pybind.cc 149.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/convert_utils.h"
32
#include "paddle/fluid/framework/custom_operator.h"
33
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
34
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/executor.h"
36
#include "paddle/fluid/framework/executor_cache.h"
37
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
41
#include "paddle/fluid/framework/io/fs.h"
42
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
43
#include "paddle/fluid/framework/ir/cost_model.h"
44
#include "paddle/fluid/framework/ir/generate_pass.h"
45
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
48
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/op_info.h"
50
#include "paddle/fluid/framework/op_registry.h"
51
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
52
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/prune.h"
54
#include "paddle/fluid/framework/pten_utils.h"
Y
Refine  
Yu Yang 已提交
55
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
56
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/framework/scope_pool.h"
58
#include "paddle/fluid/framework/selected_rows_utils.h"
59
#include "paddle/fluid/framework/tensor_util.h"
60
#include "paddle/fluid/framework/trainer.h"
61
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
62
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
63
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
64
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
65
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
66
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
67
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
68
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
69
#include "paddle/fluid/operators/py_func_op.h"
70
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
71
#include "paddle/fluid/platform/cpu_info.h"
72
#include "paddle/fluid/platform/device_context.h"
73
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
74
#include "paddle/fluid/platform/enforce.h"
75
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
76
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
77 78
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
79
#include "paddle/fluid/pybind/cuda_streams_py.h"
80
#include "paddle/pten/core/compat/convert_utils.h"
81
#include "paddle/pten/core/lod_utils.h"
W
wanghuancoder 已提交
82
#ifndef PADDLE_ON_INFERENCE
83
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
84
#endif
85
#include "paddle/fluid/pybind/io.h"
86
#include "paddle/utils/none.h"
87 88 89
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
90
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
91
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
92
#include "paddle/fluid/pybind/box_helper_py.h"
93
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
94
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
95
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
96
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
97
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
98
#include "paddle/fluid/pybind/generator_py.h"
99
#include "paddle/fluid/pybind/global_value_getter_setter.h"
100
#include "paddle/fluid/pybind/gloo_context_py.h"
101
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
102
#include "paddle/fluid/pybind/heter_wrapper_py.h"
103
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
104
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
105
#include "paddle/fluid/pybind/ir.h"
106
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
107
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
108
#include "paddle/fluid/pybind/pybind_boost_headers.h"
109

110
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
112
#endif
113
#include "paddle/fluid/framework/data_type.h"
114 115
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
116
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
117
#include "paddle/fluid/pybind/tensor_py.h"
118
#include "paddle/fluid/string/to_string.h"
119 120
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
121
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
122
#endif
123
#ifndef PADDLE_WITH_HIP
124
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
125
#endif
126
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
127 128
#endif

129
#ifdef PADDLE_WITH_ASCEND_CL
130
#include "paddle/fluid/platform/collective_helper.h"
131 132
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
133 134
#endif

135
#ifdef PADDLE_WITH_XPU
136
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
137
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
138 139
#endif

140
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
141

J
jianghaicheng 已提交
142
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
143 144
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
145
#endif
146

147 148 149 150
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
151 152 153 154
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
155
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
156 157 158
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
159 160
#include "pybind11/stl.h"

161
DECLARE_bool(use_mkldnn);
162

Q
Qiao Longfei 已提交
163 164
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
165 166 167
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
168

169
namespace paddle {
170
namespace pybind {
171 172 173 174 175 176 177

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
178
PyTypeObject *g_mluplace_pytype = nullptr;
179
PyTypeObject *g_framework_tensor_pytype = nullptr;
180
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
181

182
bool IsCompiledWithCUDA() {
183 184 185 186 187 188 189
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

190 191 192 193 194 195 196 197
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

198 199
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
200 201 202 203 204 205
  return false;
#else
  return true;
#endif
}

206 207 208 209 210 211 212 213
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

214 215 216 217 218 219 220 221
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

222 223 224 225 226 227 228 229
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
230 231 232 233 234 235 236 237
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

238 239 240 241 242 243 244 245
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

246 247 248 249 250 251 252 253
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

254 255 256 257 258 259 260 261
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

262 263 264 265 266 267 268 269
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

270 271 272 273 274 275 276 277 278 279 280
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

281 282 283 284 285 286 287 288 289 290 291
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

309
bool IsCompiledWithBrpc() {
310
#ifndef PADDLE_WITH_DISTRIBUTE
311 312
  return false;
#endif
313
  return true;
314 315
}

Y
update  
Yancey1989 已提交
316
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
317
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
318 319 320 321 322 323
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
324 325 326 327 328 329 330
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
331
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
332 333
}

H
hong 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
356 357 358
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
372 373
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
374 375
    }
    vec_res.emplace_back(
376
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
377 378 379 380 381 382 383 384 385 386 387 388
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
389 390
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
391 392 393 394 395 396 397 398 399 400 401 402
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
403 404 405
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
406 407 408 409
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
410 411
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
412 413 414 415
  }
  return vec_res;
}

