pybind.cc 90.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
49
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
50
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/op_info.h"
52
#include "paddle/fluid/framework/op_registry.h"
53
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
54
#include "paddle/fluid/framework/parallel_executor.h"
55
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
58
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
74
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
75
#include "paddle/fluid/operators/py_func_op.h"
76
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
77
#include "paddle/fluid/platform/cpu_info.h"
78
#include "paddle/fluid/platform/device/device_wrapper.h"
79
#include "paddle/fluid/platform/device_context.h"
80
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
81
#include "paddle/fluid/platform/enforce.h"
82
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
83
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
84 85
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
86 87 88
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
89
#include "paddle/fluid/pybind/cuda_streams_py.h"
90
#include "paddle/fluid/pybind/distributed_py.h"
91
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
92
#include "paddle/fluid/pybind/imperative.h"
93
#include "paddle/fluid/pybind/io.h"
94
#include "paddle/fluid/pybind/jit.h"
95 96
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
97
#include "paddle/utils/none.h"
98 99 100
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
101
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
102
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
103
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
104
#include "paddle/fluid/pybind/box_helper_py.h"
105
#include "paddle/fluid/pybind/communication.h"
106
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
107
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
108
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
109
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
110
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
111
#include "paddle/fluid/pybind/generator_py.h"
112
#include "paddle/fluid/pybind/global_value_getter_setter.h"
113
#include "paddle/fluid/pybind/gloo_context_py.h"
114
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
115
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
116
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
117
#include "paddle/fluid/pybind/ir.h"
118
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
119
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
120
#include "paddle/fluid/pybind/pybind_variant_caster.h"
121
#include "paddle/phi/backends/device_manager.h"
122

123
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
124
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
125
#endif
126
#include "paddle/fluid/framework/data_type.h"
127 128
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
129 130
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
131
#include "paddle/fluid/pybind/reader_py.h"
132
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
133
#include "paddle/fluid/pybind/tensor_py.h"
134
#include "paddle/fluid/string/to_string.h"
135 136
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
137
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
138
#endif
139
#ifndef PADDLE_WITH_HIP
140
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
141
#endif
142
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
143 144
#endif

145
#ifdef PADDLE_WITH_ASCEND_CL
146
#include "paddle/fluid/platform/collective_helper.h"
147 148
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
149 150
#endif

151
#ifdef PADDLE_WITH_XPU
152
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
153
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
154 155
#endif

156 157 158 159
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/capi/capi.h"
#endif

160
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
161

J
jianghaicheng 已提交
162
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
163 164
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
165
#endif
166

167 168 169 170
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
171 172 173 174
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
175
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
176 177 178
#include "paddle/fluid/pybind/fleet_py.h"
#endif

179 180 181 182
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

183
#include "paddle/fluid/eager/api/utils/global_utils.h"
184
#include "paddle/fluid/imperative/layout_autotune.h"
185 186
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
187 188
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
189 190
#include "pybind11/stl.h"

191
DECLARE_bool(use_mkldnn);
192

Q
Qiao Longfei 已提交
193 194
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
195 196 197
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
198

199
namespace paddle {
200
namespace pybind {
201

0
0x45f 已提交
202
PyTypeObject *g_framework_scope_pytype = nullptr;
203
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
204
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
205

206
bool IsCompiledWithCUDA() {
207 208 209 210 211 212 213
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

214 215 216 217 218 219 220 221
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

222 223
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
224 225 226 227 228 229
  return false;
#else
  return true;
#endif
}

230 231 232 233 234 235 236 237
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

238 239 240 241 242 243 244 245
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

246 247 248 249 250 251 252 253
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
254 255 256 257 258 259 260 261
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

262 263 264 265 266 267 268 269
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

270 271 272 273 274 275 276 277
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

278 279 280 281 282 283 284 285
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

286 287 288 289 290 291 292 293
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

