluid
 
9688 9689 9690 9691
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9692
            input = fluid.layers.data(
9693 9694
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9695
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9696 9697 9698
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9699 9700
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9714 9715
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9716
    Get the shape of the input.
G
fix  
gongweibao 已提交
9717 9718

    Args:
C
chengduozh 已提交
9719
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9720 9721

    Returns:
C
fix doc  
chengduozh 已提交
9722
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9723

9724 9725 9726
    Examples:
        .. code-block:: python

9727 9728 9729
            import paddle.fluid as fluid

            input = fluid.layers.data(
9730
                name="input", shape=[3, 100, 100], dtype="float32")
9731
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
9732 9733 9734
    """

    helper = LayerHelper('shape', **locals())
9735
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9736
    helper.append_op(
G
fix  
gongweibao 已提交
9737
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9738 9739

    return out
G
merge  
gongweibao 已提交
9740 9741


Z
zhoukunsheng 已提交
9742 9743 9744 9745
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9746
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9768 9769 9770 9771
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9772
    if in_dygraph_mode():
X
Xin Pan 已提交
9773 9774 9775
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9776 9777 9778 9779
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9780 9781
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9782
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9783 9784 9785
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9786

S
sneaxiy 已提交
9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9798
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9799 9800 9801 9802 9803 9804 9805 9806
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9807
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9808
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9809 9810 9811

    Returns:
        out(${out_type}): ${out_comment}
9812 9813 9814 9815 9816 9817 9818 9819

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
9820 9821 9822
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9823
    if name is None:
X
Xin Pan 已提交
9824
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9825 9826 9827
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9828 9829 9830 9831 9832 9833 9834 9835 9836 9837

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9838
    return helper.append_activation(out)
S
sneaxiy 已提交
9839 9840


X
Xin Pan 已提交
9841
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9842 9843 9844
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9845
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9846 9847 9848
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9849
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9850 9851 9852
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9853
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9854 9855 9856
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9857
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9858 9859 9860
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9861
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9862 9863 9864
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9865
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9866 9867 9868
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9869 9870 9871 9872 9873 9874 9875 9876
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9877
for func in [
9878 9879 9880 9881 9882 9883 9884 9885 9886
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9887 9888 9889 9890 9891
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9892 9893
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9894
        ])
9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
9932 9933


9934
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9935 9936
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9937 9938
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9939 9940 9941

    if out is None:
        if name is None:
X
Xin Pan 已提交
9942
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9958
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9970 9971 9972 9973 9974 9975 9976 9977 9978

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9979 9980 9981 9982 9983 9984 9985
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9986
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9998 9999 10000 10001 10002 10003 10004 10005 10006

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10007 10008 10009 10010 10011 10012 10013
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10014
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10026 10027 10028 10029 10030 10031 10032 10033 10034

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10035 10036 10037 10038 10039 10040 10041
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10042
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10043 10044 10045 10046 10047 10048 10049 10050 10051 10052
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10053 10054 10055 10056 10057 10058 10059

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10060 10061 10062 10063
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10079 10080 10081 10082

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10083
            import paddle.fluid as fluid
10084 10085 10086
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10087 10088 10089 10090 10091
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10092 10093
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10094 10095 10096

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10120 10121 10122 10123 10124 10125 10126

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10127 10128 10129 10130 10131
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10132 10133
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10134 10135 10136

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10137 10138 10139 10140 10141 10142 10143 10144

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10158 10159 10160 10161 10162 10163 10164

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10165 10166 10167 10168 10169
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10170
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10171 10172 10173 10174 10175 10176 10177 10178 10179 10180
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10192 10193 10194 10195 10196 10197 10198 10199 10200

    Examples:
        .. code-block:: python

            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10239 10240 10241 10242 10243
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10244
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10245 10246 10247 10248 10249 10250 10251 10252 10253
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10254 10255
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10256 10257 10258 10259 10260 10261
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10262 10263 10264
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10265 10266
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10267 10268 10269 10270 10271 10272
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10273
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10274
        name(basestring|None): Name of the output.
10275 10276
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10277 10278 10279

    Returns:
        out(${out_type}): ${out_comment}
10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10294 10295 10296 10297 10298
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10299
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10300 10301 10302 10303 10304 10305 10306 10307
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10308 10309
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10326 10327 10328 10329 10330 10331 10332 10333 10334

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10335 10336 10337 10338
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10339
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10340 10341 10342 10343 10344 10345 10346 10347 10348 10349
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10350 10351


J
JiabinYang 已提交
10352
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10353
    """
J
JiabinYang 已提交
10354
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10355 10356 10357

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10358
    The attr blocksize indicates the input block size.
10359 10360

