pybind.cc 93.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
49
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
50
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/op_info.h"
52
#include "paddle/fluid/framework/op_registry.h"
53
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
54
#include "paddle/fluid/framework/parallel_executor.h"
55
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
58
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
74
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
75
#include "paddle/fluid/operators/py_func_op.h"
76
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
77
#include "paddle/fluid/platform/cpu_info.h"
78
#include "paddle/fluid/platform/device/device_wrapper.h"
79
#include "paddle/fluid/platform/device_context.h"
80
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
81
#include "paddle/fluid/platform/enforce.h"
82
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
83
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
84 85
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
86 87 88
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
89
#include "paddle/fluid/pybind/cuda_streams_py.h"
90
#include "paddle/fluid/pybind/distributed_py.h"
91
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
92
#include "paddle/fluid/pybind/imperative.h"
93
#include "paddle/fluid/pybind/io.h"
94
#include "paddle/fluid/pybind/jit.h"
95 96
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
97
#include "paddle/utils/none.h"
98 99 100
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
101
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
102
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
103
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
104
#include "paddle/fluid/pybind/box_helper_py.h"
105
#include "paddle/fluid/pybind/communication.h"
106
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
107
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
108
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
109
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
110
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
111
#include "paddle/fluid/pybind/generator_py.h"
112
#include "paddle/fluid/pybind/global_value_getter_setter.h"
113
#include "paddle/fluid/pybind/gloo_context_py.h"
114
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
115
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
116
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
117
#include "paddle/fluid/pybind/ir.h"
118
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
119
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
120
#include "paddle/fluid/pybind/pybind_variant_caster.h"
121
#include "paddle/phi/backends/device_manager.h"
122

123
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
124
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
125
#endif
126
#include "paddle/fluid/framework/data_type.h"
127 128
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
129 130
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
131
#include "paddle/fluid/pybind/reader_py.h"
132
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
133
#include "paddle/fluid/pybind/tensor_py.h"
134
#include "paddle/fluid/string/to_string.h"
135 136
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
137
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
138
#endif
139
#ifndef PADDLE_WITH_HIP
140
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
141
#endif
142
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
143 144
#endif

145
#ifdef PADDLE_WITH_ASCEND_CL
146
#include "paddle/fluid/platform/collective_helper.h"
147 148
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
149 150
#endif

151
#ifdef PADDLE_WITH_XPU
152
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
153
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
154 155
#endif

156 157 158 159
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/capi/capi.h"
#endif

160
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
161

J
jianghaicheng 已提交
162
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
163 164
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
165
#endif
166

167 168 169 170
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
171 172 173 174
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
175
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
176 177 178
#include "paddle/fluid/pybind/fleet_py.h"
#endif

179 180 181 182
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

183
#include "paddle/fluid/eager/api/utils/global_utils.h"
184
#include "paddle/fluid/imperative/layout_autotune.h"
185 186
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
187 188
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
189 190
#include "pybind11/stl.h"

191
DECLARE_bool(use_mkldnn);
192

Q
Qiao Longfei 已提交
193 194
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
195 196 197
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
198

199
namespace paddle {
200
namespace pybind {
201

0
0x45f 已提交
202
PyTypeObject *g_framework_scope_pytype = nullptr;
203
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
204
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
205

206
bool IsCompiledWithCUDA() {
207 208 209 210 211 212 213
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

214 215 216 217 218 219 220 221
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

222 223
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
224 225 226 227 228 229
  return false;
#else
  return true;
#endif
}

230 231 232 233 234 235 236 237
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

238 239 240 241 242 243 244 245
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

246 247 248 249 250 251 252 253
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
254 255 256 257 258 259 260 261
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

262 263 264 265 266 267 268 269
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

270 271 272 273 274 275 276 277
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

278 279 280 281 282 283 284 285
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

286 287 288 289 290 291 292 293
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

294 295 296 297 298 299 300 301 302 303 304
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

305 306 307 308 309 310 311 312 313 314 315
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

333
bool IsCompiledWithBrpc() {
334
#ifndef PADDLE_WITH_DISTRIBUTE
335
  return false;
336
#else
337
  return true;
338
#endif
339 340
}

Y
update  
Yancey1989 已提交
341
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
342
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
343 344 345 346 347 348
  return true;
#else
  return false;
#endif
}

