pybind.cc 89.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
49
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
50
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/op_info.h"
52
#include "paddle/fluid/framework/op_registry.h"
53
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
54
#include "paddle/fluid/framework/parallel_executor.h"
55
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
58
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
74
#include "paddle/fluid/operators/py_func_op.h"
75
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
76
#include "paddle/fluid/platform/cpu_info.h"
77
#include "paddle/fluid/platform/device/device_wrapper.h"
78
#include "paddle/fluid/platform/device_context.h"
79
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/platform/enforce.h"
81
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
82
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
83 84
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
85 86 87
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
88
#include "paddle/fluid/pybind/cuda_streams_py.h"
89
#include "paddle/fluid/pybind/distributed_py.h"
90
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
91
#include "paddle/fluid/pybind/imperative.h"
92
#include "paddle/fluid/pybind/io.h"
93
#include "paddle/fluid/pybind/jit.h"
94 95
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
96
#include "paddle/utils/none.h"
97 98 99
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
100
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
101
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
102
#include "paddle/fluid/pybind/box_helper_py.h"
103
#include "paddle/fluid/pybind/communication.h"
104
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
105
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
106
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
107
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
108
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
109
#include "paddle/fluid/pybind/generator_py.h"
110
#include "paddle/fluid/pybind/global_value_getter_setter.h"
111
#include "paddle/fluid/pybind/gloo_context_py.h"
112
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
113
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
114
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
115
#include "paddle/fluid/pybind/ir.h"
116
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
117
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
118
#include "paddle/fluid/pybind/pybind_boost_headers.h"
119
#include "paddle/phi/backends/device_manager.h"
120

121
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
122
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
123
#endif
124
#include "paddle/fluid/framework/data_type.h"
125 126
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
127 128
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
129
#include "paddle/fluid/pybind/reader_py.h"
130
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
131
#include "paddle/fluid/pybind/tensor_py.h"
132
#include "paddle/fluid/string/to_string.h"
133 134
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
135
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
136
#endif
137
#ifndef PADDLE_WITH_HIP
138
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
139
#endif
140
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
141 142
#endif

143
#ifdef PADDLE_WITH_ASCEND_CL
144
#include "paddle/fluid/platform/collective_helper.h"
145 146
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
147 148
#endif

149
#ifdef PADDLE_WITH_XPU
150
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
151
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
152 153
#endif

154 155 156 157
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/capi/capi.h"
#endif

158
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
159

J
jianghaicheng 已提交
160
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
161 162
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
163
#endif
164

165 166 167 168
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
169 170 171 172
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
173
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
174 175 176
#include "paddle/fluid/pybind/fleet_py.h"
#endif

177 178 179 180
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

181
#include "paddle/fluid/eager/api/utils/global_utils.h"
182
#include "paddle/fluid/imperative/layout_autotune.h"
183 184
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
185 186
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
187 188
#include "pybind11/stl.h"

189
DECLARE_bool(use_mkldnn);
190

Q
Qiao Longfei 已提交
191 192
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
193 194 195
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
196

197
namespace paddle {
198
namespace pybind {
199

0
0x45f 已提交
200
PyTypeObject *g_framework_scope_pytype = nullptr;
201
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
202
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
203

204
bool IsCompiledWithCUDA() {
205 206 207 208 209 210 211
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

212 213 214 215 216 217 218 219
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

220 221
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
222 223 224 225 226 227
  return false;
#else
  return true;
#endif
}

228 229 230 231 232 233 234 235
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

236 237 238 239 240 241 242 243
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

244 245 246 247 248 249 250 251
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
252 253 254 255 256 257 258 259
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

260 261 262 263 264 265 266 267
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

268 269 270 271 272 273 274 275
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

276 277 278 279 280 281 282 283
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

284 285 286 287 288 289 290 291
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

292 293 294 295 296 297 298 299 300 301 302
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

303 304 305 306 307 308 309 310 311 312 313
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

331
bool IsCompiledWithBrpc() {
332
#ifndef PADDLE_WITH_DISTRIBUTE
333 334
  return false;
#endif
335
  return true;
336 337
}

Y
update  
Yancey1989 已提交
338
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
339
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
340 341 342 343 344 345
  return true;
#else
  return false;
#endif
}