294 295 296 297 298 299 300 301 302 303 304
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

305 306 307 308 309 310 311 312 313 314 315
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

333
bool IsCompiledWithBrpc() {
334
#ifndef PADDLE_WITH_DISTRIBUTE
335
  return false;
336
#else
337
  return true;
338
#endif
339 340
}

Y
update  
Yancey1989 已提交
341
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
342
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
343 344 345 346 347 348
  return true;
#else
  return false;
#endif
}

H
hong 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
371 372
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
373 374
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
388 389
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
390 391
    }
    vec_res.emplace_back(
392
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
393 394 395 396 397 398 399 400 401 402 403 404
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
405 406
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
407 408 409 410 411 412 413 414 415 416 417 418
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
419 420 421
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
422 423 424 425
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
426 427
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
428 429 430 431
  }
  return vec_res;
}

O
OccupyMars2025 已提交
432
static void inline CreateVariableIfNotExist(
433 434
    const py::handle &py_handle,
    const framework::Scope &scope,
435 436 437 438 439 440
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
441 442
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
443 444 445 446 447 448 449 450 451 452 453 454 455
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
456 457 458
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
459 460 461 462 463
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
464 465 466 467 468
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
469 470
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
471
        PADDLE_ENFORCE_NOT_NULL(
472 473 474
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
475 476 477 478
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
479
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
480 481
        tensor_temp->mutable_data(
            exe->GetPlace(),
482
            framework::TransToPhiDataType(var_desc.GetDataType()));
483 484 485
      }
    }
  } else {
486 487
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
488 489 490 491 492
  }

  return;
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
509 510
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
511 512 513 514 515 516 517
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
518 519 520 521
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
522
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
523 524 525 526 527 528 529 530
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

531 532 533 534 535 536
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
537
  BindImperative(&m);
538
  BindEager(&m);
J
Jack Zhou 已提交
539
  BindEagerStringTensor(&m);
540
  BindCudaStream(&m);
541
  BindJit(&m);
542

Y
Yu Yang 已提交
543 544 545
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
546
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
547

548 549
  AssertStaticGraphAndDygraphGradMakerNoDiff();

550
  m.doc() = "C++ core of PaddlePaddle";
551

552 553 554 555
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

556
  BindException(&m);
Y
Yu Yang 已提交
557

558 559
  m.def("set_num_threads", &platform::SetNumThreads);

560 561
  m.def("disable_signal_handler", &DisableSignalHandler);

562 563 564 565 566 567 568 569
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

570
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
571
  m.def("cudnn_version", &platform::DnnVersion);
572 573 574 575 576 577
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
578
#endif
579

Z
Zeng Jinle 已提交
580 581 582 583
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

584 585 586 587 588 589 590 591 592
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
593 594
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
595
      .def("replay", &platform::CUDAGraph::Replay)
596 597
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
598 599
#endif

Z
Zeng Jinle 已提交
600 601 602 603
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
604 605 606
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
607 608

    PADDLE_ENFORCE_NOT_NULL(
609 610 611 612
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
613

6
633WHU 已提交
614 615
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
616
    framework::Tensor tensor;
6
633WHU 已提交
617

S
Siming Dai 已提交
618
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
619 620
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
621
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
622
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
623 624 625 626 627
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
628

629
  m.def("_create_loaded_parameter",
630 631
        [](const py::handle &vec_var_list,
           const Scope &scope,
632
           const Executor *executor) {
O
OccupyMars2025 已提交
633
          CreateVariableIfNotExist(vec_var_list, scope, executor);
634 635
        });

636 637 638 639 640 641
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
642 643
  });

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

669 670 671 672 673 674
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
675

S
sneaxiy 已提交
676
  m.def(
S
sneaxiy 已提交
677
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
678 679 680 681
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
682 683 684
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
701
            }
702
            all_kernels_info.emplace(op_type, kernel_types);
703
          }
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
720
                }
721 722
              } else {
                kernel_types.emplace_back(kernel_type_str);
723
              }
724
            }
725 726 727
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
728
          }
729
        }
730

731 732 733 734
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
735 736 737
           Return the registered kernels in paddle.

