pybind.cc 148.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
53
#include "paddle/fluid/framework/pten_utils.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
57
#include "paddle/fluid/framework/selected_rows_utils.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/pten/core/lod_utils.h"
W
wanghuancoder 已提交
79
#ifndef PADDLE_ON_INFERENCE
80
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
81
#endif
82
#include "paddle/fluid/pybind/io.h"
83
#include "paddle/utils/none.h"
84 85 86
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
87
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
88
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
89
#include "paddle/fluid/pybind/box_helper_py.h"
90
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
91
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
92
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
93
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
94
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
95
#include "paddle/fluid/pybind/generator_py.h"
96
#include "paddle/fluid/pybind/global_value_getter_setter.h"
97
#include "paddle/fluid/pybind/gloo_context_py.h"
98
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
99
#include "paddle/fluid/pybind/heter_wrapper_py.h"
100
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
101
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
102
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
103
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
104
#include "paddle/fluid/pybind/pybind_boost_headers.h"
105

106
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
107
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
108
#endif
109
#include "paddle/fluid/framework/data_type.h"
110 111
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
112
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
113
#include "paddle/fluid/pybind/tensor_py.h"
114
#include "paddle/fluid/string/to_string.h"
115 116
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
117
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
118
#endif
119
#ifndef PADDLE_WITH_HIP
120
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
121
#endif
122
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
123 124
#endif

125
#ifdef PADDLE_WITH_ASCEND_CL
126
#include "paddle/fluid/platform/collective_helper.h"
127 128
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
129 130
#endif

131
#ifdef PADDLE_WITH_XPU
132
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
133
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
134 135
#endif

136
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
137

J
jianghaicheng 已提交
138
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
139 140
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
141
#endif
142

143 144 145 146
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
147 148 149 150
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
151
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
152 153 154
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
155 156
#include "pybind11/stl.h"

157
DECLARE_bool(use_mkldnn);
158

Q
Qiao Longfei 已提交
159 160
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
161 162 163
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
164

165
namespace paddle {
166
namespace pybind {
167 168 169 170 171 172 173

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
174
PyTypeObject *g_mluplace_pytype = nullptr;
175
PyTypeObject *g_framework_tensor_pytype = nullptr;
176
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
177

178
bool IsCompiledWithCUDA() {
179 180 181 182 183 184 185 186 187
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
188 189 190 191 192 193
  return false;
#else
  return true;
#endif
}

194 195 196 197 198 199 200 201
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

202 203 204 205 206 207 208 209
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

210 211 212 213 214 215 216 217
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
218 219 220 221 222 223 224 225
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

226 227 228 229 230 231 232 233
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

234 235 236 237 238 239 240 241
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

242 243 244 245 246 247 248 249
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

250 251 252 253 254 255 256 257
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

258 259 260 261 262 263 264 265 266 267 268
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

269 270 271 272 273 274 275 276 277 278 279
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
315 316 317
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

357
bool IsCompiledWithBrpc() {
358
#ifndef PADDLE_WITH_DISTRIBUTE
359 360
  return false;
#endif
361
  return true;
362 363
}

Y
update  
Yancey1989 已提交
364
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
365
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
366 367 368 369 370 371
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
372 373 374 375 376 377 378
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
379
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
380 381
}

H
hong 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
404 405 406
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
420 421
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
422 423
    }
    vec_res.emplace_back(
424
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
425 426 427 428 429 430 431 432 433 434 435 436
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
437 438
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
439 440 441 442 443 444 445 446 447 448 449 450
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
451 452 453
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
454 455 456 457
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
458 459
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
460 461 462 463
  }
  return vec_res;
}

464 465 466 467 468 469 470 471
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
472 473
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
474 475 476 477 478 479 480 481 482 483 484 485 486
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
487 488 489
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
490 491 492 493 494
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
495 496 497 498 499
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
500 501
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
502 503 504
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
505 506 507 508 509 510 511 512 513
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
514 515
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
516 517 518 519 520
  }

  return;
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
545 546 547 548
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
549
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
550 551 552 553 554 555 556 557
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
558 559 560 561 562 563 564 565 566 567 568
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

569 570 571 572 573 574
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
575
#ifndef PADDLE_ON_INFERENCE
576
  BindEager(&m);
W
wanghuancoder 已提交
577
#endif
578 579
  BindCudaStream(&m);

Y
Yu Yang 已提交
580 581 582
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
583
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
584

585 586
  AssertStaticGraphAndDygraphGradMakerNoDiff();

587
  m.doc() = "C++ core of PaddlePaddle";
588

589 590 591 592
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

593
  BindException(&m);
Y
Yu Yang 已提交
594

595 596
  m.def("set_num_threads", &platform::SetNumThreads);

597 598
  m.def("disable_signal_handler", &DisableSignalHandler);

599 600 601 602 603 604 605 606
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