H
hong 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
371 372
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
373 374
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
388 389
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
390 391
    }
    vec_res.emplace_back(
392
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
393 394 395 396 397 398 399 400 401 402 403 404
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
405 406
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
407 408 409 410 411 412 413 414 415 416 417 418
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
419 420 421
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
422 423 424 425
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
426 427
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
428 429 430 431
  }
  return vec_res;
}

O
OccupyMars2025 已提交
432
static void inline CreateVariableIfNotExist(
433 434
    const py::handle &py_handle,
    const framework::Scope &scope,
435 436 437 438 439 440
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
441 442
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
443 444 445 446 447 448 449 450 451 452 453 454 455
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
456 457 458
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
459 460 461 462 463
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
464 465 466 467 468
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
469 470
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
471
        PADDLE_ENFORCE_NOT_NULL(
472 473 474
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
475 476 477 478
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
479
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
480 481
        tensor_temp->mutable_data(
            exe->GetPlace(),
482
            framework::TransToPhiDataType(var_desc.GetDataType()));
483 484 485
      }
    }
  } else {
486 487
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
488 489 490 491 492
  }

  return;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
509 510
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
511 512 513 514 515 516 517
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
518 519 520 521
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
522
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
523 524 525 526 527 528 529 530
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

531 532 533 534 535 536
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
537
  BindImperative(&m);
538
  BindEager(&m);
J
Jack Zhou 已提交
539
  BindEagerStringTensor(&m);
540
  BindCudaStream(&m);
541
  BindJit(&m);
542

Y
Yu Yang 已提交
543 544 545
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
546
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
547

548 549
  AssertStaticGraphAndDygraphGradMakerNoDiff();

550
  m.doc() = "C++ core of PaddlePaddle";
551

552 553 554 555
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

556
  BindException(&m);
Y
Yu Yang 已提交
557

558 559
  m.def("set_num_threads", &platform::SetNumThreads);

560 561
  m.def("disable_signal_handler", &DisableSignalHandler);

562 563 564 565 566 567 568 569
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

570
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
571
  m.def("cudnn_version", &platform::DnnVersion);
572 573 574 575 576 577
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
578
#endif
579

Z
Zeng Jinle 已提交
580 581 582 583
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

584 585 586 587 588 589 590 591 592
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
593 594
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
595
      .def("replay", &platform::CUDAGraph::Replay)
596 597
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
598 599
#endif

Z
Zeng Jinle 已提交
600 601 602 603
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
604 605 606
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
607 608

    PADDLE_ENFORCE_NOT_NULL(
609 610 611 612
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
613

6
633WHU 已提交
614 615
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
616
    framework::Tensor tensor;
6
633WHU 已提交
617

S
Siming Dai 已提交
618
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
619 620
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
621
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
622
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
623 624 625 626 627
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
628

629
  m.def("_create_loaded_parameter",
630 631
        [](const py::handle &vec_var_list,
           const Scope &scope,
632
           const Executor *executor) {
O
OccupyMars2025 已提交
633
          CreateVariableIfNotExist(vec_var_list, scope, executor);
634 635
        });

636 637 638 639 640 641
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
642 643
  });

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

669 670 671 672 673 674
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
675

S
sneaxiy 已提交
676
  m.def(
S
sneaxiy 已提交
677
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
678 679 680 681
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
682 683 684
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
701
            }
702
            all_kernels_info.emplace(op_type, kernel_types);
703
          }
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
720
                }
721 722
              } else {
                kernel_types.emplace_back(kernel_type_str);
723
              }
724
            }
725 726 727
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
728
          }
729
        }
730

731 732 733 734
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
735 736 737
           Return the registered kernels in paddle.

           Args:
738
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
739
           )DOC");
740

741 742 743 744 745 746
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
747 748 749 750 751
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
752

S
sneaxiy 已提交
753 754 755
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
756
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
757

758
  m.def("_set_fuse_parameter_group_size",
759
        &paddle::framework::ir::SetFuseParameterGroupsSize);
760
  m.def("_set_fuse_parameter_memory_size",
761
        &paddle::framework::ir::SetFuseParameterMemorySize);
762

S
sneaxiy 已提交
763 764 765
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

766 767
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

768 769 770
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
812 813 814 815 816 817 818 819 820 821 822 823 824
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
825 826 827 828 829
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
830

