pybind.cc 19.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/pybind/protobuf.h"
Q
qijun 已提交
16

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/backward.h"
20
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
21 22 23 24 25 26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
29
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
30 31 32 33 34 35 36 37 38
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/cond_op.h"
#include "paddle/fluid/operators/net_op.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/fluid/pybind/pybind.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
41

42
#include "paddle/fluid/string/to_string.h"
43

D
Dong Zhihong 已提交
44
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
45 46 47
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
48 49
#endif

Q
Qiao Longfei 已提交
50 51 52
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

53
namespace paddle {
54
namespace pybind {
55
bool IsCompiledWithCUDA() {
56
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
57 58 59 60 61 62
  return false;
#else
  return true;
#endif
}

63 64
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
65

66 67 68 69
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
70 71
  BindException(m);

72 73 74
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
75
      .def("get_dims",
76
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
77
      .def("set_dims",
Q
qijun 已提交
78
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
79
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
80
           })
D
dzhwinter 已提交
81 82 83 84
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
85
      .def("alloc_float",
D
dzhwinter 已提交
86
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
87
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
88
           })
Q
qijun 已提交
89
      .def("alloc_float",
Y
Yu Yang 已提交
90
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
91
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
92 93
           })
      .def("alloc_int",
Y
Yu Yang 已提交
94
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
95
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
96
           })
Q
qijun 已提交
97
      .def("alloc_int",
D
dzhwinter 已提交
98
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
99
             self.mutable_data<int>(place);
Q
qijun 已提交
100
           })
Y
Yu Yang 已提交
101 102
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
103
      .def("set", PyCPUTensorSetFromArray<double>)
104
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
105
      .def("set", PyCPUTensorSetFromArray<bool>)
106
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
107 108
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
109
      .def("set", PyCUDATensorSetFromArray<double>)
110
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
111
      .def("set", PyCUDATensorSetFromArray<bool>)
Q
qijun 已提交
112
#endif
113
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
114 115 116 117 118
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
119

120
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
121 122
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
123 124 125
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
D
dzhwinter 已提交
126 127 128 129
            LoD new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            new (&instance) LoDTensor(new_lod);
130
          })
Y
Yu Yang 已提交
131
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
132
      .def("set_lod",
133
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
Y
Yu Yang 已提交
134
             LoD new_lod;
135 136 137
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
D
dangqingqing 已提交
138
           })
139
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
D
dzhwinter 已提交
140 141 142 143 144
        auto lod = self.lod();
        std::vector<std::vector<size_t>> new_lod;
        new_lod.reserve(lod.size());
        std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
        return new_lod;
D
dangqingqing 已提交
145 146
      });

Q
qijun 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
160 161 162 163 164 165 166 167 168
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
169 170 171 172 173 174 175 176 177 178 179
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
180

181
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
182 183 184

All parameter, weight, gradient are variables in Paddle.
)DOC")
185
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
186
      .def("set_int",
187 188
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
189 190 191 192 193 194 195
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
196
      .def("get_tensor",
197 198
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
199 200
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
201 202 203
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
204 205 206 207 208
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
209 210 211
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
212 213 214 215 216 217 218
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
219
      .def("get_net",
D
dongzhihong 已提交
220 221
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
222
           },
Y
Refine  
Yu Yang 已提交
223 224 225 226 227 228
           py::return_value_policy::reference)
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
229
           py::return_value_policy::reference);
230

Y
Refine  
Yu Yang 已提交
231 232 233 234
  py::class_<framework::ReaderHolder>(m, "Reader", "")
      .def("has_next", &framework::ReaderHolder::HasNext)
      .def("reset", &framework::ReaderHolder::ReInit);

235
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
236
      .def("var",
237
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
238
             return self.Var(name);
Y
Yu Yang 已提交
239
           },
240
           py::return_value_policy::reference)
241
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
242
      .def(py::init<>())
243
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
244
           py::return_value_policy::reference)
Y
Yu Yang 已提交
245
      .def("drop_kids", &Scope::DropKids);
246

Y
Yu Yang 已提交
247 248
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
249 250
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
251 252 253 254 255 256 257 258 259 260
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
261 262
    return ret_values;
  });
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
279
  m.def("prune", [](const ProgramDesc &origin,
280
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
281
    ProgramDesc prog_with_targets(origin);
282
    for (const auto &t : targets) {
283
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
284
    }
285
    proto::ProgramDesc pruned_desc;
286
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
287
    return new ProgramDesc(pruned_desc);
288
  });
Y
Yu Yang 已提交
289
  m.def("inference_optimize", [](ProgramDesc &origin) {
290
    proto::ProgramDesc pruned_desc;
291
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
292
    return new ProgramDesc(pruned_desc);
293
  });
F
fengjiayi 已提交
294 295
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
296 297 298
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
299 300
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
301
  // clang-format off
Y
Yu Yang 已提交
302
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
303 304
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
305
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
306 307 308
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
309
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
310
                      -> paddle::platform::DeviceContext* {
311
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
312
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
313
#else
Q
qijun 已提交
314
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
315
#endif
Q
qijun 已提交
316
                  });
D
Dong Zhihong 已提交
317
// clang-format on
Q
qijun 已提交
318

D
Dong Zhihong 已提交
319 320 321
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
322
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
323
      .def(py::init<int>())
D
dzhwinter 已提交
324
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
325

326 327 328
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
329

Y
Yu Yang 已提交
330 331 332 333 334 335 336
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
337
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
338 339 340
             self = gpu_place;
           });

Y
Yu Yang 已提交
341 342 343
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
344
                    proto::OpDesc desc;
Y
Yu Yang 已提交
345 346 347 348 349
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
350
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
351 352 353 354 355 356
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
357
      .def("run",
358
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
359 360 361
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
362
              const platform::CUDAPlace &place) { self.Run(scope, place); })
Y
Yu Yang 已提交
363 364 365 366 367 368 369
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
370 371
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
372
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
373
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
374 375 376 377
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
378

Y
Yu Yang 已提交
379 380 381 382 383 384 385
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
386 387
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
388 389 390 391
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
392

Z
cond op  
zchen0211 已提交
393 394 395 396
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
397
                    proto::OpDesc desc;
Z
cond op  
zchen0211 已提交
398 399 400 401 402
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
403
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
404 405 406 407 408 409 410 411 412 413 414
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
415
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
416
      .def(py::init<const platform::Place &>())
417 418 419
      .def("run",
           (void (Executor::*)(const ProgramDesc &, Scope *, int, bool, bool)) &
               Executor::Run);
F
fengjiayi 已提交
420

D
dzhwinter 已提交
421
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
422
  m.def("init_glog", framework::InitGLOG);
D
dzhwinter 已提交
423
  m.def("init_devices", &framework::InitDevices);
424

425
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
426

427
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
428
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
429

F
fengjiayi 已提交
430 431 432 433
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Q
qiaolongfei 已提交
434
  BindConstValue(m);
Y
Yu Yang 已提交
435

Y
Yu Yang 已提交
436 437 438 439 440 441 442 443 444
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
462
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
463
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
464
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
465 466 467 468

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
469
#endif
Y
Yu Yang 已提交
470

471 472 473 474
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
475
      .value("kAll", platform::ProfilerState::kAll)
476 477 478 479 480 481 482 483 484 485 486 487 488 489
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
490 491

  BindRecordIOWriter(m);
492
  return m.ptr();
L
Luo Tao 已提交
493
}
494
}  // namespace pybind
495
}  // namespace paddle