607
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
608
  m.def("cudnn_version", &platform::DnnVersion);
609 610 611 612 613 614
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
615
#endif
616

Z
Zeng Jinle 已提交
617 618 619 620
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

621 622 623 624 625 626 627 628 629 630
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
631 632
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
633 634
#endif

Z
Zeng Jinle 已提交
635 636 637 638
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
639 640 641
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
642 643 644 645 646 647

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
648 649
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
650
    framework::Tensor tensor;
6
633WHU 已提交
651

S
Siming Dai 已提交
652
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
653 654
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
655
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
656
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
657 658 659 660 661
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
662

663 664 665 666 667 668
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

669 670 671 672 673 674
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
675 676
  });

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
702 703 704 705 706 707
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
708
  m.def(
S
sneaxiy 已提交
709
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
710 711 712 713
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
714 715 716
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
733 734 735
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
736
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
737

738
  m.def("_set_fuse_parameter_group_size",
739
        &paddle::framework::ir::SetFuseParameterGroupsSize);
740
  m.def("_set_fuse_parameter_memory_size",
741
        &paddle::framework::ir::SetFuseParameterMemorySize);
742

S
sneaxiy 已提交
743 744 745
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

746 747
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

748 749 750
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

751
  BindImperative(&m);
752

753 754 755 756 757
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
758 759
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
760
      .def("_is_initialized",
761
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
762
      .def("_get_dims",
763
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
764
      .def("_set_dims",
765
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
766
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
767
           })
Y
yuyang18 已提交
768
      .def("_set_layout",
769
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
770 771
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
772
      .def("_alloc_float",
773
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
774
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
775
           })
776
      .def("_alloc_float",
777
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
778 779
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
780
      .def("_alloc_float",
781
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
782
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
783
           })
784 785 786 787
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
788 789 790 791
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
792
      .def("_alloc_double",
793
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
794 795
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
796
      .def("_alloc_int",
797
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
798
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
799
           })
800
      .def("_alloc_int",
801
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
802 803
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
804
      .def("_alloc_int",
805
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
806
             self.mutable_data<int>(place);
Q
qijun 已提交
807
           })
808 809 810 811
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
812
      .def("_alloc_int",
813 814
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
815 816
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
817
      .def("_alloc_float",
818 819
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
820 821
             self.mutable_data<float>(place);
           })
822
      .def("_mutable_data",
823
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
824 825 826
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
827
      .def("_mutable_data",
828
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
829 830 831
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
832
      .def("_mutable_data",
833
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
834 835 836 837
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
838
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
839 840 841
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
842 843 844 845 846
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
847
      .def("_clear", &framework::Tensor::clear)
848 849 850 851 852
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
853 854 855 856 857 858 859 860 861 862
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
863 864
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
865
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
866
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
867
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
868
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
869 870
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
871
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
872
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
873 874
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
875 876
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
877 878
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
879
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
880 881
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
882
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
883 884 885
        
        Args:
          lod (numpy.ndarray): The data to set.
886
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
887
          Tensor is to be set.
888 889
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
890 891 892 893 894 895 896 897 898 899

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

900
                t = fluid.Tensor()
L
Leo Chen 已提交
901 902
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
903

904 905 906
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
907
           Return the shape of Tensor.
L
Leo Chen 已提交
908 909

           Returns:
910
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
911 912 913 914 915 916 917 918


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

919
                  t = fluid.Tensor()
L
Leo Chen 已提交
920 921 922
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
923
      .def("_to_dlpack",
924
           [](framework::Tensor &self) {
6
633WHU 已提交
925
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
926
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
944 945 946 947
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
948 949
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
950
      .def("_layout",
951 952 953 954
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
955
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
                    "The provided recursive_sequence_lengths info is invalid, "
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
980
      .def("__init__",
981 982
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
983
           })
G
gongweibao 已提交
984
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
985 986
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
987 988 989
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
990
      .def("set_lod",
991 992
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
993
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
994
             LoD new_lod;
995 996
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
997 998
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
999 1000
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1001
             self.set_lod(new_lod);
S
sneaxiy 已提交
1002 1003
           },
           py::arg("lod"), R"DOC(
1004
           Set LoD of the Tensor.
S
sneaxiy 已提交
1005 1006

           Args:
L
Leo Chen 已提交
1007 1008 1009 1010
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1011 1012 1013 1014 1015 1016 1017

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1018
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1019 1020
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1021
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1022
           )DOC")
1023
      .def("set_recursive_sequence_lengths",
1024 1025
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1026 1027 1028 1029 1030 1031 1032 1033
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1034 1035
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1036 1037 1038 1039 1040
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1041
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1042 1043
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1044
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1045

L
Leo Chen 已提交
1046
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1047
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1048
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1049 1050

           Args:
L
Leo Chen 已提交
1051 1052 1053 1054
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1055 1056 1057 1058 1059 1060 1061