           Args:
738
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
739
           )DOC");
740

741 742 743 744 745 746
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
747 748 749 750 751
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
752

S
sneaxiy 已提交
753 754 755
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
756
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
757

758
  m.def("_set_fuse_parameter_group_size",
759
        &paddle::framework::ir::SetFuseParameterGroupsSize);
760
  m.def("_set_fuse_parameter_memory_size",
761
        &paddle::framework::ir::SetFuseParameterMemorySize);
762

S
sneaxiy 已提交
763 764 765
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

766 767
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

768 769 770
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
812 813 814 815 816 817 818 819 820 821 822 823 824
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
825 826 827 828 829
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
830

831
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
832 833 834

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
835
      .def(py::init<>())
836
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
837
      .def("set_int",
838 839
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
840 841 842 843 844 845 846
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
847 848 849 850 851 852
      .def(
          "get_tensor",
          [](Variable &self) -> LoDTensor * {
            return self.GetMutable<LoDTensor>();
          },
          py::return_value_policy::reference)
853 854 855 856
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
857 858 859 860
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
861 862 863 864
      .def("set_vocab",
           [](Variable &self, Vocab vocab) {
             *self.GetMutable<Vocab>() = vocab;
           })
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
891
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
892 893 894 895 896 897
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
898
#endif
899 900 901
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
902 903
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
904 905 906 907 908 909 910 911 912 913
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
914 915
                scope_vec->size(),
                0,
916 917 918 919 920
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
921 922 923 924
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
925

S
sneaxiy 已提交
926
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
927

0
0x45f 已提交
928
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

942
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
943 944 945 946 947
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
948 949 950
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
951 952
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
953 954 955 956 957 958 959
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
960
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
961

962
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
963
           current scope, the variable would be created. Otherwise,
964
           return the existing variable.
S
sneaxiy 已提交
965 966

           Args:
967 968
               name (str): the variable name.

S
sneaxiy 已提交
969
           Returns:
970
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
971
           )DOC",
972
          py::return_value_policy::reference)
973 974 975
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
976
           R"DOC(
977
           Find variable named :code:`name` in the current scope or
978
           its parent scope. Return None if not found. 
979

S
sneaxiy 已提交
980 981
           Args:
               name (str): the variable name.
982

S
sneaxiy 已提交
983
           Returns:
984
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
985
           )DOC",
986
           py::return_value_policy::reference)
987
      .def("size", &Scope::Size)
988 989 990
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
991 992 993 994 995 996 997 998 999 1000 1001
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1002
      .def(
1003 1004
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1005
          R"DOC(
S
sneaxiy 已提交
1006 1007 1008 1009 1010
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1011
          py::return_value_policy::reference)
1012 1013
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1014 1015
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1016 1017
           )DOC")
      .def("_kids", &Scope::kids);
1018

1019 1020 1021 1022 1023 1024 1025 1026
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1027
        Create a new scope.
1028

S
sneaxiy 已提交
1029 1030 1031
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1032
      py::return_value_policy::reference);
S
sneaxiy 已提交
1033

Y
Yu Yang 已提交
1034 1035
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1036 1037
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1038 1039 1040 1041
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1042
        PADDLE_ENFORCE_EQ(
1043 1044
            info.Proto().SerializeToString(&str),
            true,
1045 1046
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1047 1048 1049
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1050 1051
    return ret_values;
  });
1052 1053 1054 1055 1056 1057 1058
  m.def("get_all_op_names", []() {
    std::vector<std::string> op_names;
    for (auto &iter : OpInfoMap::Instance().map()) {
      op_names.emplace_back(iter.first);
    }
    return op_names;
  });
1059 1060 1061 1062 1063 1064 1065 1066
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1067
              res = op_checker->GetDefaultAttrsMap();
1068 1069 1070 1071
            }
          }
          return res;
        });
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });

  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1107 1108 1109
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1110 1111 1112 1113 1114
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1115 1116 1117
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1118
  m.def("infer_no_need_buffer_slots",
1119 1120
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1148 1149 1150 1151 1152 1153
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1154 1155 1156
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
1157
            Args:
1158 1159 1160 1161 1162 1163 1164 1165
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1166 1167 1168 1169
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1170 1171
    VLOG(4) << s;
    return s;
1172 1173 1174 1175 1176 1177
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1178
  });
1179 1180 1181 1182
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1183 1184 1185
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1186 1187
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1188

Y
Yu Yang 已提交
1189
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1190
      .def_static("create",
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
                    return context;
Q
qijun 已提交
1207
                  })
1208 1209 1210 1211
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1212
#ifndef PADDLE_WITH_XPU
1213 1214 1215
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1216
#else
W
Wilber 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1231
#endif
1232 1233 1234 1235 1236
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1237
#ifndef PADDLE_WITH_MLU
1238 1239 1240
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1241 1242
#else
                    return new paddle::platform::MLUDeviceContext(place);
1243
#endif
1244 1245 1246 1247 1248
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1249
#ifndef PADDLE_WITH_ASCEND_CL
1250 1251 1252
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1253 1254
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1255
#endif
1256 1257 1258 1259
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1260
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1261 1262 1263 1264
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1265 1266
#else
                return new paddle::platform::CustomDeviceContext(place);
1267
#endif
1268 1269 1270 1271 1272
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1273
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1274 1275 1276
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1277
#else
L
Leo Chen 已提交
1278
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
1291 1292 1293 1294
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1295 1296
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1297
#endif
1298 1299 1300 1301 1302
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1303
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1304 1305 1306
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1307 1308 1309
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1310
          });
1311
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1312 1313
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1314 1315 1316
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1317
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1318
#else
R
ronnywang 已提交
1319
          VLOG(1) << string::Sprintf(
1320 1321 1322 1323
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1324
              "PaddlePaddle by: pip install paddlepaddle\n");
1325 1326 1327 1328 1329 1330
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1331
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1332
#else
R
ronnywang 已提交
1333
          VLOG(1) << string::Sprintf(
1334 1335 1336 1337
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1338
              "PaddlePaddle by: pip install paddlepaddle\n");
1339 1340 1341 1342 1343 1344
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1345
    devices = phi::DeviceManager::GetAllDeviceList();
1346
#else
R
ronnywang 已提交
1347
          VLOG(1) << string::Sprintf(
1348 1349 1350 1351
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1352
              "PaddlePaddle by: pip install paddlepaddle\n");
1353 1354 1355 1356 1357 1358
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1359
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1360
#else
R
ronnywang 已提交
1361
          VLOG(1) << string::Sprintf(
1362 1363 1364 1365 1366 1367
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1368
              "PaddlePaddle by: pip install paddlepaddle\n");
1369 1370 1371
#endif
    return devices;
  });
Y
Yu Yang 已提交
1372

Y
Yu Yang 已提交
1373
  py::class_<OperatorBase>(m, "Operator")
1374 1375 1376 1377 1378 1379 1380
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1381 1382
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1383 1384 1385 1386 1387 1388
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1389
      .def("run",
1390 1391
           [](OperatorBase &self,
              const Scope &scope,
1392 1393 1394 1395
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1396
      .def("run",
1397 1398
           [](OperatorBase &self,
              const Scope &scope,
1399 1400 1401 1402
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1403
      .def("run",
1404 1405
           [](OperatorBase &self,
              const Scope &scope,
1406 1407 1408 1409
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1410
      .def("run",
1411 1412
           [](OperatorBase &self,
              const Scope &scope,
1413 1414 1415 1416
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1417
      .def("run",
1418 1419
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1420
              const platform::CUDAPinnedPlace &place) {
1421
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1422 1423
             self.Run(scope, place);
           })
1424
      .def("run",
1425 1426
           [](OperatorBase &self,
              const Scope &scope,
1427 1428 1429 1430
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1431
      .def("run",
1432 1433
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1434 1435 1436 1437
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1438 1439 1440 1441 1442
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1443 1444
             return op.Outputs();
           })
Q
qijun 已提交
1445 1446
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1447
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1448
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1449 1450 1451 1452
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1453