831
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
832 833 834

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
835
      .def(py::init<>())
836
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
837
      .def("set_int",
838 839
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
840 841 842 843 844 845 846
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
847 848 849 850 851 852
      .def(
          "get_tensor",
          [](Variable &self) -> LoDTensor * {
            return self.GetMutable<LoDTensor>();
          },
          py::return_value_policy::reference)
853 854 855 856
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
857 858 859 860
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
861 862 863 864
      .def("set_vocab",
           [](Variable &self, Vocab vocab) {
             *self.GetMutable<Vocab>() = vocab;
           })
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
891
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
892 893 894 895 896 897
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
898
#endif
899 900 901
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
902 903
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
904 905 906 907 908 909 910 911 912 913
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
914 915
                scope_vec->size(),
                0,
916 917 918 919 920
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
921 922 923 924
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
925

S
sneaxiy 已提交
926
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
927

0
0x45f 已提交
928
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

942
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
943 944 945 946 947
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
948 949 950
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
951 952
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
953 954 955 956 957 958 959
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
960
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
961

962
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
963
           current scope, the variable would be created. Otherwise,
964
           return the existing variable.
S
sneaxiy 已提交
965 966

           Args:
967 968
               name (str): the variable name.

S
sneaxiy 已提交
969
           Returns:
970
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
971
           )DOC",
972
          py::return_value_policy::reference)
973 974 975
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
976
           R"DOC(
977
           Find variable named :code:`name` in the current scope or
978
           its parent scope. Return None if not found. 
979

S
sneaxiy 已提交
980 981
           Args:
               name (str): the variable name.
982

S
sneaxiy 已提交
983
           Returns:
984
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
985
           )DOC",
986
           py::return_value_policy::reference)
987
      .def("size", &Scope::Size)
988 989 990
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
991 992 993 994 995 996 997 998 999 1000 1001
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1002
      .def(
1003 1004
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1005
          R"DOC(
S
sneaxiy 已提交
1006 1007 1008 1009 1010
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1011
          py::return_value_policy::reference)
1012 1013
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1014 1015
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1016 1017
           )DOC")
      .def("_kids", &Scope::kids);
1018

1019 1020 1021 1022 1023 1024 1025 1026
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1027
        Create a new scope.
1028

S
sneaxiy 已提交
1029 1030 1031
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1032
      py::return_value_policy::reference);
S
sneaxiy 已提交
1033

Y
Yu Yang 已提交
1034 1035
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1036 1037
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1038 1039 1040 1041
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1042
        PADDLE_ENFORCE_EQ(
1043 1044
            info.Proto().SerializeToString(&str),
            true,
1045 1046
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1047 1048 1049
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1050 1051
    return ret_values;
  });
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1090 1091 1092 1093 1094 1095 1096 1097
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1098
              res = op_checker->GetDefaultAttrsMap();
1099 1100 1101 1102
            }
          }
          return res;
        });
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });

  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1138 1139 1140
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1141 1142 1143 1144 1145
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1146 1147 1148
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1149
  m.def("infer_no_need_buffer_slots",
1150 1151
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1179 1180 1181 1182 1183 1184
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1185 1186 1187
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
1188
            Args:
1189 1190 1191 1192 1193 1194 1195 1196
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1197 1198 1199 1200
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1201 1202
    VLOG(4) << s;
    return s;
1203 1204 1205 1206 1207 1208
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1209
  });
1210 1211 1212 1213
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1214 1215 1216
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1217 1218
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1219

Y
Yu Yang 已提交
1220
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1221
      .def_static("create",
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
                    return context;
Q
qijun 已提交
1238
                  })
1239 1240 1241 1242
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1243
#ifndef PADDLE_WITH_XPU
1244 1245 1246
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1247
#else
W
Wilber 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1262
#endif
1263 1264 1265 1266 1267
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1268
#ifndef PADDLE_WITH_MLU
1269 1270 1271
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1272 1273
#else
                    return new paddle::platform::MLUDeviceContext(place);
1274
#endif
1275 1276 1277 1278 1279
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1280
#ifndef PADDLE_WITH_ASCEND_CL
1281 1282 1283
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1284 1285
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1286
#endif
1287 1288 1289 1290
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1291
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1292 1293 1294 1295
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1296 1297
#else
                return new paddle::platform::CustomDeviceContext(place);
1298
#endif
1299 1300 1301 1302 1303
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1304
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1305 1306 1307
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1308
#else
L
Leo Chen 已提交
1309
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
1322 1323 1324 1325
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1326 1327
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1328
#endif
1329 1330 1331 1332 1333
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1334
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1335 1336 1337
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1338 1339 1340
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1341
          });
1342
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1343 1344
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1345 1346 1347
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1348
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1349
#else
R
ronnywang 已提交
1350
          VLOG(1) << string::Sprintf(
1351 1352 1353 1354
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1355
              "PaddlePaddle by: pip install paddlepaddle\n");
1356 1357 1358 1359 1360 1361
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1362
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1363
#else
R
ronnywang 已提交
1364
          VLOG(1) << string::Sprintf(
1365 1366 1367 1368
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1369
              "PaddlePaddle by: pip install paddlepaddle\n");
1370 1371 1372 1373 1374 1375
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1376
    devices = phi::DeviceManager::GetAllDeviceList();
1377
#else
R
ronnywang 已提交
1378
          VLOG(1) << string::Sprintf(
1379 1380 1381 1382
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1383
              "PaddlePaddle by: pip install paddlepaddle\n");
1384 1385 1386 1387 1388 1389
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1390
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1391
#else
R
ronnywang 已提交
1392
          VLOG(1) << string::Sprintf(
1393 1394 1395 1396 1397 1398
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1399
              "PaddlePaddle by: pip install paddlepaddle\n");
1400 1401 1402
#endif
    return devices;
  });
Y
Yu Yang 已提交
1403