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1062
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1063 1064
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1065
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1066
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1067
           )DOC")
1068
      .def("lod",
1069
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1070 1071 1072 1073 1074 1075
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1076 1077
           },
           R"DOC(
1078
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1079 1080

           Returns:
1081
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1082
           
Z
Zeng Jinle 已提交
1083 1084 1085 1086 1087 1088
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1089
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1090 1091 1092
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1093
           )DOC")
G
gongweibao 已提交
1094
      // Set above comments of set_lod.
1095
      .def("recursive_sequence_lengths",
1096
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1097
             // output the length-based lod info
1098
             LoD lod = pten::ConvertToLengthBasedLoD(self.lod());
1099 1100 1101 1102
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1103 1104
           },
           R"DOC(
L
Leo Chen 已提交
1105
           Return the recursive sequence lengths corresponding to of the LodD 
1106
           of the Tensor.
S
sneaxiy 已提交
1107 1108

           Returns:
L
Leo Chen 已提交
1109
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1110 1111 1112 1113 1114 1115 1116

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1117
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1118 1119 1120
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1121 1122
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1123
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1124
             // Check that the lod info is valid and match the outermost
1125
             // dimension of the Tensor data
S
sneaxiy 已提交
1126 1127 1128
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1129
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1130 1131

           Returns:
L
Leo Chen 已提交
1132
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1133 1134 1135 1136 1137 1138 1139

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1140
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1141 1142 1143
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1144
           )DOC")
L
Leo Chen 已提交
1145
      .def("_as_type",
1146
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1147
              paddle::framework::proto::VarType::Type type) {
1148
             framework::Tensor dst;
L
Leo Chen 已提交
1149 1150 1151 1152 1153
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1167
#ifdef _WIN32
1168
           });
1169 1170 1171
#else
           })
      .def(py::pickle(
1172
          [](const framework::Tensor &t) {  // __getstate__
1173
            auto holder = t.Holder();
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1186 1187 1188
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1189 1190
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1191 1192 1193
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1194
              throw std::runtime_error("Invalid Tensor state!");
1195 1196

            // 1. Create a new C++ instance
1197
            framework::Tensor tensor;
1198 1199 1200 1201 1202

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1203 1204
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1205 1206

            // 3. Maintain global fd set
1207
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1208 1209
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1210 1211 1212 1213
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
                static_cast<proto::VarType::Type>(t[2].cast<int>()));
1214 1215 1216 1217 1218 1219
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1220

1221
  py::class_<pten::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1222
      .def("__init__",
1223 1224 1225
           [](pten::SelectedRows &instance) {
             new (&instance) pten::SelectedRows();
           })
Q
qijun 已提交
1226
      .def("__init__",
1227
           [](pten::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1228
              const int64_t &height) {
1229
             new (&instance) pten::SelectedRows(rows, height);
Q
qijun 已提交
1230 1231
           })
      .def("get_tensor",
1232
           [](pten::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1233
           py::return_value_policy::reference)
1234
      .def("numel",
1235 1236 1237 1238 1239
           [](pten::SelectedRows &self) -> int64_t {
             return self.value().numel();
           })
      .def("set_height", &pten::SelectedRows::set_height)
      .def("height", &pten::SelectedRows::height)
Q
qijun 已提交
1240
      .def("set_rows",
1241
           [](pten::SelectedRows &self, std::vector<int64_t> rows) {
1242
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1243 1244 1245 1246 1247 1248
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1249 1250 1251
      .def("sync_index",
           [](pten::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](pten::SelectedRows &self) {
1252 1253 1254 1255 1256
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1257
      });
Q
qijun 已提交
1258

1259
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1260 1261 1262

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1263
      .def(py::init<>())
1264
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1265
      .def("set_int",
1266 1267
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1268 1269 1270 1271 1272 1273 1274
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1275
      .def("get_tensor",
1276 1277
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1278 1279
           },
           py::return_value_policy::reference)
1280 1281 1282 1283
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1296 1297 1298
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1299
      .def("get_selected_rows",
1300 1301
           [](Variable &self) -> pten::SelectedRows * {
             return self.GetMutable<pten::SelectedRows>();
Q
qijun 已提交
1302 1303
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1304 1305 1306
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1307 1308 1309
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1310
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1311 1312 1313 1314 1315
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1316
#endif
Y
Refine  
Yu Yang 已提交
1317 1318
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1319 1320 1321 1322
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1323 1324
             return self.GetMutable<framework::ReaderHolder>();
           },
1325
           py::return_value_policy::reference)
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1337 1338 1339 1340
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1341

S
sneaxiy 已提交
1342
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1343

S
sneaxiy 已提交
1344
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1358
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1359 1360 1361 1362 1363 1364
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1365 1366
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1367
      .def("var",
1368
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1369
             return self.Var(name);
Y
Yu Yang 已提交
1370
           },
S
sneaxiy 已提交
1371 1372
           py::arg("name"),
           R"DOC(
1373
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1374

1375
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1376
           current scope, the variable would be created. Otherwise,
1377
           return the existing variable.
S
sneaxiy 已提交
1378 1379

           Args:
1380 1381
               name (str): the variable name.