1454 1455 1456
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1457 1458
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1459 1460 1461 1462 1463 1464
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1465 1466
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1467

1468 1469
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1470
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1471
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1472
      .def("close", &Executor::Close)
1473 1474
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1475
           py::call_guard<py::gil_scoped_release>())
1476 1477
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1478
           py::call_guard<py::gil_scoped_release>())
1479
      .def("init_for_dataset",
1480 1481 1482 1483
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1484
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1485
             pybind11::gil_scoped_release release;
1486 1487 1488 1489 1490 1491 1492
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1493
      .def("run_prepared_ctx",
1494 1495 1496
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1497
              std::map<std::string, const LoDTensor *> *feed_targets,
1498
              std::map<std::string, FetchType *> *fetch_targets,
1499 1500
              bool create_local_scope = true,
              bool create_vars = true,
1501 1502 1503
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1504 1505 1506 1507 1508 1509 1510 1511
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1512
           })
1513
      .def("run_prepared_ctx",
1514 1515 1516 1517 1518
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1519 1520
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1521 1522
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1523
           })
1524
      .def("prepare",
1525 1526 1527
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1528 1529 1530 1531
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1532 1533
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1534 1535
           })
      .def("create_variables", &Executor::CreateVariables)
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1552

1553
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1554
      .def(py::init<>())
1555 1556 1557 1558 1559
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1560

1561
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1562
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1563
      .def("run",
1564
           [](StandaloneExecutor &self,
1565
              Scope *scope,
1566
              std::vector<std::string> feed_names,
1567 1568 1569 1570
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1571
               ret = self.Run(scope, feed_names, fetch_names);
1572 1573 1574
             }
             return py::cast(std::move(ret));
           })
1575 1576
      .def("dry_run",
           [](StandaloneExecutor &self,
1577
              Scope *scope,
1578
              const std::unordered_map<std::string, py::array> &input_dict) {
1579
             std::vector<framework::LoDTensor> feed_tensors;
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1590
             framework::interpreter::CostInfo cost_info;
1591 1592
             {
               pybind11::gil_scoped_release release;
1593
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1594 1595
             }
             return cost_info;
H
hong 已提交
1596 1597
           });

D
dzhwinter 已提交
1598
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1599
  m.def("init_glog", framework::InitGLOG);
1600 1601 1602 1603
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1604
  m.def("init_devices", []() { framework::InitDevices(); });
1605 1606
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1607
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1608
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1609
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1610
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1611
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1612
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1613
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1614
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
1615
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1616
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1617
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1618
  m.def("supports_bfloat16", SupportsBfloat16);
1619
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1620 1621
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1622
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1623
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1624
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1625 1626 1627
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1647 1648 1649
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1650 1651
  m.def(
      "run_cmd",
1652 1653
      [](const std::string &cmd,
         int time_out = -1,
1654
         int sleep_inter = -1) -> const std::string {
1655 1656
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1657
      },
1658 1659 1660
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1661 1662
  m.def(
      "shell_execute_cmd",
1663 1664 1665
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1666
         bool redirect_stderr = false) -> std::vector<std::string> {
1667 1668
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1669
      },
1670 1671 1672
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1673
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1674