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10361
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10362 10363

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10364
    (but keeping all data)
J
JiabinYang 已提交
10365

J
JiabinYang 已提交
10366
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10367
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10368 10369 10370 10371 10372
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10373
    Args:
J
JiabinYang 已提交
10374
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10375
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10376 10377

    Returns:
J
JiabinYang 已提交
10378
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10379 10380

    Raises:
J
JiabinYang 已提交
10381
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10382 10383 10384

    Examples:
        .. code-block:: python
10385 10386 10387
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10388 10389

            data = fluid.layers.data(
10390
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10391
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10392
                x=data, blocksize=2)
10393 10394 10395 10396 10397 10398

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10399

J
JiabinYang 已提交
10400 10401
    """

J
JiabinYang 已提交
10402
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10403

J
JiabinYang 已提交
10404 10405
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10406 10407

    if name is None:
J
JiabinYang 已提交
10408 10409
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10410 10411 10412 10413 10414
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10415
        type="space_to_depth",
J
JiabinYang 已提交
10416
        inputs={"X": x},
J
JiabinYang 已提交
10417
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10418
        outputs={"Out": out})
J
JiabinYang 已提交
10419 10420
    return out

J
JiabinYang 已提交
10421

S
sneaxiy 已提交
10422 10423
@templatedoc()
def sequence_reverse(x, name=None):
10424
    """
S
sneaxiy 已提交
10425 10426 10427 10428 10429 10430 10431 10432
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10433 10434 10435 10436 10437 10438 10439

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10440
    """
L
lujun 已提交
10441
    assert not in_dygraph_mode(), (
10442
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10443 10444
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10445
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10446 10447 10448 10449 10450 10451 10452 10453 10454 10455
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10456 10457


10458 10459 10460 10461 10462 10463
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10464 10465 10466 10467 10468
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10469

10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10482
        act (str, default None): Activation to be applied to the output of this layer.
10483 10484 10485

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10500 10501 10502 10503
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10504
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10516
    return helper.append_activation(out)
10517 10518


B
barrierye 已提交
10519
def similarity_focus(input, axis, indexes, name=None):
10520
    """
B
barrierye 已提交
10521
    SimilarityFocus Operator
B
barrierye 已提交
10522 10523

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10524

10525 10526 10527
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10528
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10529 10530 10531 10532 10533 10534 10535
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10536
       each index.
B
barrierye 已提交
10537 10538 10539 10540
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10590
    Args:
10591
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10592
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10593
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10594
            1, 2 or 3.
B
barrierye 已提交
10595
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10596 10597

    Returns:
H
haowang101779990 已提交
10598 10599
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10600

B
barrierye 已提交
10601 10602
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10603

B
barrierye 已提交
10604
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10605 10606
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10619 10620 10621 10622 10623
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10624 10625 10626 10627 10628 10629 10630
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10631 10632


M
minqiyang 已提交
10633 10634
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10635 10636
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10637 10638
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10639 10640 10641 10642 10643 10644 10645 10646 10647

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
10648 10649
            [[1, 2],
             [3, 4]],
M
minqiyang 已提交
10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
10666 10667
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
10668 10669 10670 10671 10672 10673 10674 10675 10676
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10677
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10678
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10679 10680 10681 10682 10683 10684

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10685

10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=1, hash_size=1000)

            place = fluid.core.CPUPlace()
            exece = fluid.Executor(place)
            exece.run(fluid.default_startup_program()) 

            # Init Tensor
            tensor = fluid.core.LoDTensor() 
            tensor.set(np.random.randint(0, 10, (3, 1)).astype("int32"), place)
            # Set LoD
            tensor.set_recursive_sequence_lengths([[1, 1, 1]])

            out = exece.run(feed={'titles': tensor}, fetch_list=[hash_r], return_numpy=False)
M
minqiyang 已提交
10704 10705
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10706 10707
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10708 10709 10710 10711 10712 10713 10714
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10715 10716


D
dengkaipeng 已提交
10717
@templatedoc()
10718 10719
def grid_sampler(x, grid, name=None):
    """
10720
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10721
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10722 10723 10724 10725
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10726
    interpolation value of 4 nearest corner points.
10727

H
haowang101779990 已提交
10728
    .. code-block:: text
10729

H
haowang101779990 已提交
10730 10731
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10732

H
haowang101779990 已提交
10733 10734
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10735

H
haowang101779990 已提交
10736 10737 10738
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10739

H
haowang101779990 已提交
10740 10741 10742 10743 10744 10745 10746 10747 10748
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10749

H
haowang101779990 已提交
10750 10751 10752 10753
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10754