S
sneaxiy 已提交
1382
           Returns:
1383
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1384 1385 1386 1387
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1388
           Find variable named :code:`name` in the current scope or
1389
           its parent scope. Return None if not found. 
1390

S
sneaxiy 已提交
1391 1392
           Args:
               name (str): the variable name.
1393

S
sneaxiy 已提交
1394
           Returns:
1395
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1396
           )DOC",
1397
           py::return_value_policy::reference)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1410
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1411 1412 1413 1414 1415 1416
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1417
           py::return_value_policy::reference)
S
sneaxiy 已提交
1418 1419 1420
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1421 1422
           )DOC")
      .def("_kids", &Scope::kids);
1423

S
sneaxiy 已提交
1424 1425 1426 1427 1428 1429
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1430 1431
        R"DOC(
        Create a new scope.
1432

S
sneaxiy 已提交
1433 1434 1435
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1436 1437
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1438 1439
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1440 1441
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1442 1443 1444 1445
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1446 1447
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1448 1449
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1450 1451 1452
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1453 1454
    return ret_values;
  });
1455 1456 1457 1458 1459 1460 1461 1462
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1463
              res = op_checker->GetDefaultAttrsMap();
1464 1465 1466 1467
            }
          }
          return res;
        });
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1484 1485 1486
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1487 1488 1489 1490 1491
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1492 1493 1494
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1509
  m.def("prune", [](const ProgramDesc &origin,
1510
                    const std::set<std::string> &feeded_var_names,
1511
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1512
    ProgramDesc prog_with_targets(origin);
1513

1514
    for (const auto &t : targets) {
1515
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1516
    }
1517
    proto::ProgramDesc pruned_desc;
1518 1519 1520 1521
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1522
  });
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1540 1541 1542 1543
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1544 1545 1546
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1547 1548
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1549

Q
qijun 已提交
1550
  // clang-format off
Y
Yu Yang 已提交
1551
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1552 1553
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1554
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1555 1556
                    return new paddle::platform::CPUDeviceContext();
                  })
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1579 1580
#endif
                  })
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1593
      .def_static("create",
D
dzhwinter 已提交
1594
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1595
                      -> paddle::platform::DeviceContext* {
1596
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1597 1598 1599 1600
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1601
#else
Q
qijun 已提交
1602
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1603
#endif
C
chengduoZH 已提交
1604 1605 1606 1607
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1608
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1609 1610 1611 1612
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1613 1614 1615 1616
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1617
// clang-format on
1618
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1619 1620
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1621
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1622 1623 1624 1625 1626

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1627
    The memory of CUDAPlace with different dev_id is not accessible.
1628 1629 1630 1631 1632 1633 1634 1635
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1636 1637 1638 1639

    Examples:
        .. code-block:: python

1640 1641 1642
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1643

1644 1645 1646
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1647 1648
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1649
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1650 1651 1652 1653 1654 1655 1656 1657
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1658 1659
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1660 1661 1662 1663 1664 1665 1666 1667
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1668 1669
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1670 1671 1672 1673
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1674 1675
             new (&self) platform::CUDAPlace(dev_id);
#else
1676 1677 1678 1679 1680 1681 1682 1683 1684
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1685 1686
#endif
           })
1687
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1688 1689
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1690 1691 1692 1693
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1694
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1695
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1696
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1697 1698
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1699 1700 1701
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1702
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1703
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1704

1705
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1706 1707 1708 1709 1710
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1711 1712 1713
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1752
#ifdef PADDLE_WITH_XPU
1753 1754 1755 1756 1757 1758 1759
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1760 1761 1762
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1763
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1764
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1765
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
1766 1767 1768
  py::enum_<pten::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", pten::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", pten::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1769
      .export_values();
1770
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1771 1772
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
W
Wilber 已提交
1773 1774 1775 1776 1777 1778
  m.def(
      "get_xpu_device_op_support_types",
      [](const std::string &op_name, pten::backends::xpu::XPUVersion version) {
        return platform::get_xpu_op_support_type(op_name, version);
      });
  m.def("get_xpu_device_op_list", [](pten::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1779 1780
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1781 1782
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1783 1784
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1785 1786 1787
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1788 1789
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1790
  });
1791
#endif
1792

1793
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1794
    CPUPlace is a descriptor of a device.
1795
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1796 1797 1798 1799

    Examples:
        .. code-block:: python

1800 1801
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1802

1803 1804 1805
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1806 1807
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1808
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1809
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1810 1811 1812 1813
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1814
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1815
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1816

1817 1818
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1819 1820 1821 1822 1823 1824
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1825 1826 1827 1828