1675
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1676 1677
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1678
    return platform::GetGPUComputeCapability(place.device) >= 53;
1679
  });
1680 1681 1682 1683
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1684
#endif
1685

S
Steffy-zxf 已提交
1686
  m.def("set_feed_variable",
1687 1688 1689 1690 1691
        static_cast<void (*)(  // NOLINT
            Scope *,
            const LoDTensor &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1692
  m.def("set_feed_variable",
1693 1694 1695 1696 1697
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1698
  m.def("get_fetch_variable",
1699 1700
        [](const Scope &scope,
           const std::string &var_name,
1701 1702 1703
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
R
Ruibiao Chen 已提交
1704
            return py::cast(PADDLE_GET(LoDTensor, var));
1705
          } else {
R
Ruibiao Chen 已提交
1706
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1707 1708
          }
        });
1709
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1710

X
Xin Pan 已提交
1711 1712
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1713 1714 1715 1716
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1717
  BindCostModel(&m);
1718
  BindConstValue(&m);
1719
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1720
  BindFleetExecutor(&m);
1721
  BindTCPStore(&m);
1722
  BindAutoParallel(&m);
1723
  BindJitProperty(&m);
Y
Yu Yang 已提交
1724

Y
Yu Yang 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1734
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1735
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1736 1737 1738

    Examples:
        .. code-block:: python
1739

Z
Zeng Jinle 已提交
1740 1741 1742
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1743 1744 1745 1746
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1747 1748
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1749 1750 1751 1752
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1753 1754 1755
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1756 1757
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1758 1759 1760
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1761 1762 1763
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1764 1765 1766 1767 1768 1769 1770
      .def(
          "append",
          [](LoDTensorArray &self, const LoDTensor &t) {
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1771 1772
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1773
             Append a LoDensor to LoDTensorArray.
1774 1775 1776 1777 1778 1779
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1791
           )DOC")
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1803

1804
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
1805
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
1806
        )DOC")
1807 1808 1809 1810 1811 1812
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
R
Ruibiao Chen 已提交
1813
                auto &data = PADDLE_GET(LoDTensor, self[i]);
1814 1815
                res[i] = py::cast(std::move(data));
              } else {
R
Ruibiao Chen 已提交
1816
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
1828

1829 1830 1831 1832
      .def(
          "append",
          [](FetchList &self, const LoDTensor &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1833
            auto &lod_tensor = PADDLE_GET(LoDTensor, self.back());
1834 1835 1836 1837 1838 1839 1840 1841 1842
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1843
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
1844 1845 1846 1847 1848 1849
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
1850 1851

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
1852
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1853
        )DOC")
1854 1855 1856 1857 1858 1859 1860 1861
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
R
Ruibiao Chen 已提交
1862
                  auto &var = PADDLE_GET(LoDTensor, self[i][j]);
1863 1864
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
1865
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
1880

Y
Yu Yang 已提交
1881
  m.def("op_support_gpu", OpSupportGPU);
1882
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1883
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
1884
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
1885 1886 1887 1888 1889 1890 1891 1892
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
1893 1894 1895 1896 1897 1898
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
1899 1900

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
1926
      });
D
dangqingqing 已提交
1927

1928
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
1929 1930 1931
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
1932 1933 1934 1935
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
1936
#endif
P
peizhilin 已提交
1937
#endif
Y
Yu Yang 已提交
1938

1939 1940
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
1941
  m.def("npu_finalize", []() {
1942 1943
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

1944 1945 1946
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
1947
      platform::NPUDeviceGuard guard(devices[i]);
1948 1949 1950 1951
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
1972 1973 1974 1975
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

1976 1977 1978 1979
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

1980 1981 1982 1983 1984 1985
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1986 1987 1988 1989
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1990
      .value("kAll", platform::ProfilerState::kAll)
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2002
  m.def("set_tracer_option", platform::SetTracerOption);
2003 2004
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2005
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2006
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2007
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2008
    PADDLE_ENFORCE_EQ(
2009 2010
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2011 2012 2013
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2014
    callable.inc_ref();
2015 2016 2017 2018 2019 2020 2021 2022
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2023
  });
2024
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2025 2026 2027
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2028