H
haowang101779990 已提交
10755 10756 10757 10758
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10759

H
haowang101779990 已提交
10760 10761 10762 10763
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10764

H
haowang101779990 已提交
10765 10766
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10767 10768

    Args:
10769 10770 10771
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10772 10773

    Returns:
H
haowang101779990 已提交
10774
        Variable: Output of shape [N, C, H, W] data samples input X
10775 10776
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10777 10778 10779 10780
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10781 10782 10783 10784 10785
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10786
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10787

D
dengkaipeng 已提交
10788 10789 10790 10791 10792 10793 10794 10795 10796
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10797
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10798 10799
    ipts = {'X': x, 'Grid': grid}

10800
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10801 10802 10803
    return out


G
gmcather 已提交
10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10831 10832
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10871
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10872 10873 10874 10875 10876 10877 10878
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
10879 10880
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
10881

10882 10883 10884 10885 10886
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
10887
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
10888

H
heqiaozhi 已提交
10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10902 10903 10904 10905
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10906
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10907 10908
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10909
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10910 10911

    .. math::
H
haowang101779990 已提交
10912 10913 10914
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10915 10916

    Where:
H
haowang101779990 已提交
10917 10918
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

10932 10933 10934 10935 10936 10937 10938 10939 10940
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
10941

G
gmcather 已提交
10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10958 10959 10960 10961 10962 10963 10964 10965 10966 10967


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10968
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10969

Q
Qiao Longfei 已提交
10970
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10971 10972 10973
    For example:

    .. math::
H
haowang101779990 已提交
10974
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10975

Q
Qiao Longfei 已提交
10976
    In this formula:
10977 10978
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10979
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10980
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10981 10982 10983
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10984 10985
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10986 10987 10988
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10989
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10990
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10991
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10992 10993 10994 10995
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10996
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10997 10998 10999 11000

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
11001 11002 11003
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11004 11005
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11006
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11007 11008 11009 11010

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11011
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11042 11043 11044 11045 11046 11047 11048 11049

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11050 11051 11052 11053 11054 11055 11056 11057 11058 11059
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11060 11061


S
shippingwang 已提交
11062
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11063 11064
    """
    **Shuffle Channel Operator**
11065

S
shippingwang 已提交
11066 11067 11068 11069 11070 11071
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11072
    
S
shippingwang 已提交
11073
    .. code-block:: text
11074

S
shippingwang 已提交
11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11103
    Args: 
S
shippingwang 已提交
11104 11105
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11106 11107

    Returns:
S
shippingwang 已提交
11108 11109
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11110 11111

    Raises:
S
shippingwang 已提交
11112
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11113 11114 11115

    Examples:
        .. code-block:: python
11116 11117

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11118
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11119 11120 11121
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11122
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11123 11124 11125 11126 11127 11128 11129 11130 11131

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11132
    return out
S
Add  
shippingwang 已提交
11133 11134


11135
@templatedoc()
D
dengkaipeng 已提交
11136
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11137 11138 11139 11140 11141 11142 11143 11144
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11145
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11146
        name (str, default None): The name of this layer.
11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11159
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11172 11173
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11174 11175 11176
    return out


S
sneaxiy 已提交
11177
class PyFuncRegistry(object):
S
sneaxiy 已提交
11178 11179 11180
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11181
        if func is None or not callable(func):
S
sneaxiy 已提交
11182 11183 11184
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11185
        # find named args using reflection
S
sneaxiy 已提交
11186 11187 11188 11189 11190 11191 11192
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11193 11194 11195
        '''
        Why record self here?

M
minqiyang 已提交
11196 11197
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11198
           to find the registered function corresponding
M
minqiyang 已提交
11199
           to :code:`idx`.
S
sneaxiy 已提交
11200

M
minqiyang 已提交
11201 11202
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11203
           whose reference count is 1 would cause
M
minqiyang 已提交
11204
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11205 11206
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11207
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11222 11223 11224 11225 11226 11227 11228 11229 11230
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11231

S
sneaxiy 已提交
11232 11233
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11234 11235

        ret = []
S
sneaxiy 已提交
11236 11237 11238
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11239 11240
                continue

S
sneaxiy 已提交
11241 11242
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11243

S
sneaxiy 已提交
11244 11245 11246
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11247

S
sneaxiy 已提交
11248
        return tuple(ret)
S
sneaxiy 已提交
11249 11250


S
sneaxiy 已提交
11251 11252 11253 11254
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11255

S
sneaxiy 已提交
11256 11257 11258 11259 11260 11261 11262 11263
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11264
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11265

