pybind.cc 160.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
49
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/framework/op_info.h"
51
#include "paddle/fluid/framework/op_registry.h"
52
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
53
#include "paddle/fluid/framework/parallel_executor.h"
54
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
56
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
57
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/framework/scope_pool.h"
59
#include "paddle/fluid/framework/selected_rows_utils.h"
60
#include "paddle/fluid/framework/tensor_util.h"
61
#include "paddle/fluid/framework/trainer.h"
62
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
63
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
64
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
65
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
66
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
67
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
68
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
69
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
70
#include "paddle/fluid/operators/py_func_op.h"
71
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
72
#include "paddle/fluid/platform/cpu_info.h"
73
#include "paddle/fluid/platform/device/device_wrapper.h"
74
#include "paddle/fluid/platform/device_context.h"
75
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
76
#include "paddle/fluid/platform/enforce.h"
77
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
78
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
79 80
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
81
#include "paddle/fluid/pybind/cuda_streams_py.h"
82
#include "paddle/fluid/pybind/distributed_py.h"
83
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
84
#include "paddle/fluid/pybind/imperative.h"
85
#include "paddle/fluid/pybind/io.h"
86 87
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
88
#include "paddle/utils/none.h"
89 90 91
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
92
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
93
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
94
#include "paddle/fluid/pybind/box_helper_py.h"
95
#include "paddle/fluid/pybind/communication.h"
96
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
97
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
98
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
99
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
100
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
101
#include "paddle/fluid/pybind/generator_py.h"
102
#include "paddle/fluid/pybind/global_value_getter_setter.h"
103
#include "paddle/fluid/pybind/gloo_context_py.h"
104
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
105
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
106
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
107
#include "paddle/fluid/pybind/ir.h"
108
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
109
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
110
#include "paddle/fluid/pybind/pybind_boost_headers.h"
111

112
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
113
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
114
#endif
115
#include "paddle/fluid/framework/data_type.h"
116 117
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
118
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
119
#include "paddle/fluid/pybind/tensor_py.h"
120
#include "paddle/fluid/string/to_string.h"
121 122
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
123
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
124
#endif
125
#ifndef PADDLE_WITH_HIP
126
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
127
#endif
128
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
129 130
#endif

131
#ifdef PADDLE_WITH_ASCEND_CL
132
#include "paddle/fluid/platform/collective_helper.h"
133 134
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
135 136
#endif

137
#ifdef PADDLE_WITH_XPU
138
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
139
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
140 141
#endif

142
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
143

J
jianghaicheng 已提交
144
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
145 146
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
147
#endif
148

149 150 151 152
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
153 154 155 156
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
157
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
158 159 160
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
161 162
#include "pybind11/stl.h"

163
DECLARE_bool(use_mkldnn);
164

Q
Qiao Longfei 已提交
165 166
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
167 168 169
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
170

171
namespace paddle {
172
namespace pybind {
173 174 175 176 177 178 179

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
180
PyTypeObject *g_mluplace_pytype = nullptr;
181
PyTypeObject *g_framework_tensor_pytype = nullptr;
182
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
183

184
bool IsCompiledWithCUDA() {
185 186 187 188 189 190 191
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

192 193 194 195 196 197 198 199
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

200 201
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
202 203 204 205 206 207
  return false;
#else
  return true;
#endif
}

208 209 210 211 212 213 214 215
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

216 217 218 219 220 221 222 223
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

224 225 226 227 228 229 230 231
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
232 233 234 235 236 237 238 239
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

240 241 242 243 244 245 246 247
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

248 249 250 251 252 253 254 255
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

256 257 258 259 260 261 262 263
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

264 265 266 267 268 269 270 271
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

272 273 274 275 276 277 278 279 280 281 282
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

283 284 285 286 287 288 289 290 291 292 293
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

311
bool IsCompiledWithBrpc() {
312
#ifndef PADDLE_WITH_DISTRIBUTE
313 314
  return false;
#endif
315
  return true;
316 317
}

Y
update  
Yancey1989 已提交
318
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
319
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
320 321 322 323 324 325
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
326 327 328 329 330 331 332
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
333
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
334 335
}

H
hong 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
358 359 360
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
374 375
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
376 377
    }
    vec_res.emplace_back(
378
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
379 380 381 382 383 384 385 386 387 388 389 390
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
391 392
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
393 394 395 396 397 398 399 400 401 402 403 404
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
405 406 407
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
408 409 410 411
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
412 413
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
414 415 416 417
  }
  return vec_res;
}

418 419 420 421 422 423 424 425
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
426 427
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
428 429 430 431 432 433 434 435 436 437 438 439 440
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
441 442 443
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
444 445 446 447 448
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
449 450 451 452 453
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
454 455
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
456 457 458
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
459 460 461 462
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
463
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
464 465
        tensor_temp->mutable_data(
            exe->GetPlace(),
466
            framework::TransToPhiDataType(var_desc.GetDataType()));
467 468 469
      }
    }
  } else {
470 471
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
472 473 474 475 476
  }

  return;
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
501 502 503 504
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
505
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
506 507 508 509 510 511 512 513
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
514 515 516 517 518 519 520 521 522 523 524
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

525 526 527 528 529 530
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
531
  BindImperative(&m);
532
  BindEager(&m);
533 534
  BindCudaStream(&m);

Y
Yu Yang 已提交
535 536 537
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
538
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
539