2029
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2030 2031
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2032 2033
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2034 2035 2036 2037
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2080 2081 2082 2083
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
C
chenjian 已提交
2084 2085 2086 2087 2088
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2089 2090 2091
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2092 2093

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2094 2095
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2096
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2097
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2098 2099
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2100 2101 2102 2103 2104 2105
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2129 2130 2131 2132 2133 2134 2135 2136
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2155 2156 2157 2158 2159 2160
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
  m.def("enable_input_shape_recorder",
        &paddle::platform::EnableInputShapeRecorder);
  m.def("disable_input_shape_recorder",
        &paddle::platform::DisableInputShapeRecorder);
2161

2162
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2163 2164
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2165 2166
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2167
#endif  // PADDLE_WITH_CUDA
2168 2169 2170 2171 2172 2173 2174 2175
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2176

J
jianghaicheng 已提交
2177 2178
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2179 2180 2181
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2182 2183 2184 2185 2186 2187 2188
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2189
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2190 2191
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2192
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2203 2204 2205 2206
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2229 2230
                         option.get_type(),
                         option_name));
2231 2232 2233 2234 2235 2236 2237
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2238 2239
                         option_name,
                         option.first.cast<std::string>(),
2240 2241
                         option.second.cast<std::uint64_t>());
                   }
2242 2243 2244 2245 2246 2247
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2293 2294
                           option.second.get_type(),
                           option_key));
2295
                     }
2296 2297
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2298 2299 2300 2301 2302 2303
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2304 2305
                     element.second.get_type(),
                     option_name));
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2336 2337
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2338 2339 2340
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2341 2342
#endif

2343 2344 2345 2346 2347 2348 2349 2350
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2351
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2352 2353 2354 2355 2356 2357 2358 2359 2360
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2361
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2362 2363 2364 2365 2366 2367 2368
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
  m.def("enable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .EnableLayoutAutoTune();
  });

  m.def("disable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .DisableLayoutAutoTune();
  });

  m.def("use_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance().UseLayoutAutoTune();
  });

D
dongdaxiang 已提交
2383
  BindFleetWrapper(&m);
2384
  BindIO(&m);
2385 2386 2387
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2388

T
Thunderbrook 已提交
2389
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2390
  BindHeterWrapper(&m);
2391
  BindMetrics(&m);
T
Thunderbrook 已提交
2392
#endif
T
Thunderbrook 已提交
2393
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2394
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2395 2396 2397
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2398
#endif
2399
  BindGlooWrapper(&m);
H
hutuxian 已提交
2400
  BindBoxHelper(&m);
H
hutuxian 已提交
2401 2402 2403
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2404
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2405
  BindNCCLWrapper(&m);
2406 2407 2408
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2409
#endif
F
flame 已提交
2410 2411
  BindGraph(&m);
  BindNode(&m);
2412
  BindPass(&m);
F
flame 已提交
2413
  BindInferenceApi(&m);
2414
  BindCompatible(&m);
2415
  BindDataset(&m);
Y
yaoxuefeng 已提交
2416
  BindGenerator(&m);
2417 2418 2419
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
2420 2421 2422
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2423
  BindAscendDevice(&m);
2424
#endif
Y
Yanghello 已提交
2425 2426 2427
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2428

T
tangwei12 已提交
2429
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2430 2431
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2432
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2433 2434
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2435 2436 2437 2438 2439
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2440 2441 2442 2443
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2444
#ifdef PADDLE_WITH_HETERPS
2445 2446
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2447 2448 2449
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2450
#endif
L
Luo Tao 已提交
2451
}
2452
}  // namespace pybind
2453
}  // namespace paddle