    Examples:
        .. code-block:: python

1829 1830
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1831

1832 1833 1834 1835
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1836
      .def("__init__",
S
sneaxiy 已提交
1837
           [](platform::CUDAPinnedPlace &self) {
1838
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1839 1840 1841
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1842
#endif
S
sneaxiy 已提交
1843
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1844
           })
S
sneaxiy 已提交
1845 1846 1847 1848
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1849 1850
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1851 1852
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1853 1854 1855 1856
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1857
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1858 1859
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1860
  // NPUPlace
1861
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1862 1863 1864 1865 1866 1867 1868 1869
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1870 1871 1872
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1904
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1919 1920
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1921 1922
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2044 2045 2046
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2047 2048 2049 2050
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2051
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2052
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2053
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2054
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2055
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2056 2057
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2058 2059
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2060 2061
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2062 2063
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2064 2065
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2066 2067 2068 2069
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2070 2071
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2072 2073 2074 2075 2076
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2077 2078
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2079 2080 2081 2082
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2083 2084 2085 2086
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2087
      .def("set_place",
D
dzhwinter 已提交
2088
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2089
             self = gpu_place;
C
chengduoZH 已提交
2090
           })
2091 2092 2093 2094 2095
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2096 2097 2098 2099
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2100 2101 2102 2103
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2104 2105 2106 2107
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2108 2109
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2110

Y
Yu Yang 已提交
2111
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
2126
      .def("run",
2127
           [](OperatorBase &self, const Scope &scope,
2128 2129 2130 2131
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2132 2133
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2134 2135 2136 2137
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2138 2139
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2140 2141 2142 2143
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2144 2145
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2146 2147 2148 2149
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2150 2151 2152
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2153
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2154 2155
             self.Run(scope, place);
           })
2156 2157 2158 2159 2160 2161
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2162 2163 2164 2165 2166 2167 2168
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2169 2170
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2171
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2172
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2173 2174 2175 2176
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2177

2178 2179 2180
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2181 2182 2183 2184 2185 2186 2187
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2188 2189
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2190

2191 2192
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2193
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2194
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2195
      .def("close", &Executor::Close)
2196 2197
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2198 2199
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2200 2201 2202 2203
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2204
             pybind11::gil_scoped_release release;
2205 2206 2207 2208 2209 2210 2211
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2212 2213 2214
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2215
              std::map<std::string, FetchType *> *fetch_targets,
2216 2217 2218 2219 2220 2221 2222 2223
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2224
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2225 2226 2227 2228 2229 2230 2231
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2242
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2243 2244
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2245
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2246 2247
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2248
      });
S
sneaxiy 已提交
2249

2250
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2251
      .def(py::init<>())
2252 2253 2254 2255 2256
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2257

2258
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2259 2260 2261
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2262
           [](StandaloneExecutor &self,
H
hong 已提交
2263
              const std::unordered_map<std::string, py::array> &input_dict,
2264
              std::vector<std::string> fetch_names) {
2265
             std::vector<framework::LoDTensor> feed_tensors;
2266
             std::vector<std::string> feed_names;
H
hong 已提交
2267 2268 2269 2270 2271

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2272 2273
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2274 2275
             }

2276 2277 2278 2279 2280 2281 2282 2283 2284
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2285
              const std::unordered_map<std::string, framework::LoDTensor>
2286 2287
                  &input_dict,
              std::vector<std::string> fetch_names) {
2288
             std::vector<framework::LoDTensor> feed_tensors;
2289 2290 2291 2292 2293 2294 2295
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2296 2297 2298 2299
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2300
             }
W
wanghuancoder 已提交
2301
             return py::cast(std::move(ret));
2302
           })
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2313 2314 2315
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2316
             std::vector<framework::LoDTensor> feed_tensors;
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2327
             framework::interpreter::CostInfo cost_info;
2328 2329 2330 2331 2332
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2333 2334
           });

D
dzhwinter 已提交
2335
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2336
  m.def("init_glog", framework::InitGLOG);
2337 2338
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2339
  m.def("init_devices", []() { framework::InitDevices(); });
2340

2341
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2342
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2343
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2344
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2345
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2346
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2347
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2348
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2349
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2350
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2351
  m.def("supports_bfloat16", SupportsBfloat16);
2352
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2353 2354
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2355
  m.def("op_supported_infos", OpSupportedInfos);
2356
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2357
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2358 2359 2360
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2380 2381 2382 2383 2384 2385 2386
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2396
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2397 2398
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2399
    return platform::GetGPUComputeCapability(place.device) >= 53;
2400 2401
  });
#endif
2402

S
Steffy-zxf 已提交
2403 2404 2405 2406 2407 2408
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2409 2410 2411 2412 2413
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2414
            return py::cast(BOOST_GET(LoDTensor, var));
2415
          } else {
2416
            return py::cast(BOOST_GET(LoDTensorArray, var));
2417 2418
          }
        });
2419
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2420