540 541
  AssertStaticGraphAndDygraphGradMakerNoDiff();

542
  m.doc() = "C++ core of PaddlePaddle";
543

544 545 546 547
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

548
  BindException(&m);
Y
Yu Yang 已提交
549

550 551
  m.def("set_num_threads", &platform::SetNumThreads);

552 553
  m.def("disable_signal_handler", &DisableSignalHandler);

554 555 556 557 558 559 560 561
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

562
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
563
  m.def("cudnn_version", &platform::DnnVersion);
564 565 566 567 568 569
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
570
#endif
571

Z
Zeng Jinle 已提交
572 573 574 575
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

576 577 578 579 580 581 582 583 584 585
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
586 587
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
588 589
#endif

Z
Zeng Jinle 已提交
590 591 592 593
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
594 595 596
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
597 598 599 600 601 602

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
603 604
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
605
    framework::Tensor tensor;
6
633WHU 已提交
606

S
Siming Dai 已提交
607
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
608 609
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
610
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
611
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
612 613 614 615 616
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
617

618 619 620 621 622 623
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

624 625 626 627 628 629
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
630 631
  });

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
657 658
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
659 660
    return phi::vectorize(operators::details::BroadcastTwoDims(
        phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
L
Leo Chen 已提交
661 662
  });

S
sneaxiy 已提交
663
  m.def(
S
sneaxiy 已提交
664
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
665 666 667 668
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
669 670 671
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
  m.def("_get_all_register_op_kernels",
        [](const std::string &lib) {
          std::unordered_map<std::string, std::vector<std::string>>
              all_kernels_info;
          if (lib == "fluid" || lib == "all") {
            auto &all_kernels =
                paddle::framework::OperatorWithKernel::AllOpKernels();

            for (auto &kernel_pair : all_kernels) {
              auto op_type = kernel_pair.first;
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                paddle::framework::OpKernelType kernel_type = info_pair.first;
                kernel_types.emplace_back(
                    paddle::framework::KernelTypeToString(kernel_type));
              }
              all_kernels_info.emplace(op_type, kernel_types);
689 690
            }
          }
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
          if (lib == "phi" || lib == "all") {
            auto phi_kernels = phi::KernelFactory::Instance().kernels();
            for (auto &kernel_pair : phi_kernels) {
              auto op_type = phi::TransToFluidOpName(kernel_pair.first);
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                framework::OpKernelType kernel_type =
                    framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
                auto kernel_type_str =
                    framework::KernelTypeToString(kernel_type);
                if (all_kernels_info.count(op_type)) {
                  if (std::find(all_kernels_info[op_type].begin(),
                                all_kernels_info[op_type].end(),
                                kernel_type_str) ==
                      all_kernels_info[op_type].end()) {
                    all_kernels_info[op_type].emplace_back(kernel_type_str);
                  }
                } else {
                  kernel_types.emplace_back(kernel_type_str);
710 711
                }
              }
712 713 714
              if (!kernel_types.empty()) {
                all_kernels_info.emplace(op_type, kernel_types);
              }
715 716 717
            }
          }

718 719 720 721
          return all_kernels_info;
        },
        py::arg("lib") = "all",
        R"DOC(
722 723 724
           Return the registered kernels in paddle.

           Args:
725
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
726
           )DOC");
727

S
sneaxiy 已提交
728 729 730
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
731
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
732

733
  m.def("_set_fuse_parameter_group_size",
734
        &paddle::framework::ir::SetFuseParameterGroupsSize);
735
  m.def("_set_fuse_parameter_memory_size",
736
        &paddle::framework::ir::SetFuseParameterMemorySize);
737

S
sneaxiy 已提交
738 739 740
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

741 742
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

743 744 745
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

746 747 748 749 750
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
751 752
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
753 754 755 756
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
S
sneaxiy 已提交
757
      .def("_is_initialized",
758
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
759
      .def("_get_dims",
760
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
761
      .def("_set_dims",
762
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
763
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
764
           })
Y
yuyang18 已提交
765
      .def("_set_layout",
766
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
767 768
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
769
      .def("_alloc_float",
770
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
771
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
772
           })
773
      .def("_alloc_float",
774
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
775 776
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
777
      .def("_alloc_float",
778
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
779
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
780
           })
781 782 783 784
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
785 786 787 788
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
789
      .def("_alloc_double",
790
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
791 792
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
793
      .def("_alloc_int",
794
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
795
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
796
           })
797
      .def("_alloc_int",
798
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
799 800
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
801
      .def("_alloc_int",
802
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
803
             self.mutable_data<int>(place);
Q
qijun 已提交
804
           })
805 806 807 808
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
809
      .def("_alloc_int",
810 811
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
812 813
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
814
      .def("_alloc_float",
815 816
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
817 818
             self.mutable_data<float>(place);
           })
819
      .def("_mutable_data",
820
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
821
              paddle::framework::proto::VarType::Type type) {
822 823
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
824
           })
825
      .def("_mutable_data",
826
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
827
              paddle::framework::proto::VarType::Type type) {
828 829
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
830
           })
831
      .def("_mutable_data",
832
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
833
              paddle::framework::proto::VarType::Type type) {
834 835
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
836 837
           })
      .def("_mutable_data",
838
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
839
              paddle::framework::proto::VarType::Type type) {
840 841
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
842
           })
843 844 845
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
846 847
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
848
           })
849
      .def("_clear", &framework::Tensor::clear)
850 851 852
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
853 854
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
855
           })
Z
Zeng Jinle 已提交
856 857 858 859 860 861 862 863 864 865
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
866 867
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
868
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
869
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
870
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
871
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
872 873
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
874
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
875
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
876 877
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
878 879
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
880 881
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
882
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
883 884
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
885
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
886 887 888
        