416 417 418 419 420 421 422 423
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
424 425
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
426 427 428 429 430 431 432 433 434 435 436 437 438
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
439 440 441
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
442 443 444 445 446
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
447 448 449 450 451
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
452 453
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
454 455 456
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
457 458 459 460 461
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
462 463 464
        tensor_temp->mutable_data(
            exe->GetPlace(),
            framework::TransToPtenDataType(var_desc.GetDataType()));
465 466 467
      }
    }
  } else {
468 469
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
470 471 472 473 474
  }

  return;
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
499 500 501 502
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
503
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
504 505 506 507 508 509 510 511
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
512 513 514 515 516 517 518 519 520 521 522
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

523 524 525 526 527 528
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
529
#ifndef PADDLE_ON_INFERENCE
530
  BindEager(&m);
W
wanghuancoder 已提交
531
#endif
532 533
  BindCudaStream(&m);

Y
Yu Yang 已提交
534 535 536
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
537
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
538

539 540
  AssertStaticGraphAndDygraphGradMakerNoDiff();

541
  m.doc() = "C++ core of PaddlePaddle";
542

543 544 545 546
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

547
  BindException(&m);
Y
Yu Yang 已提交
548

549 550
  m.def("set_num_threads", &platform::SetNumThreads);

551 552
  m.def("disable_signal_handler", &DisableSignalHandler);

553 554 555 556 557 558 559 560
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

561
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
562
  m.def("cudnn_version", &platform::DnnVersion);
563 564 565 566 567 568
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
569
#endif
570

Z
Zeng Jinle 已提交
571 572 573 574
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

575 576 577 578 579 580 581 582 583 584
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
585 586
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
587 588
#endif

Z
Zeng Jinle 已提交
589 590 591 592
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
593 594 595
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
596 597 598 599 600 601

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
602 603
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
604
    framework::Tensor tensor;
6
633WHU 已提交
605

S
Siming Dai 已提交
606
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
607 608
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
609
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
610
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
611 612 613 614 615
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
616

617 618 619 620 621 622
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

623 624 625 626 627 628
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
629 630
  });

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
656 657 658 659 660 661
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
662
  m.def(
S
sneaxiy 已提交
663
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
664 665 666 667
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
668 669 670
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
            }
            all_kernels_info.emplace(op_type, kernel_types);
          }
        }
        if (lib == "pten" || lib == "all") {
          auto pten_kernels = pten::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : pten_kernels) {
            auto op_type = pten::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPtenKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
                }
              } else {
                kernel_types.emplace_back(kernel_type_str);
              }
            }
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
          }
        }

        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
           Return the registered kernels in paddle.

           Args:
               lib[string]: the libarary, could be 'pten', 'fluid' and 'all'.
           )DOC");
726

S
sneaxiy 已提交
727 728 729
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
730
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
731

732
  m.def("_set_fuse_parameter_group_size",
733
        &paddle::framework::ir::SetFuseParameterGroupsSize);
734
  m.def("_set_fuse_parameter_memory_size",
735
        &paddle::framework::ir::SetFuseParameterMemorySize);
736

S
sneaxiy 已提交
737 738 739
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

740 741
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

742 743 744
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

745
  BindImperative(&m);
746

747 748 749 750 751
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
752 753
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
754 755 756 757
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
S
sneaxiy 已提交
758
      .def("_is_initialized",
759
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
760
      .def("_get_dims",
761
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
762
      .def("_set_dims",
763
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
764
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
765
           })
Y
yuyang18 已提交
766
      .def("_set_layout",
767
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
768 769
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
770
      .def("_alloc_float",
771
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
772
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
773
           })
774
      .def("_alloc_float",
775
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
776 777
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
778
      .def("_alloc_float",
779
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
780
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
781
           })
782 783 784 785
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
786 787 788 789
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
790
      .def("_alloc_double",
791
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
792 793
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
794
      .def("_alloc_int",
795
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
796
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
797
           })
798
      .def("_alloc_int",
799
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
800 801
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
802
      .def("_alloc_int",
803
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
804
             self.mutable_data<int>(place);
Q
qijun 已提交
805
           })
806 807 808 809
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
810
      .def("_alloc_int",
811 812
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
813 814
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
815
      .def("_alloc_float",
816 817
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
818 819
             self.mutable_data<float>(place);
           })
820
      .def("_mutable_data",
821
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
822
              paddle::framework::proto::VarType::Type type) {
823 824
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
825
           })
826
      .def("_mutable_data",
827
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
828
              paddle::framework::proto::VarType::Type type) {
829 830
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
831
           })
832
      .def("_mutable_data",
833
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
834
              paddle::framework::proto::VarType::Type type) {
835 836
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
837 838
           })
      .def("_mutable_data",
839
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
840
              paddle::framework::proto::VarType::Type type) {
841 842
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
843
           })
844 845 846
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
847 848
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
849
           })
850
      .def("_clear", &framework::Tensor::clear)
851 852 853
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
854 855
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
856
           })
Z
Zeng Jinle 已提交
857 858 859 860 861 862 863 864 865 866
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
867 868
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
869
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
870
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
871
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
872
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
873 874
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
875
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
876
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
877 878
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
879 880
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
881 882
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
883
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
884 885
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
886
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
887 888 889
        
        Args:
          lod (numpy.ndarray): The data to set.
890
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
891
          Tensor is to be set.
892 893
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
894 895 896 897 898 899 900 901 902 903