X
Xin Pan 已提交
2421 2422
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2423 2424 2425 2426
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2427
  BindCostModel(&m);
2428
  BindConstValue(&m);
2429
  BindGlobalValueGetterSetter(&m);
2430
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2431
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2432

Y
Yu Yang 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2442
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2443
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2444 2445 2446

    Examples:
        .. code-block:: python
2447

Z
Zeng Jinle 已提交
2448 2449 2450
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2451 2452 2453 2454
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2455 2456
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2457 2458 2459 2460 2461 2462
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2463 2464 2465 2466
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2467 2468 2469
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2470 2471 2472 2473 2474 2475
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2476 2477
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2478 2479 2480 2481 2482 2483
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2506

2507 2508 2509 2510 2511 2512 2513 2514
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2515
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2516 2517
                 res[i] = py::cast(std::move(data));
               } else {
2518
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2534
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2535 2536 2537 2538 2539 2540 2541 2542
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2543
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2544 2545 2546 2547 2548 2549 2550 2551 2552
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2553 2554
        )DOC")
      .def("_move_to_list",
2555
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2556 2557 2558 2559
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2560
                 if (data_is_lod_tensor(self[i][j])) {
2561
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2562 2563
                   tmp[j] = py::cast(std::move(var));
                 } else {
2564
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2565 2566 2567 2568 2569 2570
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2580
  m.def("op_support_gpu", OpSupportGPU);
2581
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2582
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2583 2584 2585 2586 2587 2588 2589 2590
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2591 2592 2593 2594 2595 2596 2597
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2623
      });
D
dangqingqing 已提交
2624

2625
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2626 2627 2628
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2629 2630 2631 2632
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2633
#endif
P
peizhilin 已提交
2634
#endif
Y
Yu Yang 已提交
2635

2636 2637
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2638
  m.def("npu_finalize", []() {
2639 2640
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2641 2642 2643
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2644
      platform::NPUDeviceGuard guard(devices[i]);
2645 2646 2647 2648
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2669 2670 2671 2672
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2673 2674 2675 2676
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2677 2678 2679 2680 2681 2682
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2683 2684 2685 2686
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2687
      .value("kAll", platform::ProfilerState::kAll)
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2699
  m.def("set_tracer_option", platform::SetTracerOption);
2700 2701
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2702
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2703
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2704
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2705 2706 2707 2708 2709
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
W
wuhuanzhou 已提交
2710
    callable.inc_ref();
2711 2712 2713 2714 2715 2716 2717 2718
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2719
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2720 2721 2722
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2723

2724 2725
  m.def("size_of_dtype", framework::SizeOfType);

2726
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2727 2728
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2729 2730
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2731
#endif  // PADDLE_WITH_CUDA
2732 2733
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2734

2735 2736 2737
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2738 2739
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2740
      .def("has", &ir::Pass::Has)
2741 2742 2743
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2744
           })
2745
      .def(
2746
          "set",
2747 2748 2749
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2750 2751
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2752 2753
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2754 2755 2756 2757 2758
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2773 2774
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2775
        self.Apply(graph.get());
F
flame 已提交
2776
      });
2777

X
fix  
Xin Pan 已提交
2778 2779
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2794
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2795
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2796 2797 2798 2799
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2800 2801 2802
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2803 2804 2805
    Examples:
        .. code-block:: python

2806 2807 2808 2809 2810 2811 2812 2813 2814
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2815

2816 2817
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2818

2819
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2820 2821
          sgd_optimizer.minimize(avg_loss)

2822
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2823 2824
          exec_strategy.num_threads = 4

2825 2826 2827
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2828 2829
        )DOC");

2830 2831 2832 2833
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2834

Y
yuyang18 已提交
2835
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2836 2837 2838 2839 2840
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2841
          },
2842 2843
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2844 2845 2846 2847 2848 2849 2850
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2864
      .def_property(
2865 2866
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2867
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2868 2869 2870
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2871 2872 2873 2874 2875
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2876 2877 2878
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2879 2880
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2881 2882 2883 2884 2885 2886 2887
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2888 2889 2890 2891
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2892
                because the temp variable's shape maybe the same between two iterations.
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2903

2904 2905 2906 2907 2908 2909 2910
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2911
              )DOC")
Q
Qiao Longfei 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2933
              )DOC")
2934 2935 2936 2937 2938 2939 2940 2941
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2942 2943 2944 2945 2946
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2947

Y
yuyang18 已提交
2948
  exec_strategy.def_property(
Y
yuyang18 已提交
2949 2950 2951 2952 2953 2954 2955
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2956 2957
      });

C
chengduo 已提交
2958 2959 2960 2961
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2962 2963 2964
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2965 2966 2967
    Examples:
        .. code-block:: python