        Args:
          lod (numpy.ndarray): The data to set.
889
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
890
          Tensor is to be set.
891 892
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
893 894 895 896 897 898 899 900 901 902

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

903
                t = fluid.Tensor()
L
Leo Chen 已提交
904 905
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
906

907 908 909
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
910
           Return the shape of Tensor.
L
Leo Chen 已提交
911 912

           Returns:
913
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
914 915 916 917 918 919 920 921


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

922
                  t = fluid.Tensor()
L
Leo Chen 已提交
923 924 925
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
926
      .def("_to_dlpack",
927
           [](framework::Tensor &self) {
6
633WHU 已提交
928
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
929
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
947 948 949 950
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
951
      .def("_place", [](framework::Tensor &self) { return self.place(); })
952 953 954 955
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
956
      .def("_layout",
957 958 959 960
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
961
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
981 982
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
983 984 985 986
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
987
      .def("__init__",
988 989
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
990
           })
G
gongweibao 已提交
991
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
992 993
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
994 995 996
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
997
      .def("set_lod",
998 999
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1000
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1001
             LoD new_lod;
1002 1003
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1004 1005
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1006 1007
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1008
             self.set_lod(new_lod);
S
sneaxiy 已提交
1009 1010
           },
           py::arg("lod"), R"DOC(
1011
           Set LoD of the Tensor.
S
sneaxiy 已提交
1012 1013

           Args:
L
Leo Chen 已提交
1014 1015 1016 1017
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1018 1019 1020 1021 1022 1023 1024

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1025
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1026 1027
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1028
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1029
           )DOC")
1030
      .def("set_recursive_sequence_lengths",
1031 1032
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1033 1034 1035 1036 1037 1038 1039 1040
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1041 1042
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1043
                 platform::errors::InvalidArgument(
1044 1045
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1046 1047 1048
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1049
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1050 1051
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1052
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1053

L
Leo Chen 已提交
1054
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1055
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1056
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1057 1058

           Args:
L
Leo Chen 已提交
1059 1060 1061 1062
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1063 1064 1065 1066 1067 1068 1069

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1070
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1071 1072
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1073
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1074
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1075
           )DOC")
1076
      .def("lod",
1077
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1078 1079 1080 1081 1082 1083
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1084 1085
           },
           R"DOC(
1086
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1087 1088

           Returns:
1089
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1090
           
Z
Zeng Jinle 已提交
1091 1092 1093 1094 1095 1096
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1097
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1098 1099 1100
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1101
           )DOC")
G
gongweibao 已提交
1102
      // Set above comments of set_lod.
1103
      .def("recursive_sequence_lengths",
1104
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1105
             // output the length-based lod info
1106
             LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
1107 1108 1109 1110
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1111 1112
           },
           R"DOC(
L
Leo Chen 已提交
1113
           Return the recursive sequence lengths corresponding to of the LodD 
1114
           of the Tensor.
S
sneaxiy 已提交
1115 1116

           Returns:
L
Leo Chen 已提交
1117
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1118 1119 1120 1121 1122 1123 1124

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1125
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1126 1127 1128
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1129 1130
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1131
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1132
             // Check that the lod info is valid and match the outermost
1133
             // dimension of the Tensor data
S
sneaxiy 已提交
1134 1135 1136
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1137
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1138 1139

           Returns:
L
Leo Chen 已提交
1140
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1141 1142 1143 1144 1145 1146 1147

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1148
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1149 1150 1151
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1152
           )DOC")
L
Leo Chen 已提交
1153
      .def("_as_type",
1154
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1155
              paddle::framework::proto::VarType::Type type) {
1156
             framework::Tensor dst;
L
Leo Chen 已提交
1157 1158 1159 1160 1161
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1175
#ifdef _WIN32
1176
           });
1177 1178 1179
#else
           })
      .def(py::pickle(
1180
          [](const framework::Tensor &t) {  // __getstate__
1181
            auto holder = t.Holder();
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1194 1195 1196
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1197 1198
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1199 1200 1201
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1202
              throw std::runtime_error("Invalid Tensor state!");
1203 1204

            // 1. Create a new C++ instance
1205
            framework::Tensor tensor;
1206 1207 1208 1209 1210

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1211 1212
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1213 1214

            // 3. Maintain global fd set
1215
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1216 1217
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1218 1219 1220
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1221
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1222
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1223 1224 1225 1226 1227
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1228

1229
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1230
      .def("__init__",
1231 1232
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1233
           })
Q
qijun 已提交
1234
      .def("__init__",
1235
           [](phi::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1236
              const int64_t &height) {
1237
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1238 1239
           })
      .def("get_tensor",
1240
           [](phi::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1241
           py::return_value_policy::reference)
1242
      .def("numel",
1243
           [](phi::SelectedRows &self) -> int64_t {
1244 1245
             return self.value().numel();
           })
1246 1247
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1248
      .def("set_rows",
1249
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1250
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1251 1252 1253 1254 1255 1256
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1257
      .def("sync_index",
1258 1259
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1260 1261 1262 1263 1264
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1265
      });
Q
qijun 已提交
1266