H
hong 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
368 369
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
370 371
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
385 386
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
387 388
    }
    vec_res.emplace_back(
389
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
390 391 392 393 394 395 396 397 398 399 400 401
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
402 403
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
404 405 406 407 408 409 410 411 412 413 414 415
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
416 417 418
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
419 420 421 422
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
423 424
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
425 426 427 428
  }
  return vec_res;
}

429
static void inline CreateVariableIfNotExit(
430 431
    const py::handle &py_handle,
    const framework::Scope &scope,
432 433 434 435 436 437
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
438 439
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
440 441 442 443 444 445 446 447 448 449 450 451 452
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
453 454 455
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
456 457 458 459 460
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
461 462 463 464 465
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
466 467
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
468
        PADDLE_ENFORCE_NOT_NULL(
469 470 471
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
472 473 474 475
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
476
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
477 478
        tensor_temp->mutable_data(
            exe->GetPlace(),
479
            framework::TransToPhiDataType(var_desc.GetDataType()));
480 481 482
      }
    }
  } else {
483 484
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
485 486 487 488 489
  }

  return;
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
506 507
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
508 509 510 511 512 513 514
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
515 516 517 518
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
519
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
520 521 522 523 524 525 526 527
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

528 529 530 531 532 533
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
534
  BindImperative(&m);
535
  BindEager(&m);
J
Jack Zhou 已提交
536
  BindEagerStringTensor(&m);
537
  BindCudaStream(&m);
538
  BindJit(&m);
539

Y
Yu Yang 已提交
540 541 542
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
543
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
544

545 546
  AssertStaticGraphAndDygraphGradMakerNoDiff();

547
  m.doc() = "C++ core of PaddlePaddle";
548

549 550 551 552
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

553
  BindException(&m);
Y
Yu Yang 已提交
554

555 556
  m.def("set_num_threads", &platform::SetNumThreads);

557 558
  m.def("disable_signal_handler", &DisableSignalHandler);

559 560 561 562 563 564 565 566
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

567
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
568
  m.def("cudnn_version", &platform::DnnVersion);
569 570 571 572 573 574
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
575
#endif
576

Z
Zeng Jinle 已提交
577 578 579 580
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

581 582 583 584 585 586 587 588 589
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
590 591
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
592
      .def("replay", &platform::CUDAGraph::Replay)
593 594
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
595 596
#endif

Z
Zeng Jinle 已提交
597 598 599 600
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
601 602 603
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
604 605

    PADDLE_ENFORCE_NOT_NULL(
606 607 608 609
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
610

6
633WHU 已提交
611 612
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
613
    framework::Tensor tensor;
6
633WHU 已提交
614

S
Siming Dai 已提交
615
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
616 617
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
618
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
619
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
620 621 622 623 624
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
625

626
  m.def("_create_loaded_parameter",
627 628
        [](const py::handle &vec_var_list,
           const Scope &scope,
629 630 631 632
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

633 634 635 636 637 638
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
639 640
  });

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

666 667 668 669 670 671
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
672

S
sneaxiy 已提交
673
  m.def(
S
sneaxiy 已提交
674
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
675 676 677 678
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
679 680 681
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
698
            }
699
            all_kernels_info.emplace(op_type, kernel_types);
700
          }
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
717
                }
718 719
              } else {
                kernel_types.emplace_back(kernel_type_str);
720
              }
721
            }
722 723 724
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
725
          }
726
        }
727

728 729 730 731
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
732 733 734
           Return the registered kernels in paddle.

           Args:
735
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
736
           )DOC");
737

738 739 740 741 742 743
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
744 745 746 747 748
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
749

S
sneaxiy 已提交
750 751 752
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
753
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
754

755
  m.def("_set_fuse_parameter_group_size",
756
        &paddle::framework::ir::SetFuseParameterGroupsSize);
757
  m.def("_set_fuse_parameter_memory_size",
758
        &paddle::framework::ir::SetFuseParameterMemorySize);
759

S
sneaxiy 已提交
760 761 762
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

763 764
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

765 766 767
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
809 810 811 812 813 814 815 816 817 818 819 820 821
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
822 823 824 825 826
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
827

828
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
829 830 831

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
832
      .def(py::init<>())
833
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
834
      .def("set_int",
835 836
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
837 838 839 840 841 842 843
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
844 845 846 847 848 849
      .def(
          "get_tensor",
          [](Variable &self) -> LoDTensor * {
            return self.GetMutable<LoDTensor>();
          },
          py::return_value_policy::reference)
850 851 852 853
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
854 855 856 857
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
858 859 860 861
      .def("set_vocab",
           [](Variable &self, Vocab vocab) {
             *self.GetMutable<Vocab>() = vocab;
           })
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
888
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
889 890 891 892 893 894
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
895
#endif
896 897 898
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
899 900
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
901 902 903 904 905 906 907 908 909 910
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
911 912
                scope_vec->size(),
                0,
913 914 915 916 917
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
918 919 920 921
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
922