2968
            import os
2969 2970 2971 2972
            import paddle
            import paddle.static as static

            paddle.enable_static()
2973

2974 2975
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2976

2977 2978 2979 2980
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2981

2982
            build_strategy = static.BuildStrategy()
2983 2984
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2985 2986
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2987
            program = program.with_data_parallel(loss_name=loss.name,
2988 2989
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2990
)DOC");
Y
yuyang18 已提交
2991 2992 2993

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
2994 2995
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
2996 2997 2998 2999 3000 3001 3002 3003
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3004
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3005 3006 3007 3008
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3009 3010 3011 3012
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3013
            self.reduce_ = strategy;
C
chengduo 已提交
3014
          },
3015
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3016 3017
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3018
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3019 3020
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3021
                Default is 'AllReduce'.
F
flame 已提交
3022 3023 3024 3025

                Examples:
                    .. code-block:: python

3026 3027 3028 3029 3030 3031 3032
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3033
                  )DOC")
Y
yuyang18 已提交
3034 3035 3036 3037 3038
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3039 3040 3041 3042
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3043
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3044
          },
3045
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3046
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3047 3048
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3049
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3050 3051 3052 3053

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3054 3055
                        import numpy
                        import os
3056 3057 3058 3059
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3060 3061

                        use_cuda = True
3062 3063
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3064 3065

                        # NOTE: If you use CPU to run the program, you need
3066
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3067 3068 3069 3070 3071 3072
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3073
                            places = static.cpu_places()
C
chengduo 已提交
3074
                        else:
3075
                            places = static.cuda_places()
C
chengduo 已提交
3076

3077 3078 3079 3080
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3081

3082
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3083

3084
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3085
                        build_strategy.gradient_scale_strategy = \
3086 3087 3088
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3089
                                          loss_name=loss.name, build_strategy=build_strategy,
3090
                                          places=places)
C
chengduo 已提交
3091 3092 3093 3094 3095 3096

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3097 3098
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3099
                   )DOC")
Y
yuyang18 已提交
3100 3101 3102 3103
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3104 3105 3106 3107
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3108
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3109
          },
3110
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3111
                writing the SSA Graph to file in the form of graphviz.
3112
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3113 3114 3115 3116

                Examples:
                    .. code-block:: python

3117 3118 3119 3120
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3121

3122 3123
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3124
                    )DOC")
S
sneaxiy 已提交
3125 3126 3127 3128 3129 3130
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3131 3132 3133 3134
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3135 3136
            self.enable_sequential_execution_ = b;
          },
3137 3138
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3139 3140 3141 3142

                Examples:
                    .. code-block:: python

3143 3144 3145 3146 3147 3148
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3149 3150
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3151 3152 3153 3154 3155 3156
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3157 3158 3159 3160
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3161 3162
            self.remove_unnecessary_lock_ = b;
          },
3163 3164
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3165 3166 3167 3168

                Examples:
                    .. code-block:: python

3169 3170 3171 3172 3173 3174
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3175 3176
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3177 3178 3179 3180
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3181
#ifdef WIN32
3182
            PADDLE_THROW(platform::errors::Unavailable(
3183
                "Distribution mode is not supported on Windows platform."));
3184
#endif
3185 3186
            self.num_trainers_ = num_trainers;
          })
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3199 3200 3201 3202 3203 3204
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3205 3206 3207 3208 3209 3210
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3211
      .def_property("use_hierarchical_allreduce",
3212 3213 3214 3215 3216 3217
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3218
      .def_property("hierarchical_allreduce_inter_nranks",
3219 3220 3221 3222 3223 3224 3225
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3226 3227 3228 3229 3230 3231
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3232 3233 3234 3235
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3236 3237
            self.fuse_elewise_add_act_ops_ = b;
          },
3238
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3239
                to fuse elementwise_add_op and activation_op,
3240
                it may make the execution faster. Default is False.
F
flame 已提交
3241 3242 3243 3244

                Examples:
                    .. code-block:: python

3245 3246 3247 3248 3249 3250
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3251 3252
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3253 3254 3255 3256
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3257
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3258
                              platform::errors::PreconditionNotMet(
3259 3260
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3261 3262 3263 3264 3265 3266 3267 3268 3269
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3270 3271 3272 3273 3274 3275
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3276 3277
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3303 3304 3305 3306
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3307
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3308
                              platform::errors::PreconditionNotMet(
3309 3310
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3321 3322 3323 3324 3325 3326
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3327 3328
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3329 3330 3331 3332 3333 3334
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3335 3336 3337 3338
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3339 3340
            self.fuse_relu_depthwise_conv_ = b;
          },
3341
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3342 3343 3344
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3345
                Default is False.
F
flame 已提交
3346 3347 3348 3349