1267
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1268 1269 1270

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1271
      .def(py::init<>())
1272
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1273
      .def("set_int",
1274 1275
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1276 1277 1278 1279 1280 1281 1282
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1283
      .def("get_tensor",
1284 1285
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1286 1287
           },
           py::return_value_policy::reference)
1288 1289 1290 1291
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1304 1305 1306
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1307
      .def("get_selected_rows",
1308 1309
           [](Variable &self) -> phi::SelectedRows * {
             return self.GetMutable<phi::SelectedRows>();
Q
qijun 已提交
1310 1311
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1312 1313 1314
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1315 1316 1317
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1318
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1319 1320 1321 1322 1323
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1324
#endif
Y
Refine  
Yu Yang 已提交
1325 1326
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1327 1328 1329 1330
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1331 1332
             return self.GetMutable<framework::ReaderHolder>();
           },
1333
           py::return_value_policy::reference)
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1345 1346 1347 1348
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1349

S
sneaxiy 已提交
1350
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1351

S
sneaxiy 已提交
1352
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1366
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1367 1368 1369 1370 1371 1372
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1373 1374
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1375
      .def("var",
1376
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1377
             return self.Var(name);
Y
Yu Yang 已提交
1378
           },
S
sneaxiy 已提交
1379 1380
           py::arg("name"),
           R"DOC(
1381
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1382

1383
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1384
           current scope, the variable would be created. Otherwise,
1385
           return the existing variable.
S
sneaxiy 已提交
1386 1387

           Args:
1388 1389
               name (str): the variable name.

S
sneaxiy 已提交
1390
           Returns:
1391
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1392 1393 1394 1395
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1396
           Find variable named :code:`name` in the current scope or
1397
           its parent scope. Return None if not found. 
1398

S
sneaxiy 已提交
1399 1400
           Args:
               name (str): the variable name.
1401

S
sneaxiy 已提交
1402
           Returns:
1403
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1404
           )DOC",
1405
           py::return_value_policy::reference)
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1418
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1419 1420 1421 1422 1423 1424
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1425
           py::return_value_policy::reference)
S
sneaxiy 已提交
1426 1427 1428
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1429 1430
           )DOC")
      .def("_kids", &Scope::kids);
1431

S
sneaxiy 已提交
1432 1433 1434 1435 1436 1437
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1438 1439
        R"DOC(
        Create a new scope.
1440

S
sneaxiy 已提交
1441 1442 1443
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1444 1445
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1446 1447
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1448 1449
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1450 1451 1452 1453
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1454 1455
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1456 1457
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1458 1459 1460
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1461 1462
    return ret_values;
  });
1463 1464 1465 1466 1467 1468 1469 1470
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1471
              res = op_checker->GetDefaultAttrsMap();
1472 1473 1474 1475
            }
          }
          return res;
        });
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1492 1493 1494
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1495 1496 1497 1498 1499
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1500 1501 1502
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1517
  m.def("prune", [](const ProgramDesc &origin,
1518
                    const std::set<std::string> &feeded_var_names,
1519
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1520
    ProgramDesc prog_with_targets(origin);
1521

1522
    for (const auto &t : targets) {
1523
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1524
    }
1525
    proto::ProgramDesc pruned_desc;
1526 1527 1528 1529
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1530
  });
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1548 1549 1550 1551
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1552 1553 1554
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1555 1556
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1557

Q
qijun 已提交
1558
  // clang-format off
Y
Yu Yang 已提交
1559
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1560 1561
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1562
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1577
                  })
1578 1579 1580 1581 1582 1583 1584 1585 1586
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1613 1614
#endif
                  })
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1627
      .def_static("create",
D
dzhwinter 已提交
1628
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1629
                      -> paddle::platform::DeviceContext* {
1630
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1631 1632 1633 1634
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1635
#else
W
Wilber 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1651
#endif
C
chengduoZH 已提交
1652 1653 1654 1655
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1656
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1657 1658 1659 1660
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1661 1662 1663 1664
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1665
// clang-format on
1666
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1667 1668
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1669 1670 1671
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1672
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1686
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1700
    devices = phi::DeviceManager::GetAllDeviceList();
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1714
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  py::class_<platform::CustomPlace>(m, "CustomPlace",
                                    R"DOC(
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
                                             )DOC")
      .def("__init__",
           [](platform::CustomPlace &self, const std::string &device_type,
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
                   device_type, dev_id);
               std::exit(-1);
             }

1751 1752
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
1753
               int dev_count = static_cast<int>(
1754
                   phi::DeviceManager::GetDeviceCount(device_type));
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
                       device_type, dev_id, dev_count, device_type, dev_count);
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
                   device_type, dev_id);
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
                 "PaddlePaddle by: pip install paddlepaddle-core\n"
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
1802
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1803 1804 1805 1806 1807

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1808
    The memory of CUDAPlace with different dev_id is not accessible.
1809 1810 1811 1812 1813 1814 1815 1816
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1817 1818 1819 1820