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

904
                t = fluid.Tensor()
L
Leo Chen 已提交
905 906
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
907

908 909 910
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
911
           Return the shape of Tensor.
L
Leo Chen 已提交
912 913

           Returns:
914
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
915 916 917 918 919 920 921 922


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

923
                  t = fluid.Tensor()
L
Leo Chen 已提交
924 925 926
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
927
      .def("_to_dlpack",
928
           [](framework::Tensor &self) {
6
633WHU 已提交
929
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
930
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
948 949 950 951
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
952
      .def("_place", [](framework::Tensor &self) { return self.place(); })
953 954 955 956
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
957
      .def("_layout",
958 959 960 961
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
962
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
982 983
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
984 985 986 987
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
988
      .def("__init__",
989 990
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
991
           })
G
gongweibao 已提交
992
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
993 994
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
995 996 997
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
998
      .def("set_lod",
999 1000
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1001
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1002
             LoD new_lod;
1003 1004
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1005 1006
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1007 1008
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1009
             self.set_lod(new_lod);
S
sneaxiy 已提交
1010 1011
           },
           py::arg("lod"), R"DOC(
1012
           Set LoD of the Tensor.
S
sneaxiy 已提交
1013 1014

           Args:
L
Leo Chen 已提交
1015 1016 1017 1018
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1019 1020 1021 1022 1023 1024 1025

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1026
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1027 1028
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1029
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1030
           )DOC")
1031
      .def("set_recursive_sequence_lengths",
1032 1033
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1034 1035 1036 1037 1038 1039 1040 1041
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1042 1043
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1044
                 platform::errors::InvalidArgument(
1045 1046
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1047 1048 1049
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1050
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1051 1052
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1053
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1054

L
Leo Chen 已提交
1055
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1056
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1057
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1058 1059

           Args:
L
Leo Chen 已提交
1060 1061 1062 1063
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1064 1065 1066 1067 1068 1069 1070

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1071
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1072 1073
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1074
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1075
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1076
           )DOC")
1077
      .def("lod",
1078
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1079 1080 1081 1082 1083 1084
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1085 1086
           },
           R"DOC(
1087
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1088 1089

           Returns:
1090
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1091
           
Z
Zeng Jinle 已提交
1092 1093 1094 1095 1096 1097
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1098
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1099 1100 1101
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1102
           )DOC")
G
gongweibao 已提交
1103
      // Set above comments of set_lod.
1104
      .def("recursive_sequence_lengths",
1105
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1106
             // output the length-based lod info
1107
             LoD lod = pten::ConvertToLengthBasedLoD(self.lod());
1108 1109 1110 1111
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1112 1113
           },
           R"DOC(
L
Leo Chen 已提交
1114
           Return the recursive sequence lengths corresponding to of the LodD 
1115
           of the Tensor.
S
sneaxiy 已提交
1116 1117

           Returns:
L
Leo Chen 已提交
1118
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1119 1120 1121 1122 1123 1124 1125

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1126
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1127 1128 1129
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1130 1131
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1132
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1133
             // Check that the lod info is valid and match the outermost
1134
             // dimension of the Tensor data
S
sneaxiy 已提交
1135 1136 1137
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1138
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1139 1140

           Returns:
L
Leo Chen 已提交
1141
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1142 1143 1144 1145 1146 1147 1148

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1149
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1150 1151 1152
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1153
           )DOC")
L
Leo Chen 已提交
1154
      .def("_as_type",
1155
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1156
              paddle::framework::proto::VarType::Type type) {
1157
             framework::Tensor dst;
L
Leo Chen 已提交
1158 1159 1160 1161 1162
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1176
#ifdef _WIN32
1177
           });
1178 1179 1180
#else
           })
      .def(py::pickle(
1181
          [](const framework::Tensor &t) {  // __getstate__
1182
            auto holder = t.Holder();
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1195 1196 1197
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1198 1199
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1200 1201 1202
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1203
              throw std::runtime_error("Invalid Tensor state!");
1204 1205

            // 1. Create a new C++ instance
1206
            framework::Tensor tensor;
1207 1208 1209 1210 1211

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1212 1213
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1214 1215

            // 3. Maintain global fd set
1216
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1217 1218
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1219 1220 1221
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1222
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1223 1224 1225 1226 1227 1228
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1229

1230
  py::class_<pten::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1231
      .def("__init__",
1232 1233 1234
           [](pten::SelectedRows &instance) {
             new (&instance) pten::SelectedRows();
           })
Q
qijun 已提交
1235
      .def("__init__",
1236
           [](pten::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1237
              const int64_t &height) {
1238
             new (&instance) pten::SelectedRows(rows, height);
Q
qijun 已提交
1239 1240
           })
      .def("get_tensor",
1241
           [](pten::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1242
           py::return_value_policy::reference)
1243
      .def("numel",
1244 1245 1246 1247 1248
           [](pten::SelectedRows &self) -> int64_t {
             return self.value().numel();
           })
      .def("set_height", &pten::SelectedRows::set_height)
      .def("height", &pten::SelectedRows::height)
Q
qijun 已提交
1249
      .def("set_rows",
1250
           [](pten::SelectedRows &self, std::vector<int64_t> rows) {
1251
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1252 1253 1254 1255 1256 1257
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1258 1259 1260
      .def("sync_index",
           [](pten::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](pten::SelectedRows &self) {
1261 1262 1263 1264 1265
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1266
      });
Q
qijun 已提交
1267

