Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f4be1d99
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f4be1d99
编写于
11月 13, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
polish code and test
上级
b8ff0972
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
63 addition
and
22 deletion
+63
-22
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+45
-21
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+17
-0
未找到文件。
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
f4be1d99
...
...
@@ -115,7 +115,7 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
"[batch_size, code_length], where code_length represents the "
"maximum path length from root to leaf nodes."
)
.
AsIntermediate
();
AddAttr
<
AttrType
>
(
"num_classes"
,
"(int,
required
), The number of classes"
)
AddAttr
<
AttrType
>
(
"num_classes"
,
"(int,
optional
), The number of classes"
)
.
SetDefault
(
2
);
AddComment
(
R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
f4be1d99
...
...
@@ -4348,12 +4348,14 @@ def nce(input,
def
hsigmoid
(
input
,
label
,
num_classes
,
ptabl
=
None
,
num_classes
=
None
,
non_leaf_num
=
None
,
ptable
=
None
,
pcode
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
name
=
None
):
name
=
None
,
is_costum
=
False
):
"""
The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a
...
...
@@ -4373,7 +4375,8 @@ def hsigmoid(input,
and :math:`D` is the feature size.
label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N
\\
times 1]`.
num_classes: (int), The number of classes, must not be less than 2.
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set
non_leaf_num: this defines the number of non-leaf nodes in costumed tree
ptable: (Variable|None) this variable can store each batch of samples' path to root,
it should be in leaf -> root order
ptable should have the same shape with pcode, and for each sample i ptable[i] indicates a np.array like
...
...
@@ -4409,20 +4412,33 @@ def hsigmoid(input,
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
pre_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
dim
=
input
.
shape
[
1
]
if
num_classes
<
2
:
raise
ValueError
(
"num_classes must not be less than 2."
)
if
(
ptable
is
not
None
)
and
(
pcode
is
None
):
raise
ValueError
(
"pcode should not be None when ptable has been set"
)
elif
(
ptable
is
None
)
and
(
pcode
is
not
None
):
raise
ValueError
(
"ptable should not be None when pcode has been set"
)
if
((
num_classes
<
2
)
or
(
num_classes
is
None
))
and
(
not
is_costum
):
raise
ValueError
(
"num_classes must not be less than 2 with default tree"
)
if
(
is_costum
)
and
(
pcode
is
None
):
raise
ValueError
(
"pcode should not be None with costum tree"
)
elif
(
is_costum
)
and
(
ptable
is
None
):
raise
ValueError
(
"ptable should not be None with costum tree"
)
elif
(
is_costum
)
and
(
non_leaf_num
is
None
):
raise
ValueError
(
"non_leaf_num should not be None with costum tree"
)
else
:
pass
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
num_classes
-
1
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
weights
=
None
if
not
is_costum
:
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
num_classes
-
1
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
else
:
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
non_leaf_num
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
inputs
=
{
"X"
:
input
,
"W"
:
weights
,
...
...
@@ -4431,12 +4447,20 @@ def hsigmoid(input,
"Label"
:
label
}
if
helper
.
bias_attr
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
[
1
,
num_classes
-
1
],
is_bias
=
True
,
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
if
not
is_costum
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
[
1
,
num_classes
-
1
],
is_bias
=
True
,
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
else
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
[
1
,
non_leaf_num
],
is_bias
=
True
,
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
helper
.
append_op
(
type
=
"hierarchical_sigmoid"
,
inputs
=
inputs
,
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
f4be1d99
...
...
@@ -185,6 +185,23 @@ class TestBook(unittest.TestCase):
input
=
x
,
label
=
y
,
num_classes
=
2
))
print
(
str
(
program
))
program2
=
Program
()
with
program_guard
(
program2
):
x2
=
layers
.
data
(
name
=
'x2'
,
shape
=
[
4
,
8
],
dtype
=
'float32'
)
y2
=
layers
.
data
(
name
=
'y2'
,
shape
=
[
4
],
dtype
=
'int64'
)
ptable
=
layers
.
data
(
name
=
'ptable'
,
shape
=
[
4
,
6
],
dtype
=
'int64'
)
pcode
=
layers
.
data
(
name
=
'pcode'
,
shape
=
[
4
,
6
],
dtype
=
'int64'
)
self
.
assertIsNotNone
(
layers
.
hsigmoid
(
input
=
x2
,
label
=
y2
,
non_leaf_num
=
6
,
ptable
=
ptable
,
pcode
=
pcode
,
is_costum
=
True
))
print
(
str
(
program2
))
def
test_sequence_expand
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录