    Examples:
        .. code-block:: python

1821 1822 1823
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1824

1825 1826 1827
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1828 1829
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1830
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1831 1832 1833 1834 1835 1836 1837 1838
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1839 1840
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1841 1842 1843 1844 1845 1846 1847 1848
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1849 1850
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1851 1852 1853 1854
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1855 1856
             new (&self) platform::CUDAPlace(dev_id);
#else
1857 1858 1859 1860 1861 1862 1863 1864 1865
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1866 1867
#endif
           })
1868
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1869 1870
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1871 1872 1873 1874
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1875
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1876
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1877
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1878 1879
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1880 1881 1882
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1883
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1884
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1885

1886
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1887 1888 1889 1890 1891
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1892 1893 1894
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1933
#ifdef PADDLE_WITH_XPU
1934 1935 1936 1937 1938 1939 1940
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1941 1942 1943
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1944
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1945
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1946
#ifdef PADDLE_WITH_XPU
1947 1948 1949
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1950
      .export_values();
1951
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1952 1953
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1954 1955 1956 1957 1958
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1959 1960
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1961 1962
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1963
    return platform::get_xpu_version(place.device) >
1964
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1965 1966 1967
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1968
    return platform::get_xpu_version(place.device) >
1969
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1970
  });
1971
#endif
1972

1973
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1974
    CPUPlace is a descriptor of a device.
1975
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1976 1977 1978 1979

    Examples:
        .. code-block:: python

1980 1981
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1982

1983 1984 1985
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1986 1987
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1988
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1989
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1990 1991 1992 1993
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1994
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1995
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1996

1997 1998
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1999 2000 2001 2002 2003 2004
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2005 2006 2007 2008

    Examples:
        .. code-block:: python

2009 2010
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2011

2012 2013 2014 2015
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2016
      .def("__init__",
S
sneaxiy 已提交
2017
           [](platform::CUDAPinnedPlace &self) {
2018
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2019 2020 2021
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2022
#endif
S
sneaxiy 已提交
2023
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2024
           })
S
sneaxiy 已提交
2025 2026 2027 2028
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2029 2030
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2031 2032
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2033 2034 2035 2036
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2037
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2038 2039
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2040
  // NPUPlace
2041
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2042 2043 2044 2045 2046 2047 2048 2049
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2050 2051 2052
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2084
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2099 2100
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2101 2102
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2224 2225 2226
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2227 2228 2229 2230
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2231
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2232
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2233
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2234
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2235
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2236 2237
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2238 2239
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2240 2241
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2242 2243
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2244 2245
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2246 2247 2248 2249
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2250 2251
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2252 2253 2254
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2255 2256 2257 2258 2259
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2260 2261
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2262 2263
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2264 2265 2266 2267
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2268 2269 2270 2271
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2272
      .def("set_place",
D
dzhwinter 已提交
2273
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2274
             self = gpu_place;
C
chengduoZH 已提交
2275
           })
2276 2277 2278 2279 2280
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2281 2282 2283 2284
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2285 2286 2287 2288
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2289 2290 2291 2292
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2293 2294 2295 2296
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2297 2298
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2299

Y
Yu Yang 已提交
2300
  py::class_<OperatorBase>(m, "Operator")
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2315
      .def("run",
2316
           [](OperatorBase &self, const Scope &scope,
2317 2318 2319 2320
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2321 2322
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2323 2324 2325 2326
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2327 2328
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2329 2330 2331 2332
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2333 2334
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2335 2336 2337 2338
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2339 2340 2341
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2342
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2343 2344
             self.Run(scope, place);
           })
2345 2346 2347 2348 2349 2350
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2351 2352 2353 2354 2355 2356 2357
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2358 2359
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2360
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2361
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2362 2363 2364 2365
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2366

2367 2368 2369
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2370 2371 2372 2373 2374 2375 2376
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2377 2378
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2379

2380 2381
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2382
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2383
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2384
      .def("close", &Executor::Close)
2385 2386
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2387 2388
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2389 2390 2391 2392
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2393
             pybind11::gil_scoped_release release;
2394 2395 2396 2397 2398 2399 2400
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2401 2402 2403
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2404
              std::map<std::string, FetchType *> *fetch_targets,
2405 2406 2407 2408 2409 2410 2411 2412
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2413
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2414 2415 2416 2417 2418 2419 2420
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2431
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2432 2433
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2434
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2435 2436
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2437
      });
S
sneaxiy 已提交
2438

2439
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2440
      .def(py::init<>())
2441 2442 2443 2444 2445
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2446

2447
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2448 2449 2450
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2451
           [](StandaloneExecutor &self,
H
hong 已提交
2452
              const std::unordered_map<std::string, py::array> &input_dict,
2453
              std::vector<std::string> fetch_names) {
2454
             std::vector<framework::LoDTensor> feed_tensors;
2455
             std::vector<std::string> feed_names;
H
hong 已提交
2456 2457 2458 2459 2460

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2461 2462
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2463 2464
             }

2465 2466 2467 2468 2469 2470 2471 2472 2473
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2474
              const std::unordered_map<std::string, framework::LoDTensor>
2475 2476
                  &input_dict,
              std::vector<std::string> fetch_names) {
2477
             std::vector<framework::LoDTensor> feed_tensors;
2478 2479 2480 2481 2482 2483 2484
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2485 2486 2487 2488
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2489
             }
W
wanghuancoder 已提交
2490
             return py::cast(std::move(ret));
2491
           })
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2502 2503 2504
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2505
             std::vector<framework::LoDTensor> feed_tensors;
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2516
             framework::interpreter::CostInfo cost_info;
2517 2518 2519 2520 2521
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2522 2523
           });