1268
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1269 1270 1271

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1272
      .def(py::init<>())
1273
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1274
      .def("set_int",
1275 1276
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1277 1278 1279 1280 1281 1282 1283
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1284
      .def("get_tensor",
1285 1286
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1287 1288
           },
           py::return_value_policy::reference)
1289 1290 1291 1292
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1305 1306 1307
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1308
      .def("get_selected_rows",
1309 1310
           [](Variable &self) -> pten::SelectedRows * {
             return self.GetMutable<pten::SelectedRows>();
Q
qijun 已提交
1311 1312
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1313 1314 1315
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1316 1317 1318
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1319
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1320 1321 1322 1323 1324
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1325
#endif
Y
Refine  
Yu Yang 已提交
1326 1327
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1328 1329 1330 1331
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1332 1333
             return self.GetMutable<framework::ReaderHolder>();
           },
1334
           py::return_value_policy::reference)
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1346 1347 1348 1349
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1350

S
sneaxiy 已提交
1351
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1352

S
sneaxiy 已提交
1353
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1367
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1368 1369 1370 1371 1372 1373
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1374 1375
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1376
      .def("var",
1377
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1378
             return self.Var(name);
Y
Yu Yang 已提交
1379
           },
S
sneaxiy 已提交
1380 1381
           py::arg("name"),
           R"DOC(
1382
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1383

1384
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1385
           current scope, the variable would be created. Otherwise,
1386
           return the existing variable.
S
sneaxiy 已提交
1387 1388

           Args:
1389 1390
               name (str): the variable name.

S
sneaxiy 已提交
1391
           Returns:
1392
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1393 1394 1395 1396
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1397
           Find variable named :code:`name` in the current scope or
1398
           its parent scope. Return None if not found. 
1399

S
sneaxiy 已提交
1400 1401
           Args:
               name (str): the variable name.
1402

S
sneaxiy 已提交
1403
           Returns:
1404
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1405
           )DOC",
1406
           py::return_value_policy::reference)
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1419
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1420 1421 1422 1423 1424 1425
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1426
           py::return_value_policy::reference)
S
sneaxiy 已提交
1427 1428 1429
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1430 1431
           )DOC")
      .def("_kids", &Scope::kids);
1432

S
sneaxiy 已提交
1433 1434 1435 1436 1437 1438
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1439 1440
        R"DOC(
        Create a new scope.
1441

S
sneaxiy 已提交
1442 1443 1444
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1445 1446
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1447 1448
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1449 1450
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1451 1452 1453 1454
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1455 1456
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1457 1458
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1459 1460 1461
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1462 1463
    return ret_values;
  });
1464 1465 1466 1467 1468 1469 1470 1471
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1472
              res = op_checker->GetDefaultAttrsMap();
1473 1474 1475 1476
            }
          }
          return res;
        });
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1493 1494 1495
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1496 1497 1498 1499 1500
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1501 1502 1503
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1518
  m.def("prune", [](const ProgramDesc &origin,
1519
                    const std::set<std::string> &feeded_var_names,
1520
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1521
    ProgramDesc prog_with_targets(origin);
1522

1523
    for (const auto &t : targets) {
1524
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1525
    }
1526
    proto::ProgramDesc pruned_desc;
1527 1528 1529 1530
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1531
  });
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1549 1550 1551 1552
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1553 1554 1555
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1556 1557
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1558

Q
qijun 已提交
1559
  // clang-format off
Y
Yu Yang 已提交
1560
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1561 1562
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1563
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1578
                  })
1579 1580 1581 1582 1583 1584 1585 1586 1587
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1614 1615
#endif
                  })
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1628
      .def_static("create",
D
dzhwinter 已提交
1629
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1630
                      -> paddle::platform::DeviceContext* {
1631
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1632 1633 1634 1635
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1636
#else
W
Wilber 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1652
#endif
C
chengduoZH 已提交
1653 1654 1655 1656
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1657
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1658 1659 1660 1661
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1662 1663 1664 1665
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1666
// clang-format on
1667
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1668 1669
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1670
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1671 1672 1673 1674 1675

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1676
    The memory of CUDAPlace with different dev_id is not accessible.
1677 1678 1679 1680 1681 1682 1683 1684
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1685 1686 1687 1688

    Examples:
        .. code-block:: python

1689 1690 1691
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1692

1693 1694 1695
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1696 1697
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1698
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1699 1700 1701 1702 1703 1704 1705 1706
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1707 1708
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1709 1710 1711 1712 1713 1714 1715 1716
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1717 1718
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1719 1720 1721 1722
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1723 1724
             new (&self) platform::CUDAPlace(dev_id);
#else
1725 1726 1727 1728 1729 1730 1731 1732 1733
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1734 1735
#endif
           })
1736
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1737 1738
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1739 1740 1741 1742
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1743
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1744
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1745
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1746 1747
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1748 1749 1750
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1751
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1752
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1753

