pybind.cc 19.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/pybind/protobuf.h"
Q
qijun 已提交
16

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/backward.h"
20
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/prune.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/cond_op.h"
#include "paddle/fluid/operators/net_op.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/fluid/pybind/pybind.h"
Y
Yu Yang 已提交
38
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
40

41
#include "paddle/fluid/string/to_string.h"
42

D
Dong Zhihong 已提交
43
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
44 45 46
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
47 48
#endif

Q
Qiao Longfei 已提交
49 50 51
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

52
namespace paddle {
53
namespace pybind {
54
bool IsCompiledWithCUDA() {
55
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
56 57 58 59 60 61
  return false;
#else
  return true;
#endif
}

62 63
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
64

65 66 67 68
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
69 70
  BindException(m);

71 72 73
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
74
      .def("get_dims",
75
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
76
      .def("set_dims",
Q
qijun 已提交
77
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
78
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
79
           })
D
dzhwinter 已提交
80 81 82 83
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
84
      .def("alloc_float",
D
dzhwinter 已提交
85
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
86
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
87
           })
Q
qijun 已提交
88
      .def("alloc_float",
Y
Yu Yang 已提交
89
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
90
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
91 92
           })
      .def("alloc_int",
Y
Yu Yang 已提交
93
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
94
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
95
           })
Q
qijun 已提交
96
      .def("alloc_int",
D
dzhwinter 已提交
97
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
98
             self.mutable_data<int>(place);
Q
qijun 已提交
99
           })
Y
Yu Yang 已提交
100 101
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
102
      .def("set", PyCPUTensorSetFromArray<double>)
103
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
104
      .def("set", PyCPUTensorSetFromArray<bool>)
105
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
106 107
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
108
      .def("set", PyCUDATensorSetFromArray<double>)
109
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
110
      .def("set", PyCUDATensorSetFromArray<bool>)
Q
qijun 已提交
111
#endif
112
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
113 114 115 116 117
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
118

119
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
120 121
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
122 123 124
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
D
dzhwinter 已提交
125 126 127 128
            LoD new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            new (&instance) LoDTensor(new_lod);
129
          })
Y
Yu Yang 已提交
130
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
131
      .def("set_lod",
132
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
Y
Yu Yang 已提交
133
             LoD new_lod;
134 135 136
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
D
dangqingqing 已提交
137
           })
138
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
D
dzhwinter 已提交
139 140 141 142 143
        auto lod = self.lod();
        std::vector<std::vector<size_t>> new_lod;
        new_lod.reserve(lod.size());
        std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
        return new_lod;
D
dangqingqing 已提交
144 145
      });

Q
qijun 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
159 160 161 162 163 164 165 166 167
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
168 169 170 171 172 173 174 175 176 177 178
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
179

180
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
181 182 183

All parameter, weight, gradient are variables in Paddle.
)DOC")
184
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
185
      .def("set_int",
186 187
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
188 189 190 191 192 193 194
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
195
      .def("get_tensor",
196 197
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
198 199
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
200 201 202
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
203 204 205 206 207
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
208 209 210
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
211 212 213 214 215 216 217
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
218
      .def("get_net",
D
dongzhihong 已提交
219 220
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
221
           },
Y
Yu Yang 已提交
222
           py::return_value_policy::reference);
223

224
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
225
      .def("var",
226
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
227
             return self.Var(name);
Y
Yu Yang 已提交
228
           },
229
           py::return_value_policy::reference)
230
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
231
      .def(py::init<>())
232
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
233
           py::return_value_policy::reference)
Y
Yu Yang 已提交
234
      .def("drop_kids", &Scope::DropKids);
235

Y
Yu Yang 已提交
236 237
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
238 239
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
240 241 242 243 244 245 246 247 248 249
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
250 251
    return ret_values;
  });
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
268
  m.def("prune", [](const ProgramDesc &origin,
269
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
270
    ProgramDesc prog_with_targets(origin);
271
    for (const auto &t : targets) {
272
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
273
    }
274
    proto::ProgramDesc pruned_desc;
275
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
276
    return new ProgramDesc(pruned_desc);
277
  });
Y
Yu Yang 已提交
278
  m.def("inference_optimize", [](ProgramDesc &origin) {
279
    proto::ProgramDesc pruned_desc;
280
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
281
    return new ProgramDesc(pruned_desc);
282
  });
F
fengjiayi 已提交
283 284
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
285 286 287
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
288 289
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
290
  // clang-format off
Y
Yu Yang 已提交
291
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
292 293
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
294
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
295 296 297
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
298
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
299
                      -> paddle::platform::DeviceContext* {
300
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
301
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
302
#else
Q
qijun 已提交
303
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
304
#endif
Q
qijun 已提交
305
                  });
D
Dong Zhihong 已提交
306
// clang-format on
Q
qijun 已提交
307

D
Dong Zhihong 已提交
308 309 310
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
311
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
312
      .def(py::init<int>())
D
dzhwinter 已提交
313
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
314

315 316 317
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
318

Y
Yu Yang 已提交
319 320 321 322 323 324 325
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
326
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
327 328 329
             self = gpu_place;
           });

Y
Yu Yang 已提交
330 331 332
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
333
                    proto::OpDesc desc;
Y
Yu Yang 已提交
334 335 336 337 338
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
339
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
340 341 342 343 344 345
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
346
      .def("run",
347
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
348 349 350
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
351
              const platform::CUDAPlace &place) { self.Run(scope, place); })
Y
Yu Yang 已提交
352 353 354 355 356 357 358
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
359 360
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
361
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
362
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
363 364 365 366
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
367

Y
Yu Yang 已提交
368 369 370 371 372 373 374
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
375 376
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
377 378 379 380
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
381

Z
cond op  
zchen0211 已提交
382 383 384 385
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
386
                    proto::OpDesc desc;
Z
cond op  
zchen0211 已提交
387 388 389 390 391
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
392
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
393 394 395 396 397 398 399 400 401 402 403
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
404
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
405
      .def(py::init<const platform::Place &>())
406 407 408
      .def("run",
           (void (Executor::*)(const ProgramDesc &, Scope *, int, bool, bool)) &
               Executor::Run);
F
fengjiayi 已提交
409

D
dzhwinter 已提交
410
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
411
  m.def("init_glog", framework::InitGLOG);
D
dzhwinter 已提交
412
  m.def("init_devices", &framework::InitDevices);
413

414
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
415

416
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
417
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
418

F
fengjiayi 已提交
419 420 421 422
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Q
qiaolongfei 已提交
423
  BindConstValue(m);
Y
Yu Yang 已提交
424

Y
Yu Yang 已提交
425 426 427 428 429 430 431 432 433
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
451
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
452
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
453
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
454 455 456 457

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
458
#endif
Y
Yu Yang 已提交
459

460 461 462 463
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
464
      .value("kAll", platform::ProfilerState::kAll)
465 466 467 468 469 470 471 472 473 474 475 476 477 478
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
479 480

  BindRecordIOWriter(m);
481
  return m.ptr();
L
Luo Tao 已提交
482
}
483
}  // namespace pybind
484
}  // namespace paddle