S
sneaxiy 已提交
923
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
924

0
0x45f 已提交
925
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

939
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
940 941 942 943 944
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
945 946 947
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
948 949
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
950 951 952 953 954 955 956
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
957
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
958

959
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
960
           current scope, the variable would be created. Otherwise,
961
           return the existing variable.
S
sneaxiy 已提交
962 963

           Args:
964 965
               name (str): the variable name.

S
sneaxiy 已提交
966
           Returns:
967
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
968
           )DOC",
969
          py::return_value_policy::reference)
970 971 972
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
973
           R"DOC(
974
           Find variable named :code:`name` in the current scope or
975
           its parent scope. Return None if not found. 
976

S
sneaxiy 已提交
977 978
           Args:
               name (str): the variable name.
979

S
sneaxiy 已提交
980
           Returns:
981
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
982
           )DOC",
983
           py::return_value_policy::reference)
984
      .def("size", &Scope::Size)
985 986 987
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
988 989 990 991 992 993 994 995 996 997 998
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
999
      .def(
1000 1001
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1002
          R"DOC(
S
sneaxiy 已提交
1003 1004 1005 1006 1007
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1008
          py::return_value_policy::reference)
1009 1010
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1011 1012
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1013 1014
           )DOC")
      .def("_kids", &Scope::kids);
1015

1016 1017 1018 1019 1020 1021 1022 1023
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1024
        Create a new scope.
1025

S
sneaxiy 已提交
1026 1027 1028
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1029
      py::return_value_policy::reference);
S
sneaxiy 已提交
1030

Y
Yu Yang 已提交
1031 1032
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1033 1034
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1035 1036 1037 1038
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1039
        PADDLE_ENFORCE_EQ(
1040 1041
            info.Proto().SerializeToString(&str),
            true,
1042 1043
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1044 1045 1046
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1047 1048
    return ret_values;
  });
1049 1050 1051 1052 1053 1054 1055
  m.def("get_all_op_names", []() {
    std::vector<std::string> op_names;
    for (auto &iter : OpInfoMap::Instance().map()) {
      op_names.emplace_back(iter.first);
    }
    return op_names;
  });
1056 1057 1058 1059 1060 1061 1062 1063
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1064
              res = op_checker->GetDefaultAttrsMap();
1065 1066 1067 1068
            }
          }
          return res;
        });
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1087 1088 1089
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1090 1091 1092 1093 1094
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1095 1096 1097
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1098
  m.def("infer_no_need_buffer_slots",
1099 1100
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1128 1129 1130 1131 1132 1133
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1134 1135 1136
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
1137
            Args:
1138 1139 1140 1141 1142 1143 1144 1145
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1146 1147 1148 1149
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1150 1151
    VLOG(4) << s;
    return s;
1152 1153 1154 1155 1156 1157
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1158
  });
1159 1160 1161 1162
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1163 1164 1165
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1166 1167
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1168