D
dzhwinter 已提交
2524
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2525
  m.def("init_glog", framework::InitGLOG);
2526 2527
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2528
  m.def("init_devices", []() { framework::InitDevices(); });
2529

2530
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2531
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2532
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2533
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2534
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2535
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2536
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2537
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2538
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2539
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2540
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2541
  m.def("supports_bfloat16", SupportsBfloat16);
2542
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2543 2544
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2545
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2546
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2547
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2548 2549 2550
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2570 2571 2572 2573 2574 2575 2576
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2586
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2587 2588
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2589
    return platform::GetGPUComputeCapability(place.device) >= 53;
2590 2591
  });
#endif
2592

S
Steffy-zxf 已提交
2593 2594 2595 2596 2597 2598
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2599 2600 2601 2602 2603
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2604
            return py::cast(BOOST_GET(LoDTensor, var));
2605
          } else {
2606
            return py::cast(BOOST_GET(LoDTensorArray, var));
2607 2608
          }
        });
2609
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2610

X
Xin Pan 已提交
2611 2612
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2613 2614 2615 2616
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2617
  BindCostModel(&m);
2618
  BindConstValue(&m);
2619
  BindGlobalValueGetterSetter(&m);
2620
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2621
  BindFleetExecutor(&m);
2622
  BindTCPStore(&m);
Y
Yu Yang 已提交
2623

Y
Yu Yang 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2633
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2634
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2635 2636 2637

    Examples:
        .. code-block:: python
2638

Z
Zeng Jinle 已提交
2639 2640 2641
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2642 2643 2644 2645
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2646 2647
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2648 2649 2650 2651 2652 2653
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2654 2655 2656 2657
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2658 2659 2660
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2661 2662 2663 2664 2665 2666
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2667 2668
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2669 2670 2671 2672 2673 2674
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2697

2698 2699 2700 2701 2702 2703 2704 2705
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2706
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2707 2708
                 res[i] = py::cast(std::move(data));
               } else {
2709
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2725
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2726 2727 2728 2729 2730 2731 2732 2733
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2734
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2735 2736 2737 2738 2739 2740 2741 2742 2743
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2744 2745
        )DOC")
      .def("_move_to_list",
2746
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2747 2748 2749 2750
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2751
                 if (data_is_lod_tensor(self[i][j])) {
2752
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2753 2754
                   tmp[j] = py::cast(std::move(var));
                 } else {
2755
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2756 2757 2758 2759 2760 2761
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2762 2763 2764 2765 2766 2767 2768 2769 2770
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2771
  m.def("op_support_gpu", OpSupportGPU);
2772
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2773
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2774 2775 2776 2777 2778 2779 2780 2781
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2782 2783 2784 2785 2786 2787 2788
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2814
      });
D
dangqingqing 已提交
2815

2816
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2817 2818 2819
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2820 2821 2822 2823
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2824
#endif
P
peizhilin 已提交
2825
#endif
Y
Yu Yang 已提交
2826

2827 2828
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2829
  m.def("npu_finalize", []() {
2830 2831
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2832 2833 2834
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2835
      platform::NPUDeviceGuard guard(devices[i]);
2836 2837 2838 2839
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2860 2861 2862 2863
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2864 2865 2866 2867
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2868 2869 2870 2871 2872 2873
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2874 2875 2876 2877
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2878
      .value("kAll", platform::ProfilerState::kAll)
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2890
  m.def("set_tracer_option", platform::SetTracerOption);
2891 2892
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2893
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2894
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2895
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2896 2897
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
2898 2899 2900
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2901
    callable.inc_ref();
2902 2903 2904 2905 2906 2907 2908 2909
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2910
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2911 2912 2913
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2914

2915 2916
  m.def("size_of_dtype", framework::SizeOfType);

2917
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2918 2919
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2920 2921
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2922
#endif  // PADDLE_WITH_CUDA
2923 2924
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2925

2926 2927 2928
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2929 2930
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2931
      .def("has", &ir::Pass::Has)
2932 2933 2934
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2935
           })
2936
      .def(
2937
          "set",
2938 2939 2940
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2941 2942
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2943 2944
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2945 2946 2947 2948 2949
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2964 2965
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2966
        self.Apply(graph.get());
F
flame 已提交
2967
      });
2968

X
fix  
Xin Pan 已提交
2969 2970
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2985
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2986
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2987 2988 2989 2990
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2991 2992 2993
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2994 2995 2996
    Examples:
        .. code-block:: python

2997 2998 2999 3000 3001 3002 3003 3004 3005
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3006

3007 3008
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3009

3010
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3011 3012
          sgd_optimizer.minimize(avg_loss)

3013
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3014 3015
          exec_strategy.num_threads = 4

3016 3017 3018
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3019 3020
        )DOC");

3021 3022 3023 3024
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3025

Y
yuyang18 已提交
3026
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3027 3028 3029 3030 3031
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3032
          },
3033 3034
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3035 3036 3037 3038 3039 3040 3041
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3055
      .def_property(
3056 3057
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3058
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3059 3060 3061
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3062 3063 3064 3065 3066
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3067 3068 3069
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3070 3071
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3072 3073 3074 3075 3076 3077 3078
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3079 3080 3081 3082
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3083
                because the temp variable's shape maybe the same between two iterations.
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3094