Y
Yu Yang 已提交
1404
  py::class_<OperatorBase>(m, "Operator")
1405 1406 1407 1408 1409 1410 1411
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1412 1413
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1414 1415 1416 1417 1418 1419
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1420
      .def("run",
1421 1422
           [](OperatorBase &self,
              const Scope &scope,
1423 1424 1425 1426
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1427
      .def("run",
1428 1429
           [](OperatorBase &self,
              const Scope &scope,
1430 1431 1432 1433
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1434
      .def("run",
1435 1436
           [](OperatorBase &self,
              const Scope &scope,
1437 1438 1439 1440
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1441
      .def("run",
1442 1443
           [](OperatorBase &self,
              const Scope &scope,
1444 1445 1446 1447
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1448
      .def("run",
1449 1450
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1451
              const platform::CUDAPinnedPlace &place) {
1452
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1453 1454
             self.Run(scope, place);
           })
1455
      .def("run",
1456 1457
           [](OperatorBase &self,
              const Scope &scope,
1458 1459 1460 1461
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1462
      .def("run",
1463 1464
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1465 1466 1467 1468
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1469 1470 1471 1472 1473
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1474 1475
             return op.Outputs();
           })
Q
qijun 已提交
1476 1477
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1478
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1479
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1480 1481 1482 1483
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1484

1485 1486 1487
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1488 1489
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1490 1491 1492 1493 1494 1495
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1496 1497
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1498

1499 1500
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1501
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1502
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1503
      .def("close", &Executor::Close)
1504 1505
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1506
           py::call_guard<py::gil_scoped_release>())
1507 1508
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1509
           py::call_guard<py::gil_scoped_release>())
1510
      .def("init_for_dataset",
1511 1512 1513 1514
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1515
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1516
             pybind11::gil_scoped_release release;
1517 1518 1519 1520 1521 1522 1523
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1524
      .def("run_prepared_ctx",
1525 1526 1527
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1528
              std::map<std::string, const LoDTensor *> *feed_targets,
1529
              std::map<std::string, FetchType *> *fetch_targets,
1530 1531
              bool create_local_scope = true,
              bool create_vars = true,
1532 1533 1534
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1535 1536 1537 1538 1539 1540 1541 1542
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1543
           })
1544
      .def("run_prepared_ctx",
1545 1546 1547 1548 1549
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1550 1551
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1552 1553
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1554
           })
1555
      .def("prepare",
1556 1557 1558
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1559 1560 1561 1562
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1563 1564
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1565 1566
           })
      .def("create_variables", &Executor::CreateVariables)
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1583

1584
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1585
      .def(py::init<>())
1586 1587 1588 1589 1590
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1591

1592
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1593
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1594
      .def("run",
1595
           [](StandaloneExecutor &self,
1596
              Scope *scope,
1597
              std::vector<std::string> feed_names,
1598 1599 1600 1601
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1602
               ret = self.Run(scope, feed_names, fetch_names);
1603 1604 1605
             }
             return py::cast(std::move(ret));
           })
1606 1607
      .def("dry_run",
           [](StandaloneExecutor &self,
1608
              Scope *scope,
1609
              const std::unordered_map<std::string, py::array> &input_dict) {
1610
             std::vector<framework::LoDTensor> feed_tensors;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1621
             framework::interpreter::CostInfo cost_info;
1622 1623
             {
               pybind11::gil_scoped_release release;
1624
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1625 1626
             }
             return cost_info;
H
hong 已提交
1627 1628
           });