Q
qijun 已提交
1169
  // clang-format off
Y
Yu Yang 已提交
1170
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1171 1172
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1173
                      -> paddle::platform::DeviceContext* {
L
Leo Chen 已提交
1174
    auto* context = new phi::CPUContext();
W
Wilber 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1188
                  })
1189 1190 1191 1192 1193 1194 1195 1196 1197
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1224 1225
#endif
                  })
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
#endif
        })
        .def_static("create",
                    [](paddle::platform::CustomPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CustomPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with "
                 "CustomDevice support."));
#else
                return new paddle::platform::CustomDeviceContext(place);
1249 1250
#endif
        })
Q
qijun 已提交
1251
      .def_static("create",
D
dzhwinter 已提交
1252
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1253
                      -> paddle::platform::DeviceContext* {
1254
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1255 1256 1257 1258
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1259
#else
W
Wilber 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
1273 1274 1275 1276
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1277 1278
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1279
#endif
C
chengduoZH 已提交
1280 1281 1282 1283
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1284
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1285 1286 1287 1288
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1289 1290 1291 1292
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1293
// clang-format on
1294
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1295 1296
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1297 1298 1299
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1300
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1301
#else
R
ronnywang 已提交
1302
          VLOG(1) << string::Sprintf(
1303 1304 1305 1306
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1307
              "PaddlePaddle by: pip install paddlepaddle\n");
1308 1309 1310 1311 1312 1313
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1314
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1315
#else
R
ronnywang 已提交
1316
          VLOG(1) << string::Sprintf(
1317 1318 1319 1320
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1321
              "PaddlePaddle by: pip install paddlepaddle\n");
1322 1323 1324 1325 1326 1327
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1328
    devices = phi::DeviceManager::GetAllDeviceList();
1329
#else
R
ronnywang 已提交
1330
          VLOG(1) << string::Sprintf(
1331 1332 1333 1334
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1335
              "PaddlePaddle by: pip install paddlepaddle\n");
1336 1337 1338 1339 1340 1341
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1342
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1343
#else
R
ronnywang 已提交
1344
          VLOG(1) << string::Sprintf(
1345 1346 1347 1348 1349 1350
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1351
              "PaddlePaddle by: pip install paddlepaddle\n");
1352 1353 1354
#endif
    return devices;
  });
Y
Yu Yang 已提交
1355

Y
Yu Yang 已提交
1356
  py::class_<OperatorBase>(m, "Operator")
1357 1358 1359 1360 1361 1362 1363
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1364 1365
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1366 1367 1368 1369 1370 1371
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1372
      .def("run",
1373 1374
           [](OperatorBase &self,
              const Scope &scope,
1375 1376 1377 1378
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1379
      .def("run",
1380 1381
           [](OperatorBase &self,
              const Scope &scope,
1382 1383 1384 1385
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1386
      .def("run",
1387 1388
           [](OperatorBase &self,
              const Scope &scope,
1389 1390 1391 1392
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1393
      .def("run",
1394 1395
           [](OperatorBase &self,
              const Scope &scope,
1396 1397 1398 1399
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1400
      .def("run",
1401 1402
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1403
              const platform::CUDAPinnedPlace &place) {
1404
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1405 1406
             self.Run(scope, place);
           })
1407
      .def("run",
1408 1409
           [](OperatorBase &self,
              const Scope &scope,
1410 1411 1412 1413
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1414
      .def("run",
1415 1416
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1417 1418 1419 1420
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1421 1422 1423 1424 1425
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1426 1427
             return op.Outputs();
           })
Q
qijun 已提交
1428 1429
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1430
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1431
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1432 1433 1434 1435
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1436

1437 1438 1439
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1440 1441
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1442 1443 1444 1445 1446 1447
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1448 1449
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1450

1451 1452
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1453
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1454
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1455
      .def("close", &Executor::Close)
1456 1457
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1458
           py::call_guard<py::gil_scoped_release>())
1459 1460
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1461
           py::call_guard<py::gil_scoped_release>())
1462
      .def("init_for_dataset",
1463 1464 1465 1466
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1467
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1468
             pybind11::gil_scoped_release release;
1469 1470 1471 1472 1473 1474 1475
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1476
      .def("run_prepared_ctx",
1477 1478 1479
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1480
              std::map<std::string, const LoDTensor *> *feed_targets,
1481
              std::map<std::string, FetchType *> *fetch_targets,
1482 1483
              bool create_local_scope = true,
              bool create_vars = true,
1484 1485 1486
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1487 1488 1489 1490 1491 1492 1493 1494
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1495
           })
1496
      .def("run_prepared_ctx",
1497 1498 1499 1500 1501
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1502 1503
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1504 1505
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1506
           })
1507
      .def("prepare",
1508 1509 1510
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1511 1512 1513 1514
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1515 1516
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1517 1518
           })
      .def("create_variables", &Executor::CreateVariables)
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1535

1536
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1537
      .def(py::init<>())
1538 1539 1540 1541 1542
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1543

1544
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1545
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1546
      .def("run",
1547
           [](StandaloneExecutor &self,
1548
              Scope *scope,
1549
              std::vector<std::string> feed_names,
1550 1551 1552 1553
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1554
               ret = self.Run(scope, feed_names, fetch_names);
1555 1556 1557
             }
             return py::cast(std::move(ret));
           })
1558 1559
      .def("dry_run",
           [](StandaloneExecutor &self,
1560
              Scope *scope,
1561
              const std::unordered_map<std::string, py::array> &input_dict) {
1562
             std::vector<framework::LoDTensor> feed_tensors;
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1573
             framework::interpreter::CostInfo cost_info;
1574 1575
             {
               pybind11::gil_scoped_release release;
1576
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1577 1578
             }
             return cost_info;
H
hong 已提交
1579 1580
           });