3095 3096 3097 3098 3099 3100 3101
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3102
              )DOC")
Q
Qiao Longfei 已提交
3103 3104 3105 3106 3107 3108 3109 3110 3111
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3124
              )DOC")
3125 3126 3127 3128 3129 3130 3131 3132
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3133 3134 3135 3136 3137
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3138

Y
yuyang18 已提交
3139
  exec_strategy.def_property(
Y
yuyang18 已提交
3140 3141 3142 3143 3144 3145 3146
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3147 3148
      });

C
chengduo 已提交
3149 3150 3151 3152
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3153 3154 3155
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3156 3157 3158
    Examples:
        .. code-block:: python

3159
            import os
3160 3161 3162 3163
            import paddle
            import paddle.static as static

            paddle.enable_static()
3164

3165 3166
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3167

3168 3169 3170 3171
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3172

3173
            build_strategy = static.BuildStrategy()
3174 3175
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3176 3177
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3178
            program = program.with_data_parallel(loss_name=loss.name,
3179 3180
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3181
)DOC");
Y
yuyang18 已提交
3182 3183 3184

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3185 3186
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3187 3188 3189 3190 3191 3192 3193 3194
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3195
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3196 3197 3198 3199
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3200 3201 3202 3203
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3204
            self.reduce_ = strategy;
C
chengduo 已提交
3205
          },
3206
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3207 3208
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3209
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3210 3211
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3212
                Default is 'AllReduce'.
F
flame 已提交
3213 3214 3215 3216

                Examples:
                    .. code-block:: python

3217 3218 3219 3220 3221 3222 3223
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3224
                  )DOC")
Y
yuyang18 已提交
3225 3226 3227 3228 3229
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3230 3231 3232 3233
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3234
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3235
          },
3236
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3237
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3238 3239
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3240
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3241 3242 3243 3244

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3245 3246
                        import numpy
                        import os
3247 3248 3249 3250
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3251 3252

                        use_cuda = True
3253 3254
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3255 3256

                        # NOTE: If you use CPU to run the program, you need
3257
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3258 3259 3260 3261 3262 3263
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3264
                            places = static.cpu_places()
C
chengduo 已提交
3265
                        else:
3266
                            places = static.cuda_places()
C
chengduo 已提交
3267

3268 3269 3270 3271
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3272

3273
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3274

3275
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3276
                        build_strategy.gradient_scale_strategy = \
3277 3278 3279
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3280
                                          loss_name=loss.name, build_strategy=build_strategy,
3281
                                          places=places)
C
chengduo 已提交
3282 3283 3284 3285 3286 3287

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3288 3289
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3290
                   )DOC")
Y
yuyang18 已提交
3291 3292 3293 3294
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3295 3296 3297 3298
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3299
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3300
          },
3301
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3302
                writing the SSA Graph to file in the form of graphviz.
3303
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3304 3305 3306 3307

                Examples:
                    .. code-block:: python

3308 3309 3310 3311
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3312

3313 3314
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3315
                    )DOC")
S
sneaxiy 已提交
3316 3317 3318 3319 3320 3321
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3322 3323 3324 3325
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3326 3327
            self.enable_sequential_execution_ = b;
          },
3328 3329
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3330 3331 3332 3333

                Examples:
                    .. code-block:: python

3334 3335 3336 3337 3338 3339
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3340 3341
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3342 3343 3344 3345 3346 3347
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3348 3349 3350 3351
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3352 3353
            self.remove_unnecessary_lock_ = b;
          },
3354 3355
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3356 3357 3358 3359

                Examples:
                    .. code-block:: python

3360 3361 3362 3363 3364 3365
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3366 3367
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3368 3369 3370 3371
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3372
#ifdef WIN32
3373
            PADDLE_THROW(platform::errors::Unavailable(
3374
                "Distribution mode is not supported on Windows platform."));
3375
#endif
3376 3377
            self.num_trainers_ = num_trainers;
          })
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3390 3391 3392 3393 3394 3395
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3396 3397 3398 3399 3400 3401
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3402
      .def_property("use_hierarchical_allreduce",
3403 3404 3405 3406 3407 3408
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3409
      .def_property("hierarchical_allreduce_inter_nranks",
3410 3411 3412 3413 3414 3415 3416
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3417 3418 3419 3420 3421 3422
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3423 3424 3425 3426
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3427 3428
            self.fuse_elewise_add_act_ops_ = b;
          },
3429
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3430
                to fuse elementwise_add_op and activation_op,
3431
                it may make the execution faster. Default is False.
F
flame 已提交
3432 3433 3434 3435

                Examples:
                    .. code-block:: python

3436 3437 3438 3439 3440 3441
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3442 3443
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
      .def_property(
          "fuse_gemm_epilogue",
          [](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_gemm_epilogue_ = b;
          },
          R"DOC((bool, optional): fuse_gemm_epilogue indicate whether
                to fuse matmul_op, elemenewist_add_op and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_gemm_epilogue = True
                     )DOC")
Z
Zhen Wang 已提交
3469 3470 3471 3472
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3473
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3474
                              platform::errors::PreconditionNotMet(
3475 3476
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3477 3478 3479 3480 3481 3482 3483 3484 3485
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3486 3487 3488 3489 3490 3491
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3492 3493
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3519 3520 3521 3522
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3523
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3524
                              platform::errors::PreconditionNotMet(
3525 3526
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3537 3538 3539 3540 3541 3542
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3543 3544
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3545 3546 3547 3548 3549 3550
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3551 3552 3553 3554
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3555 3556
            self.fuse_relu_depthwise_conv_ = b;
          },
3557
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3558 3559 3560
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3561
                Default is False.
F
flame 已提交
3562 3563 3564 3565