1754
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1755 1756 1757 1758 1759
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1760 1761 1762
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1801
#ifdef PADDLE_WITH_XPU
1802 1803 1804 1805 1806 1807 1808
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1809 1810 1811
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1812
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1813
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1814
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
1815 1816 1817
  py::enum_<pten::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", pten::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", pten::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1818
      .export_values();
1819
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1820 1821
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
W
Wilber 已提交
1822 1823 1824 1825 1826 1827
  m.def(
      "get_xpu_device_op_support_types",
      [](const std::string &op_name, pten::backends::xpu::XPUVersion version) {
        return platform::get_xpu_op_support_type(op_name, version);
      });
  m.def("get_xpu_device_op_list", [](pten::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1828 1829
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1830 1831
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1832 1833
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1834 1835 1836
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1837 1838
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1839
  });
1840
#endif
1841

1842
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1843
    CPUPlace is a descriptor of a device.
1844
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1845 1846 1847 1848

    Examples:
        .. code-block:: python

1849 1850
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1851

1852 1853 1854
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1855 1856
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1857
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1858
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1859 1860 1861 1862
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1863
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1864
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1865

1866 1867
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1868 1869 1870 1871 1872 1873
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1874 1875 1876 1877

    Examples:
        .. code-block:: python

1878 1879
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1880

1881 1882 1883 1884
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1885
      .def("__init__",
S
sneaxiy 已提交
1886
           [](platform::CUDAPinnedPlace &self) {
1887
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1888 1889 1890
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1891
#endif
S
sneaxiy 已提交
1892
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1893
           })
S
sneaxiy 已提交
1894 1895 1896 1897
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1898 1899
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1900 1901
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1902 1903 1904 1905
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1906
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1907 1908
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1909
  // NPUPlace
1910
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1911 1912 1913 1914 1915 1916 1917 1918
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1919 1920 1921
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1953
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1968 1969
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1970 1971
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2093 2094 2095
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2096 2097 2098 2099
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2100
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2101
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2102
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2103
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2104
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2105 2106
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2107 2108
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2109 2110
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2111 2112
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2113 2114
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2115 2116 2117 2118
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2119 2120
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2121 2122 2123 2124 2125
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2126 2127
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2128 2129 2130 2131
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2132 2133 2134 2135
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2136
      .def("set_place",
D
dzhwinter 已提交
2137
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2138
             self = gpu_place;
C
chengduoZH 已提交
2139
           })
2140 2141 2142 2143 2144
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2145 2146 2147 2148
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2149 2150 2151 2152
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2153 2154 2155 2156
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2157 2158
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2159

Y
Yu Yang 已提交
2160
  py::class_<OperatorBase>(m, "Operator")
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2175
      .def("run",
2176
           [](OperatorBase &self, const Scope &scope,
2177 2178 2179 2180
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2181 2182
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2183 2184 2185 2186
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2187 2188
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2189 2190 2191 2192
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2193 2194
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2195 2196 2197 2198
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2199 2200 2201
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2202
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2203 2204
             self.Run(scope, place);
           })
2205 2206 2207 2208 2209 2210
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2211 2212 2213 2214 2215 2216 2217
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2218 2219
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2220
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2221
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2222 2223 2224 2225
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2226

2227 2228 2229
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2230 2231 2232 2233 2234 2235 2236
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2237 2238
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2239

2240 2241
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2242
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2243
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2244
      .def("close", &Executor::Close)
2245 2246
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2247 2248
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2249 2250 2251 2252
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2253
             pybind11::gil_scoped_release release;
2254 2255 2256 2257 2258 2259 2260
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2261 2262 2263
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2264
              std::map<std::string, FetchType *> *fetch_targets,
2265 2266 2267 2268 2269 2270 2271 2272
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2273
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2274 2275 2276 2277 2278 2279 2280
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2291
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2292 2293
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2294
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2295 2296
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2297
      });
S
sneaxiy 已提交
2298

2299
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2300
      .def(py::init<>())
2301 2302 2303 2304 2305
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2306

2307
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2308 2309 2310
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2311
           [](StandaloneExecutor &self,
H
hong 已提交
2312
              const std::unordered_map<std::string, py::array> &input_dict,
2313
              std::vector<std::string> fetch_names) {
2314
             std::vector<framework::LoDTensor> feed_tensors;
2315
             std::vector<std::string> feed_names;
H
hong 已提交
2316 2317 2318 2319 2320

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2321 2322
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2323 2324
             }

2325 2326 2327 2328 2329 2330 2331 2332 2333
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2334
              const std::unordered_map<std::string, framework::LoDTensor>
2335 2336
                  &input_dict,
              std::vector<std::string> fetch_names) {
2337
             std::vector<framework::LoDTensor> feed_tensors;
2338 2339 2340 2341 2342 2343 2344
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2345 2346 2347 2348
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2349
             }
W
wanghuancoder 已提交
2350
             return py::cast(std::move(ret));
2351
           })
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2362 2363 2364
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2365
             std::vector<framework::LoDTensor> feed_tensors;
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2376
             framework::interpreter::CostInfo cost_info;
2377 2378 2379 2380 2381
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2382 2383
           });