D
dzhwinter 已提交
1581
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1582
  m.def("init_glog", framework::InitGLOG);
1583 1584 1585 1586
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1587
  m.def("init_devices", []() { framework::InitDevices(); });
1588 1589
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1590
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1591
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1592
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1593
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1594
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1595
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1596
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1597
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
1598
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1599
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1600
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1601
  m.def("supports_bfloat16", SupportsBfloat16);
1602
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1603 1604
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1605
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1606
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1607
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1608 1609 1610
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1630 1631 1632
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1633 1634
  m.def(
      "run_cmd",
1635 1636
      [](const std::string &cmd,
         int time_out = -1,
1637
         int sleep_inter = -1) -> const std::string {
1638 1639
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1640
      },
1641 1642 1643
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1644 1645
  m.def(
      "shell_execute_cmd",
1646 1647 1648
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1649
         bool redirect_stderr = false) -> std::vector<std::string> {
1650 1651
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1652
      },
1653 1654 1655
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1656
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1657

1658
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1659 1660
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1661
    return platform::GetGPUComputeCapability(place.device) >= 53;
1662
  });
1663 1664 1665 1666
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1667
#endif
1668

S
Steffy-zxf 已提交
1669
  m.def("set_feed_variable",
1670 1671 1672 1673 1674
        static_cast<void (*)(  // NOLINT
            Scope *,
            const LoDTensor &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1675
  m.def("set_feed_variable",
1676 1677 1678 1679 1680
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1681
  m.def("get_fetch_variable",
1682 1683
        [](const Scope &scope,
           const std::string &var_name,
1684 1685 1686
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
R
Ruibiao Chen 已提交
1687
            return py::cast(PADDLE_GET(LoDTensor, var));
1688
          } else {
R
Ruibiao Chen 已提交
1689
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1690 1691
          }
        });
1692
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1693

X
Xin Pan 已提交
1694 1695
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1696 1697 1698 1699
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1700
  BindCostModel(&m);
1701
  BindConstValue(&m);
1702
  BindGlobalValueGetterSetter(&m);
1703
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
1704
  BindFleetExecutor(&m);
1705
  BindTCPStore(&m);
1706
  BindJitProperty(&m);
Y
Yu Yang 已提交
1707

Y
Yu Yang 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1717
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1718
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1719 1720 1721

    Examples:
        .. code-block:: python
1722

Z
Zeng Jinle 已提交
1723 1724 1725
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1726 1727 1728 1729
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1730 1731
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1732 1733 1734 1735
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1736 1737 1738
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1739 1740
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1741 1742 1743
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1744 1745 1746
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1747 1748 1749 1750 1751 1752 1753
      .def(
          "append",
          [](LoDTensorArray &self, const LoDTensor &t) {
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1754 1755
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1756
             Append a LoDensor to LoDTensorArray.
1757 1758 1759 1760 1761 1762
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1774
           )DOC")
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1786

1787
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
1788
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
1789
        )DOC")
1790 1791 1792 1793 1794 1795
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
R
Ruibiao Chen 已提交
1796
                auto &data = PADDLE_GET(LoDTensor, self[i]);
1797 1798
                res[i] = py::cast(std::move(data));
              } else {
R
Ruibiao Chen 已提交
1799
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
1811

1812 1813 1814 1815
      .def(
          "append",
          [](FetchList &self, const LoDTensor &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1816
            auto &lod_tensor = PADDLE_GET(LoDTensor, self.back());
1817 1818 1819 1820 1821 1822 1823 1824 1825
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1826
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
1827 1828 1829 1830 1831 1832
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
1833 1834

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
1835
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1836
        )DOC")
1837 1838 1839 1840 1841 1842 1843 1844
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
R
Ruibiao Chen 已提交
1845
                  auto &var = PADDLE_GET(LoDTensor, self[i][j]);
1846 1847
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
1848
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
1863

Y
Yu Yang 已提交
1864
  m.def("op_support_gpu", OpSupportGPU);
1865
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1866
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
1867
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
1868 1869 1870 1871 1872 1873 1874 1875
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
1876 1877 1878 1879 1880 1881
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
1882 1883