D
dzhwinter 已提交
1629
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1630
  m.def("init_glog", framework::InitGLOG);
1631 1632 1633 1634
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1635
  m.def("init_devices", []() { framework::InitDevices(); });
1636 1637
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1638
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1639
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1640
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1641
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1642
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1643
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1644
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1645
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
1646
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1647
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1648
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1649
  m.def("supports_bfloat16", SupportsBfloat16);
1650
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1651 1652
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1653
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1654
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1655
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1656 1657 1658
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1678 1679 1680
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1681 1682
  m.def(
      "run_cmd",
1683 1684
      [](const std::string &cmd,
         int time_out = -1,
1685
         int sleep_inter = -1) -> const std::string {
1686 1687
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1688
      },
1689 1690 1691
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1692 1693
  m.def(
      "shell_execute_cmd",
1694 1695 1696
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1697
         bool redirect_stderr = false) -> std::vector<std::string> {
1698 1699
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1700
      },
1701 1702 1703
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1704
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1705

1706
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1707 1708
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1709
    return platform::GetGPUComputeCapability(place.device) >= 53;
1710
  });
1711 1712 1713 1714
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1715
#endif
1716

S
Steffy-zxf 已提交
1717
  m.def("set_feed_variable",
1718 1719 1720 1721 1722
        static_cast<void (*)(  // NOLINT
            Scope *,
            const LoDTensor &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1723
  m.def("set_feed_variable",
1724 1725 1726 1727 1728
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1729
  m.def("get_fetch_variable",
1730 1731
        [](const Scope &scope,
           const std::string &var_name,
1732 1733 1734
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
R
Ruibiao Chen 已提交
1735
            return py::cast(PADDLE_GET(LoDTensor, var));
1736
          } else {
R
Ruibiao Chen 已提交
1737
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1738 1739
          }
        });
1740
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1741

X
Xin Pan 已提交
1742 1743
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1744 1745 1746 1747
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1748
  BindCostModel(&m);
1749
  BindConstValue(&m);
1750
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1751
  BindFleetExecutor(&m);
1752
  BindTCPStore(&m);
1753
  BindAutoParallel(&m);
1754
  BindJitProperty(&m);
Y
Yu Yang 已提交
1755

Y
Yu Yang 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1765
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1766
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1767 1768 1769

    Examples:
        .. code-block:: python
1770

Z
Zeng Jinle 已提交
1771 1772 1773
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1774 1775 1776 1777
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1778 1779
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1780 1781 1782 1783
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1784 1785 1786
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1787 1788
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1789 1790 1791
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1792 1793 1794
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1795 1796 1797 1798 1799 1800 1801
      .def(
          "append",
          [](LoDTensorArray &self, const LoDTensor &t) {
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1802 1803
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1804
             Append a LoDensor to LoDTensorArray.
1805 1806 1807 1808 1809 1810
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1822
           )DOC")
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1834

1835
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
1836
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
1837
        )DOC")
1838 1839 1840 1841 1842 1843
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
R
Ruibiao Chen 已提交
1844
                auto &data = PADDLE_GET(LoDTensor, self[i]);
1845 1846
                res[i] = py::cast(std::move(data));
              } else {
R
Ruibiao Chen 已提交
1847
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
1859

1860 1861 1862 1863
      .def(
          "append",
          [](FetchList &self, const LoDTensor &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1864
            auto &lod_tensor = PADDLE_GET(LoDTensor, self.back());
1865 1866 1867 1868 1869 1870 1871 1872 1873
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1874
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
1875 1876 1877 1878 1879 1880
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
1881 1882

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
1883
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1884
        )DOC")
1885 1886 1887 1888 1889 1890 1891 1892
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
R
Ruibiao Chen 已提交
1893
                  auto &var = PADDLE_GET(LoDTensor, self[i][j]);
1894 1895
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
1896
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
1911

Y
Yu Yang 已提交
1912
  m.def("op_support_gpu", OpSupportGPU);
1913
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1914
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
1915
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
1916 1917 1918 1919 1920 1921 1922 1923
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
1924 1925 1926 1927 1928 1929
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
1930 1931

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
1957
      });
D
dangqingqing 已提交
1958

1959
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
1960 1961 1962
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
1963 1964 1965 1966
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
1967
#endif
P
peizhilin 已提交
1968
#endif
Y
Yu Yang 已提交
1969