D
dzhwinter 已提交
2384
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2385
  m.def("init_glog", framework::InitGLOG);
2386 2387
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2388
  m.def("init_devices", []() { framework::InitDevices(); });
2389

2390
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2391
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2392
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2393
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2394
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2395
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2396
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2397
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2398
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2399
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2400
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2401
  m.def("supports_bfloat16", SupportsBfloat16);
2402
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2403 2404
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2405
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2406
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2407
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2408 2409 2410
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2430 2431 2432 2433 2434 2435 2436
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2446
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2447 2448
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2449
    return platform::GetGPUComputeCapability(place.device) >= 53;
2450 2451
  });
#endif
2452

S
Steffy-zxf 已提交
2453 2454 2455 2456 2457 2458
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2459 2460 2461 2462 2463
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2464
            return py::cast(BOOST_GET(LoDTensor, var));
2465
          } else {
2466
            return py::cast(BOOST_GET(LoDTensorArray, var));
2467 2468
          }
        });
2469
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2470

X
Xin Pan 已提交
2471 2472
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2473 2474 2475 2476
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2477
  BindCostModel(&m);
2478
  BindConstValue(&m);
2479
  BindGlobalValueGetterSetter(&m);
2480
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2481
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2482

Y
Yu Yang 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2492
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2493
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2494 2495 2496

    Examples:
        .. code-block:: python
2497

Z
Zeng Jinle 已提交
2498 2499 2500
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2501 2502 2503 2504
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2505 2506
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2507 2508 2509 2510 2511 2512
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2513 2514 2515 2516
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2517 2518 2519
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2520 2521 2522 2523 2524 2525
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2526 2527
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2528 2529 2530 2531 2532 2533
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2556

2557 2558 2559 2560 2561 2562 2563 2564
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2565
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2566 2567
                 res[i] = py::cast(std::move(data));
               } else {
2568
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2584
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2585 2586 2587 2588 2589 2590 2591 2592
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2593
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2594 2595 2596 2597 2598 2599 2600 2601 2602
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2603 2604
        )DOC")
      .def("_move_to_list",
2605
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2606 2607 2608 2609
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2610
                 if (data_is_lod_tensor(self[i][j])) {
2611
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2612 2613
                   tmp[j] = py::cast(std::move(var));
                 } else {
2614
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2615 2616 2617 2618 2619 2620
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2630
  m.def("op_support_gpu", OpSupportGPU);
2631
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2632
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2633 2634 2635 2636 2637 2638 2639 2640
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2641 2642 2643 2644 2645 2646 2647
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2673
      });
D
dangqingqing 已提交
2674

2675
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2676 2677 2678
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2679 2680 2681 2682
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2683
#endif
P
peizhilin 已提交
2684
#endif
Y
Yu Yang 已提交
2685

2686 2687
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2688
  m.def("npu_finalize", []() {
2689 2690
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2691 2692 2693
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2694
      platform::NPUDeviceGuard guard(devices[i]);
2695 2696 2697 2698
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2719 2720 2721 2722
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2723 2724 2725 2726
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2727 2728 2729 2730 2731 2732
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2733 2734 2735 2736
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2737
      .value("kAll", platform::ProfilerState::kAll)
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2749
  m.def("set_tracer_option", platform::SetTracerOption);
2750 2751
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2752
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2753
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2754
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2755 2756
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
2757 2758 2759
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2760
    callable.inc_ref();
2761 2762 2763 2764 2765 2766 2767 2768
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2769
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2770 2771 2772
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2773

2774 2775
  m.def("size_of_dtype", framework::SizeOfType);

2776
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2777 2778
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2779 2780
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2781
#endif  // PADDLE_WITH_CUDA
2782 2783
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2784

2785 2786 2787
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2788 2789
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2790
      .def("has", &ir::Pass::Has)
2791 2792 2793
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2794
           })
2795
      .def(
2796
          "set",
2797 2798 2799
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2800 2801
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2802 2803
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2804 2805 2806 2807 2808
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2823 2824
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2825
        self.Apply(graph.get());
F
flame 已提交
2826
      });
2827

X
fix  
Xin Pan 已提交
2828 2829
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2844
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2845
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2846 2847 2848 2849
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2850 2851 2852
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2853 2854 2855
    Examples:
        .. code-block:: python

2856 2857 2858 2859 2860 2861 2862 2863 2864
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2865

2866 2867
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2868

2869
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2870 2871
          sgd_optimizer.minimize(avg_loss)

2872
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2873 2874
          exec_strategy.num_threads = 4

2875 2876 2877
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2878 2879
        )DOC");

2880 2881 2882 2883
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2884

Y
yuyang18 已提交
2885
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2886 2887 2888 2889 2890
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2891
          },
2892 2893
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2894 2895 2896 2897 2898 2899 2900
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2914
      .def_property(
2915 2916
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2917
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2918 2919 2920
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2921 2922 2923 2924 2925
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2926 2927 2928
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2929 2930
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2931 2932 2933 2934 2935 2936 2937
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2938 2939 2940 2941
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2942
                because the temp variable's shape maybe the same between two iterations.
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2953