                Examples:
                    .. code-block:: python

3350 3351 3352 3353 3354 3355
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3356 3357
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3358 3359 3360
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3361
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3362 3363
                    },
                    [](BuildStrategy &self, bool b) {
3364 3365 3366 3367
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3368 3369
                      self.fuse_broadcast_ops_ = b;
                    },
3370
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3371 3372 3373 3374
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3375 3376 3377 3378 3379
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3380 3381 3382 3383 3384 3385
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3386 3387
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3388 3389
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3390
                      return self.fuse_all_optimizer_ops_ == true ||
3391
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3392 3393
                    },
                    [](BuildStrategy &self, bool b) {
3394 3395 3396 3397
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3398 3399
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3400 3401 3402 3403
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3404 3405 3406 3407
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3408 3409
            self.sync_batch_norm_ = b;
          },
3410
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3411 3412 3413
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3414 3415
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3416 3417 3418 3419

                Examples:
                    .. code-block:: python

3420 3421 3422 3423 3424 3425
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3426 3427
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3428 3429
      .def_property(
          "memory_optimize",
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3440
              self.memory_optimize_ = paddle::none;
3441 3442 3443
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3444
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3445 3446
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3447 3448
            }
          },
3449
          R"DOC((bool, optional): memory opitimize aims to save total memory
3450
                consumption, set to True to enable it.
3451

3452 3453 3454
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3469 3470 3471
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3472 3473 3474
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3475
              PADDLE_THROW(platform::errors::Unavailable(
3476
                  "Distribution mode is not supported on Windows platform."));
3477 3478 3479 3480 3481
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3482 3483 3484
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3485
      .def_property(
D
dzhwinter 已提交
3486 3487 3488
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3489 3490 3491 3492
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3493 3494
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3495 3496
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3497
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3498
          },
C
chengduo 已提交
3499
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3500 3501 3502 3503 3504 3505 3506
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3507 3508 3509 3510
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3511 3512 3513 3514 3515 3516 3517 3518 3519
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3520 3521 3522 3523 3524 3525
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3526 3527 3528 3529 3530 3531 3532
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3533 3534 3535 3536 3537 3538
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3539
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3540
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3541 3542 3543 3544 3545
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3546

3547 3548 3549 3550 3551 3552
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3553
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3554
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3555
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3556
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3557 3558 3559 3560
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3561 3562 3563 3564 3565
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3566 3567 3568
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3569 3570 3571 3572
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3573 3574
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3575 3576 3577 3578 3579 3580 3581 3582
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3583
               return py::cast(
3584
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3585 3586
             } else {
               return py::cast(std::move(
3587
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3588
             }
3589 3590
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3591

J
jianghaicheng 已提交
3592 3593 3594 3595 3596 3597 3598 3599
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3600 3601
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3602 3603 3604 3605 3606
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3607
          })
J
jianghaicheng 已提交
3608 3609 3610 3611 3612 3613 3614
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3615
          })
J
jianghaicheng 已提交
3616 3617 3618 3619 3620 3621
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3622
                    })
J
jianghaicheng 已提交
3623 3624 3625 3626 3627 3628
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3629
                    })
J
jianghaicheng 已提交
3630 3631 3632 3633 3634 3635 3636
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3637
          })
J
jianghaicheng 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3652
          })
J
jianghaicheng 已提交
3653 3654 3655 3656 3657 3658
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3659
                    })
J
jianghaicheng 已提交
3660 3661 3662 3663 3664 3665
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3666
                    })
J
jianghaicheng 已提交
3667 3668 3669 3670 3671 3672
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3673
                    });
J
jianghaicheng 已提交
3674 3675
#endif

D
dongdaxiang 已提交
3676
  BindFleetWrapper(&m);
3677
  BindIO(&m);
T
Thunderbrook 已提交
3678

T
Thunderbrook 已提交
3679 3680
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3681
#endif
T
Thunderbrook 已提交
3682
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3683
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3684
#endif
3685
  BindGlooWrapper(&m);
H
hutuxian 已提交
3686
  BindBoxHelper(&m);
H
hutuxian 已提交
3687 3688 3689
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3690
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3691
  BindNCCLWrapper(&m);
3692 3693 3694
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3695
#endif
F
flame 已提交
3696 3697
  BindGraph(&m);
  BindNode(&m);
3698
  BindPass(&m);
F
flame 已提交
3699
  BindInferenceApi(&m);
3700
  BindCompatible(&m);
3701
  BindDataset(&m);
Y
yaoxuefeng 已提交
3702
  BindGenerator(&m);
3703 3704 3705
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3706
  BindAscendDevice(&m);
3707
#endif
Y
Yanghello 已提交
3708 3709 3710
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3711

T
tangwei12 已提交
3712
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3713 3714
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3715
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3716 3717
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3718 3719 3720 3721 3722
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3723 3724 3725 3726
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3727
  BindSparseShardingTools(&m);
3728
#endif
L
Luo Tao 已提交
3729
}
3730
}  // namespace pybind
3731
}  // namespace paddle