1970 1971
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
1972
  m.def("npu_finalize", []() {
1973 1974
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

1975 1976 1977
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
1978
      platform::NPUDeviceGuard guard(devices[i]);
1979 1980 1981 1982
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2003 2004 2005 2006
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2007 2008 2009 2010
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2011 2012 2013 2014 2015 2016
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2017 2018 2019 2020
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2021
      .value("kAll", platform::ProfilerState::kAll)
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2033
  m.def("set_tracer_option", platform::SetTracerOption);
2034 2035
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2036
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2037
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2038
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2039
    PADDLE_ENFORCE_EQ(
2040 2041
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2042 2043 2044
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2045
    callable.inc_ref();
2046 2047 2048 2049 2050 2051 2052 2053
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2054
  });
2055
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2056 2057 2058
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2059

2060
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2061 2062
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2063 2064
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2065 2066
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2067 2068 2069 2070 2071 2072 2073 2074 2075
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2140 2141
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2142 2143 2144 2145
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
C
chenjian 已提交
2146 2147 2148 2149 2150
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2151 2152 2153
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2154 2155

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2156 2157
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2158
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2159
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2160 2161
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2162 2163 2164 2165 2166 2167
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2191 2192 2193 2194 2195 2196 2197 2198
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2217 2218 2219 2220 2221 2222
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
  m.def("enable_input_shape_recorder",
        &paddle::platform::EnableInputShapeRecorder);
  m.def("disable_input_shape_recorder",
        &paddle::platform::DisableInputShapeRecorder);
2223

2224
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2225 2226
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2227 2228
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2229
#endif  // PADDLE_WITH_CUDA
2230 2231 2232 2233 2234 2235 2236 2237
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2238

J
jianghaicheng 已提交
2239 2240
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2241 2242 2243
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2244 2245 2246 2247 2248 2249 2250
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2251
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2252 2253
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2254
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2265 2266 2267 2268
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2291 2292
                         option.get_type(),
                         option_name));
2293 2294 2295 2296 2297 2298 2299
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2300 2301
                         option_name,
                         option.first.cast<std::string>(),
2302 2303
                         option.second.cast<std::uint64_t>());
                   }
2304 2305 2306 2307 2308 2309
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2355 2356
                           option.second.get_type(),
                           option_key));
2357
                     }
2358 2359
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2360 2361 2362 2363 2364 2365
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2366 2367
                     element.second.get_type(),
                     option_name));
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2398 2399
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2400 2401 2402
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2403 2404
#endif

2405 2406 2407 2408 2409 2410 2411 2412
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2413
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2414 2415 2416 2417 2418 2419 2420 2421 2422
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2423
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2424 2425 2426 2427 2428 2429 2430
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
  m.def("enable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .EnableLayoutAutoTune();
  });

  m.def("disable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .DisableLayoutAutoTune();
  });

  m.def("use_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance().UseLayoutAutoTune();
  });

D
dongdaxiang 已提交
2445
  BindFleetWrapper(&m);
2446
  BindIO(&m);
2447 2448 2449
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2450

T
Thunderbrook 已提交
2451
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2452
  BindHeterWrapper(&m);
2453
  BindMetrics(&m);
T
Thunderbrook 已提交
2454
#endif
T
Thunderbrook 已提交
2455
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2456
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2457 2458 2459
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2460
#endif
2461
  BindGlooWrapper(&m);
H
hutuxian 已提交
2462
  BindBoxHelper(&m);
H
hutuxian 已提交
2463 2464 2465
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2466
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2467
  BindNCCLWrapper(&m);
2468 2469 2470
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2471
#endif
F
flame 已提交
2472 2473
  BindGraph(&m);
  BindNode(&m);
2474
  BindPass(&m);
F
flame 已提交
2475
  BindInferenceApi(&m);
2476
  BindCompatible(&m);
2477
  BindDataset(&m);
Y
yaoxuefeng 已提交
2478
  BindGenerator(&m);
2479 2480 2481
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
2482 2483 2484
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2485
  BindAscendDevice(&m);
2486
#endif
Y
Yanghello 已提交
2487 2488 2489
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2490

T
tangwei12 已提交
2491
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2492 2493
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2494
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2495 2496
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2497 2498 2499 2500 2501
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2502 2503 2504 2505
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2506
#ifdef PADDLE_WITH_HETERPS
2507 2508
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2509 2510 2511
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2512
#endif
L
Luo Tao 已提交
2513
}
2514
}  // namespace pybind
2515
}  // namespace paddle