S
sneaxiy 已提交
11266 11267
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11268 11269 11270 11271
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11272
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11273
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11274 11275
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11276 11277 11278 11279 11280
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11281
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11282
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11283
                                       None means no backward. Default None.
S
sneaxiy 已提交
11284
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11285
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11286 11287
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11288
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11289 11290 11291

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11292 11293

    Examples:
M
minqiyang 已提交
11294

S
sneaxiy 已提交
11295 11296 11297 11298 11299
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11300
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11301 11302
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11303
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11304 11305 11306
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11307
        >>>
S
sneaxiy 已提交
11308 11309 11310 11311 11312
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11313
        >>>     print(x)
S
sneaxiy 已提交
11314 11315 11316 11317 11318 11319
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11320
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11321 11322
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11323 11324
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11325 11326 11327 11328 11329 11330 11331 11332
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11333
    """
S
sneaxiy 已提交
11334
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11335 11336 11337
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11338
        x = [x]
S
sneaxiy 已提交
11339 11340
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11341

S
sneaxiy 已提交
11342 11343 11344
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11345
        out_list = [out]
S
sneaxiy 已提交
11346
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11347
        out_list = out
S
sneaxiy 已提交
11348 11349 11350
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11351

S
sneaxiy 已提交
11352 11353
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11354
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11355 11356

    for each_out in out_list:
S
sneaxiy 已提交
11357 11358
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11359 11360
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11361

S
sneaxiy 已提交
11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11377 11378 11379 11380

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11381 11382
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11383 11384 11385
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11386
        })
S
sneaxiy 已提交
11387
    return out
S
sneaxiy 已提交
11388 11389 11390


# For debug usage
S
sneaxiy 已提交
11391 11392 11393 11394
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11408 11409 11410 11411 11412
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11425 11426 11427 11428
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11454

M
minqiyang 已提交
11455

M
minqiyang 已提交
11456
def huber_loss(input, label, delta):
11457
    """
M
minqiyang 已提交
11458 11459 11460
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11461 11462 11463 11464

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11465
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11466 11467 11468 11469

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11470
        huber\_loss = 0.5 * (label - input) * (label - input)
11471 11472 11473 11474 11475 11476 11477


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11478
        delta (float): The parameter of huber loss, which controls
11479 11480 11481
                       the range of outliers

    Returns:
M
minqiyang 已提交
11482
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11483 11484 11485 11486

    Examples:
        .. code-block:: python

11487 11488 11489 11490 11491 11492 11493 11494 11495
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11496
    """
M
minqiyang 已提交
11497
    helper = LayerHelper('huber_loss', **locals())
11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11509 11510


D
dengkaipeng 已提交
11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11573 11574 11575
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11576
          # edges must be directional
T
Tao Luo 已提交
11577 11578 11579 11580
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11581
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11582 11583
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11584
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11585
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11609 11610


C
ceci3 已提交
11611
from .ops import square
C
ceci3 已提交
11612
from .control_flow import equal
C
ceci3 已提交
11613 11614


C
ceci3 已提交
11615 11616 11617
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11618

C
ceci3 已提交
11619
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11620 11621

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11622
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11623 11624 11625 11626 11627
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11628 11629
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11630 11631 11632 11633 11634 11635 11636

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11637 11638 11639 11640 11641 11642 11643 11644
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11645 11646 11647 11648 11649 11650 11651
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11652
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11653 11654
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11655 11656
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11657 11658 11659 11660
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11661 11662 11663
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11664 11665 11666
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11667 11668


R
ruri 已提交
11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11698
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11699 11700 11701 11702 11703 11704 11705 11706 11707

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11708
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
11759 11760 11761 11762 11763 11764
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
11765 11766 11767 11768 11769 11770 11771 11772
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11773 11774 11775 11776


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11777

H
heqiaozhi 已提交
11778
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11779

H
fix doc  
heqiaozhi 已提交
11780
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11781 11782 11783
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11784
    
H
fix doc  
heqiaozhi 已提交
11785
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11786

H
heqiaozhi 已提交
11787
    Args:
H
fix doc  
heqiaozhi 已提交
11788 11789

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11790 11791
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11792
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11793
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11794

H
heqiaozhi 已提交
11795
    Returns:
H
fix doc  
heqiaozhi 已提交
11796 11797 11798

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11799
    Examples:
H
fix doc  
heqiaozhi 已提交
11800

H
heqiaozhi 已提交
11801
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11802

H
heqiaozhi 已提交
11803 11804 11805 11806 11807 11808 11809 11810 11811 11812
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11813

H
heqiaozhi 已提交
11814 11815 11816 11817 11818 11819 11820 11821 11822
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11823
    return out
Z
zhoukunsheng 已提交
11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061


def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output