                Examples:
                    .. code-block:: python

3566 3567 3568 3569 3570 3571
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3572 3573
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3574 3575 3576
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3577
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3578 3579
                    },
                    [](BuildStrategy &self, bool b) {
3580 3581 3582 3583
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3584 3585
                      self.fuse_broadcast_ops_ = b;
                    },
3586
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3587 3588 3589 3590
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3591 3592 3593 3594 3595
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3596 3597 3598 3599 3600 3601
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3602 3603
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3604 3605
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3606
                      return self.fuse_all_optimizer_ops_ == true ||
3607
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3608 3609
                    },
                    [](BuildStrategy &self, bool b) {
3610 3611 3612 3613
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3614 3615
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3616 3617 3618 3619
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3620 3621 3622 3623
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3624 3625
            self.sync_batch_norm_ = b;
          },
3626
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3627 3628 3629
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3630 3631
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3632 3633 3634 3635

                Examples:
                    .. code-block:: python

3636 3637 3638 3639 3640 3641
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3642 3643
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3644 3645
      .def_property(
          "memory_optimize",
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3656
              self.memory_optimize_ = paddle::none;
3657 3658 3659
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3660
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3661 3662
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3663 3664
            }
          },
3665
          R"DOC((bool, optional): memory opitimize aims to save total memory
3666
                consumption, set to True to enable it.
3667

3668 3669 3670
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3685 3686 3687
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3688 3689 3690
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3691
              PADDLE_THROW(platform::errors::Unavailable(
3692
                  "Distribution mode is not supported on Windows platform."));
3693 3694 3695 3696 3697
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3698 3699 3700
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3701
      .def_property(
D
dzhwinter 已提交
3702 3703 3704
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3705 3706 3707 3708
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3709 3710
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3711 3712
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3713
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3714
          },
C
chengduo 已提交
3715
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3716 3717 3718 3719 3720 3721 3722
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3723 3724 3725 3726
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3727 3728 3729 3730 3731 3732 3733 3734 3735
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3736 3737 3738 3739 3740 3741
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3742 3743 3744 3745 3746 3747 3748
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3749 3750 3751 3752 3753 3754
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3755
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3756
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3757 3758 3759 3760 3761
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3762

3763 3764 3765 3766 3767 3768
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3769
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3770
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3771
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3772
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3773 3774 3775 3776
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3777 3778 3779 3780 3781
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3782 3783 3784
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3785 3786 3787 3788
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3789 3790
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3791 3792 3793 3794 3795 3796 3797 3798
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3799
               return py::cast(
3800
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3801 3802
             } else {
               return py::cast(std::move(
3803
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3804
             }
3805 3806
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3807

J
jianghaicheng 已提交
3808 3809
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
      .def("get_instance",
           []() {
             return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                 platform::ipu::IpuBackend::GetInstance());
           },
           py::return_value_policy::reference)
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
3821
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
               if (py::isinstance<py::bool_>(element.second)) {
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
                         option.get_type(), option_name));
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
                         option_name, option.first.cast<std::string>(),
                         option.second.cast<std::uint64_t>());
                   }
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
                           option.second.get_type(), option_key));
                     }
                     self.InsertStringPairOption(option_name, option_key,
                                                 option_val);
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
                     element.second.get_type(), option_name));
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
3943 3944
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
3945 3946 3947
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
3948 3949
#endif

D
dongdaxiang 已提交
3950
  BindFleetWrapper(&m);
3951
  BindIO(&m);
T
Thunderbrook 已提交
3952

T
Thunderbrook 已提交
3953
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
3954
  BindHeterWrapper(&m);
3955
  BindMetrics(&m);
T
Thunderbrook 已提交
3956
#endif
T
Thunderbrook 已提交
3957
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3958
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3959
#endif
3960
  BindGlooWrapper(&m);
H
hutuxian 已提交
3961
  BindBoxHelper(&m);
H
hutuxian 已提交
3962 3963 3964
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3965
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3966
  BindNCCLWrapper(&m);
3967 3968 3969
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3970
#endif
F
flame 已提交
3971 3972
  BindGraph(&m);
  BindNode(&m);
3973
  BindPass(&m);
F
flame 已提交
3974
  BindInferenceApi(&m);
3975
  BindCompatible(&m);
3976
  BindDataset(&m);
Y
yaoxuefeng 已提交
3977
  BindGenerator(&m);
3978 3979 3980
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
3981 3982 3983
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3984
  BindAscendDevice(&m);
3985
#endif
Y
Yanghello 已提交
3986 3987 3988
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3989

T
tangwei12 已提交
3990
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3991 3992
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3993
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3994 3995
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3996 3997 3998 3999 4000
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
4001 4002 4003 4004
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
4005
  BindSparseShardingTools(&m);
4006
#endif
L
Luo Tao 已提交
4007
}
4008
}  // namespace pybind
4009
}  // namespace paddle