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
1909
      });
D
dangqingqing 已提交
1910

1911
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
1912 1913 1914
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
1915 1916 1917 1918
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
1919
#endif
P
peizhilin 已提交
1920
#endif
Y
Yu Yang 已提交
1921

1922 1923
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
1924
  m.def("npu_finalize", []() {
1925 1926
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

1927 1928 1929
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
1930
      platform::NPUDeviceGuard guard(devices[i]);
1931 1932 1933 1934
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
1955 1956 1957 1958
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

1959 1960 1961 1962
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

1963 1964 1965 1966 1967 1968
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1969 1970 1971 1972
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1973
      .value("kAll", platform::ProfilerState::kAll)
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1985
  m.def("set_tracer_option", platform::SetTracerOption);
1986 1987
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1988
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1989
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
1990
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
1991
    PADDLE_ENFORCE_EQ(
1992 1993
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
1994 1995 1996
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
1997
    callable.inc_ref();
1998 1999 2000 2001 2002 2003 2004 2005
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2006
  });
2007
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2008 2009 2010
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2011

2012
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2013 2014
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2015 2016
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2017 2018 2019 2020
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2063 2064 2065 2066
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
C
chenjian 已提交
2067 2068 2069 2070 2071
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2072 2073 2074
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2075 2076

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2077 2078
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2079
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2080
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2081 2082
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2083 2084 2085 2086 2087 2088
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2112 2113 2114 2115 2116 2117 2118 2119
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2138

2139
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2140 2141
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2142 2143
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2144
#endif  // PADDLE_WITH_CUDA
2145 2146
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2147

J
jianghaicheng 已提交
2148 2149
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2150 2151 2152
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2153 2154 2155 2156 2157 2158 2159
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2160
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2161 2162
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2163
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2174 2175 2176 2177
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2200 2201
                         option.get_type(),
                         option_name));
2202 2203 2204 2205 2206 2207 2208
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2209 2210
                         option_name,
                         option.first.cast<std::string>(),
2211 2212
                         option.second.cast<std::uint64_t>());
                   }
2213 2214 2215 2216 2217 2218
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2264 2265
                           option.second.get_type(),
                           option_key));
2266
                     }
2267 2268
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2269 2270 2271 2272 2273 2274
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2275 2276
                     element.second.get_type(),
                     option_name));
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2307 2308
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2309 2310 2311
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2312 2313
#endif

2314 2315 2316 2317 2318 2319 2320 2321
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2322
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2323 2324 2325 2326 2327 2328 2329 2330 2331
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2332
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2333 2334 2335 2336 2337 2338 2339
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
  m.def("enable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .EnableLayoutAutoTune();
  });

  m.def("disable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .DisableLayoutAutoTune();
  });

  m.def("use_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance().UseLayoutAutoTune();
  });

D
dongdaxiang 已提交
2354
  BindFleetWrapper(&m);
2355
  BindIO(&m);
2356 2357 2358
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2359

T
Thunderbrook 已提交
2360
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2361
  BindHeterWrapper(&m);
2362
  BindMetrics(&m);
T
Thunderbrook 已提交
2363
#endif
T
Thunderbrook 已提交
2364
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2365
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2366 2367 2368
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2369
#endif
2370
  BindGlooWrapper(&m);
H
hutuxian 已提交
2371
  BindBoxHelper(&m);
H
hutuxian 已提交
2372 2373 2374
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2375
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2376
  BindNCCLWrapper(&m);
2377 2378 2379
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2380
#endif
F
flame 已提交
2381 2382
  BindGraph(&m);
  BindNode(&m);
2383
  BindPass(&m);
F
flame 已提交
2384
  BindInferenceApi(&m);
2385
  BindCompatible(&m);
2386
  BindDataset(&m);
Y
yaoxuefeng 已提交
2387
  BindGenerator(&m);
2388 2389 2390
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
2391 2392 2393
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2394
  BindAscendDevice(&m);
2395
#endif
Y
Yanghello 已提交
2396 2397 2398
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2399

T
tangwei12 已提交
2400
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2401 2402
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2403
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2404 2405
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2406 2407 2408 2409 2410
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2411 2412 2413 2414
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2415
#ifdef PADDLE_WITH_HETERPS
2416 2417
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2418 2419 2420
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2421
#endif
L
Luo Tao 已提交
2422
}
2423
}  // namespace pybind
2424
}  // namespace paddle