2954 2955 2956 2957 2958 2959 2960
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2961
              )DOC")
Q
Qiao Longfei 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2983
              )DOC")
2984 2985 2986 2987 2988 2989 2990 2991
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2992 2993 2994 2995 2996
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2997

Y
yuyang18 已提交
2998
  exec_strategy.def_property(
Y
yuyang18 已提交
2999 3000 3001 3002 3003 3004 3005
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3006 3007
      });

C
chengduo 已提交
3008 3009 3010 3011
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3012 3013 3014
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3015 3016 3017
    Examples:
        .. code-block:: python

3018
            import os
3019 3020 3021 3022
            import paddle
            import paddle.static as static

            paddle.enable_static()
3023

3024 3025
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3026

3027 3028 3029 3030
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3031

3032
            build_strategy = static.BuildStrategy()
3033 3034
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3035 3036
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3037
            program = program.with_data_parallel(loss_name=loss.name,
3038 3039
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3040
)DOC");
Y
yuyang18 已提交
3041 3042 3043

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3044 3045
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3046 3047 3048 3049 3050 3051 3052 3053
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3054
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3055 3056 3057 3058
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3059 3060 3061 3062
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3063
            self.reduce_ = strategy;
C
chengduo 已提交
3064
          },
3065
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3066 3067
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3068
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3069 3070
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3071
                Default is 'AllReduce'.
F
flame 已提交
3072 3073 3074 3075

                Examples:
                    .. code-block:: python

3076 3077 3078 3079 3080 3081 3082
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3083
                  )DOC")
Y
yuyang18 已提交
3084 3085 3086 3087 3088
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3089 3090 3091 3092
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3093
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3094
          },
3095
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3096
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3097 3098
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3099
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3100 3101 3102 3103

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3104 3105
                        import numpy
                        import os
3106 3107 3108 3109
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3110 3111

                        use_cuda = True
3112 3113
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3114 3115

                        # NOTE: If you use CPU to run the program, you need
3116
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3117 3118 3119 3120 3121 3122
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3123
                            places = static.cpu_places()
C
chengduo 已提交
3124
                        else:
3125
                            places = static.cuda_places()
C
chengduo 已提交
3126

3127 3128 3129 3130
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3131

3132
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3133

3134
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3135
                        build_strategy.gradient_scale_strategy = \
3136 3137 3138
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3139
                                          loss_name=loss.name, build_strategy=build_strategy,
3140
                                          places=places)
C
chengduo 已提交
3141 3142 3143 3144 3145 3146

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3147 3148
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3149
                   )DOC")
Y
yuyang18 已提交
3150 3151 3152 3153
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3154 3155 3156 3157
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3158
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3159
          },
3160
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3161
                writing the SSA Graph to file in the form of graphviz.
3162
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3163 3164 3165 3166

                Examples:
                    .. code-block:: python

3167 3168 3169 3170
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3171

3172 3173
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3174
                    )DOC")
S
sneaxiy 已提交
3175 3176 3177 3178 3179 3180
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3181 3182 3183 3184
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3185 3186
            self.enable_sequential_execution_ = b;
          },
3187 3188
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3189 3190 3191 3192

                Examples:
                    .. code-block:: python

3193 3194 3195 3196 3197 3198
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3199 3200
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3201 3202 3203 3204 3205 3206
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3207 3208 3209 3210
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3211 3212
            self.remove_unnecessary_lock_ = b;
          },
3213 3214
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3215 3216 3217 3218

                Examples:
                    .. code-block:: python

3219 3220 3221 3222 3223 3224
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3225 3226
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3227 3228 3229 3230
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3231
#ifdef WIN32
3232
            PADDLE_THROW(platform::errors::Unavailable(
3233
                "Distribution mode is not supported on Windows platform."));
3234
#endif
3235 3236
            self.num_trainers_ = num_trainers;
          })
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3249 3250 3251 3252 3253 3254
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3255 3256 3257 3258 3259 3260
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3261
      .def_property("use_hierarchical_allreduce",
3262 3263 3264 3265 3266 3267
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3268
      .def_property("hierarchical_allreduce_inter_nranks",
3269 3270 3271 3272 3273 3274 3275
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3276 3277 3278 3279 3280 3281
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3282 3283 3284 3285
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3286 3287
            self.fuse_elewise_add_act_ops_ = b;
          },
3288
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3289
                to fuse elementwise_add_op and activation_op,
3290
                it may make the execution faster. Default is False.
F
flame 已提交
3291 3292 3293 3294

                Examples:
                    .. code-block:: python

3295 3296 3297 3298 3299 3300
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3301 3302
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3303 3304 3305 3306
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3307
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3308
                              platform::errors::PreconditionNotMet(
3309 3310
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3320 3321 3322 3323 3324 3325
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3326 3327
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3353 3354 3355 3356
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3357
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3358
                              platform::errors::PreconditionNotMet(
3359 3360
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3371 3372 3373 3374 3375 3376
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3377 3378
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3379 3380 3381 3382 3383 3384
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3385 3386 3387 3388
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3389 3390
            self.fuse_relu_depthwise_conv_ = b;
          },
3391
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3392 3393 3394
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3395
                Default is False.
F
flame 已提交
3396 3397 3398 3399

                Examples:
                    .. code-block:: python

3400 3401 3402 3403 3404 3405
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3406 3407
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3408 3409 3410
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3411
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3412 3413
                    },
                    [](BuildStrategy &self, bool b) {
3414 3415 3416 3417
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3418 3419
                      self.fuse_broadcast_ops_ = b;
                    },
3420
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3421 3422 3423 3424
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3425 3426 3427 3428 3429
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3430 3431 3432 3433 3434 3435
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3436 3437
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3438 3439
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3440
                      return self.fuse_all_optimizer_ops_ == true ||
3441
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3442 3443
                    },
                    [](BuildStrategy &self, bool b) {
3444 3445 3446 3447
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3448 3449
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3450 3451 3452 3453
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3454 3455 3456 3457
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3458 3459
            self.sync_batch_norm_ = b;
          },
3460
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3461 3462 3463
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3464 3465
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3466 3467 3468 3469

                Examples:
                    .. code-block:: python

3470 3471 3472 3473 3474 3475
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3476 3477
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3478 3479
      .def_property(
          "memory_optimize",
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3490
              self.memory_optimize_ = paddle::none;
3491 3492 3493
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3494
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3495 3496
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3497 3498
            }
          },
3499
          R"DOC((bool, optional): memory opitimize aims to save total memory
3500
                consumption, set to True to enable it.
3501

3502 3503 3504
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3519 3520 3521
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3522 3523 3524
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3525
              PADDLE_THROW(platform::errors::Unavailable(
3526
                  "Distribution mode is not supported on Windows platform."));
3527 3528 3529 3530 3531
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3532 3533 3534
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3535
      .def_property(
D
dzhwinter 已提交
3536 3537 3538
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3539 3540 3541 3542
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3543 3544
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3545 3546
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3547
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3548
          },
C
chengduo 已提交
3549
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3550 3551 3552 3553 3554 3555 3556
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3557 3558 3559 3560
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3561 3562 3563 3564 3565 3566 3567 3568 3569
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3570 3571 3572 3573 3574 3575
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3576 3577 3578 3579 3580 3581 3582
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3583 3584 3585 3586 3587 3588
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3589
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3590
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3591 3592 3593 3594 3595
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3596

3597 3598 3599 3600 3601 3602
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3603
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3604
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3605
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3606
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3607 3608 3609 3610
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3611 3612 3613 3614 3615
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3616 3617 3618
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3619 3620 3621 3622
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3623 3624
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3625 3626 3627 3628 3629 3630 3631 3632
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3633
               return py::cast(
3634
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3635 3636
             } else {
               return py::cast(std::move(
3637
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3638
             }
3639 3640
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3641

J
jianghaicheng 已提交
3642 3643 3644 3645 3646 3647 3648 3649
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3650 3651
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3652 3653 3654 3655 3656
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3657
          })
J
jianghaicheng 已提交
3658 3659 3660 3661 3662 3663 3664
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3665
          })
J
jianghaicheng 已提交
3666 3667 3668 3669 3670 3671
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3672
                    })
J
jianghaicheng 已提交
3673 3674 3675 3676 3677 3678
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3679
                    })
J
jianghaicheng 已提交
3680 3681 3682 3683 3684 3685 3686
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3687
          })
J
jianghaicheng 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3702
          })
J
jianghaicheng 已提交
3703 3704 3705 3706 3707 3708
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3709
                    })
J
jianghaicheng 已提交
3710 3711 3712 3713 3714 3715
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3716
                    })
J
jianghaicheng 已提交
3717 3718 3719 3720 3721 3722
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3723
                    });
J
jianghaicheng 已提交
3724 3725
#endif

D
dongdaxiang 已提交
3726
  BindFleetWrapper(&m);
3727
  BindIO(&m);
T
Thunderbrook 已提交
3728

T
Thunderbrook 已提交
3729
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
3730
  BindHeterWrapper(&m);
3731
  BindMetrics(&m);
T
Thunderbrook 已提交
3732
#endif
T
Thunderbrook 已提交
3733
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3734
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3735
#endif
3736
  BindGlooWrapper(&m);
H
hutuxian 已提交
3737
  BindBoxHelper(&m);
H
hutuxian 已提交
3738 3739 3740
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3741
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3742
  BindNCCLWrapper(&m);
3743 3744 3745
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3746
#endif
F
flame 已提交
3747 3748
  BindGraph(&m);
  BindNode(&m);
3749
  BindPass(&m);
F
flame 已提交
3750
  BindInferenceApi(&m);
3751
  BindCompatible(&m);
3752
  BindDataset(&m);
Y
yaoxuefeng 已提交
3753
  BindGenerator(&m);
3754 3755 3756
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3757
  BindAscendDevice(&m);
3758
#endif
Y
Yanghello 已提交
3759 3760 3761
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3762

T
tangwei12 已提交
3763
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3764 3765
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3766
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3767 3768
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3769 3770 3771 3772 3773
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3774 3775 3776 3777
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3778
  BindSparseShardingTools(&m);
3779
#endif
L
Luo Tao 已提交
3780
}
3781
}  // namespace pybind
3782
}  // namespace paddle