pybind.cc 106.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
Y
Yi Wang 已提交
25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
27
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
30
#include "paddle/fluid/framework/io/fs.h"
31
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
32
#include "paddle/fluid/framework/ir/pass_builder.h"
33
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
34 35 36
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
37
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/op_info.h"
39
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
40
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
42
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
43
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/selected_rows.h"
46
#include "paddle/fluid/framework/trainer.h"
47
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
48
#include "paddle/fluid/framework/version.h"
H
hong 已提交
49
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
50
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
51
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
52
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/operators/py_func_op.h"
54
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/platform/cpu_info.h"
56
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/platform/enforce.h"
58
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
59
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
60 61
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
62
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
63
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
64
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
65
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
66
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
67
#include "paddle/fluid/pybind/generator_py.h"
68
#include "paddle/fluid/pybind/global_value_getter_setter.h"
69
#include "paddle/fluid/pybind/gloo_context_py.h"
70
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
71
#include "paddle/fluid/pybind/heter_wrapper_py.h"
72
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
73
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
74
#include "paddle/fluid/pybind/ir.h"
75
#include "paddle/fluid/pybind/pybind_boost_headers.h"
76

77
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
78
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
79
#endif
80
#include "paddle/fluid/framework/data_type.h"
81 82
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
83
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
84
#include "paddle/fluid/pybind/tensor_py.h"
85
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
86
#ifdef PADDLE_WITH_CUDA
87
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
88
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
89
#endif
Y
Yi Wang 已提交
90 91
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
92 93
#endif

94 95 96 97
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

98 99 100 101
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

Y
Yanghello 已提交
102 103 104 105
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

M
minqiyang 已提交
106 107
#include "pybind11/stl.h"

108
DECLARE_bool(use_mkldnn);
109

Q
Qiao Longfei 已提交
110 111
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
112 113 114
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
115

116
namespace paddle {
117
namespace pybind {
118
bool IsCompiledWithCUDA() {
119
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
120 121 122 123 124 125
  return false;
#else
  return true;
#endif
}

126 127 128 129 130 131 132 133
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

134 135 136 137 138 139 140 141
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

142
bool IsCompiledWithBrpc() {
143
#ifndef PADDLE_WITH_DISTRIBUTE
144 145
  return false;
#endif
146 147 148 149 150 151

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
152 153
}

Y
update  
Yancey1989 已提交
154
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
155
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
156 157 158 159 160 161
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
162 163 164 165 166 167 168 169 170 171
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
194 195 196
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
210 211
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
212 213
    }
    vec_res.emplace_back(
214
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
215 216 217 218 219 220 221 222 223 224 225 226
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
227 228
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
229 230 231 232 233 234 235 236 237 238 239 240
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
241 242 243
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
244 245 246 247
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
248 249
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
250 251 252 253
  }
  return vec_res;
}

254 255 256 257 258 259 260 261
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
262 263
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
264 265 266 267 268 269 270 271 272 273 274 275 276
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
277 278 279
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
280 281 282 283 284
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
285 286 287 288 289
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
290 291
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
292 293 294
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
295 296 297 298 299 300 301 302 303
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
304 305
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
306 307 308 309 310
  }

  return;
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

335 336 337 338 339 340
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
341 342 343
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
344
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
345

346 347
  AssertStaticGraphAndDygraphGradMakerNoDiff();

348
  m.doc() = "C++ core of PaddlePaddle";
349

350 351 352 353
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

354
  BindException(&m);
Y
Yu Yang 已提交
355

356 357
  m.def("set_num_threads", &platform::SetNumThreads);

358 359 360 361
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
380 381 382 383 384 385 386 387 388
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
389
           const Scope &scope, const Executor *executor) {
H
hong 已提交
390
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
391
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
392 393 394
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

395 396 397 398 399 400
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
420

421 422 423 424 425 426
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
427
  m.def(
S
sneaxiy 已提交
428
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
429 430 431 432
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
433 434 435
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
452 453 454
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
455
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
456

457
  m.def("_set_fuse_parameter_group_size",
458
        &paddle::framework::ir::SetFuseParameterGroupsSize);
459
  m.def("_set_fuse_parameter_memory_size",
460
        &paddle::framework::ir::SetFuseParameterMemorySize);
461

S
sneaxiy 已提交
462 463 464
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

465 466
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

467
  BindImperative(&m);
468

469
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
470
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
471 472
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
473
      .def("_get_dims",
474
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
475
      .def("_set_dims",
Q
qijun 已提交
476
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
477
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
478
           })
Y
yuyang18 已提交
479
      .def("_set_layout",
D
dzhwinter 已提交
480 481 482
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
483
      .def("_alloc_float",
D
dzhwinter 已提交
484
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
485
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
486
           })
487 488 489 490
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
491
      .def("_alloc_float",
Y
Yu Yang 已提交
492
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
493
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
494
           })
495 496 497 498
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
499
      .def("_alloc_int",
Y
Yu Yang 已提交
500
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
501
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
502
           })
503 504 505 506
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
507
      .def("_alloc_int",
D
dzhwinter 已提交
508
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
509
             self.mutable_data<int>(place);
Q
qijun 已提交
510
           })
Y
yuyang18 已提交
511
      .def("_alloc_int",
C
chengduoZH 已提交
512 513 514
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
515
      .def("_alloc_float",
C
chengduoZH 已提交
516 517 518
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
519 520 521 522 523
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
524 525 526 527 528
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
529 530 531 532 533 534 535 536 537 538
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
539
      .def("_clear", &Tensor::clear)
540
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
541
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
542 543
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
544
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
545
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
546
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
547 548
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
549 550 551 552
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
553
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
554
          LoDTensor is to be set.
555 556
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
570

L
Leo Chen 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
610 611 612 613
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
614
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
615
      .def("_dtype", [](Tensor &self) { return self.type(); })
616
      .def("_share_data_with", &Tensor::ShareDataWith)
617 618 619 620 621 622
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
623

L
Leo Chen 已提交
624
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
625
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
700 701 702 703 704 705 706

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
707 708

        )DOC")
709
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
710 711 712 713 714 715 716 717 718
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
719 720
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
721 722 723 724
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
725 726
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
727
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
728
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
729 730
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
731 732 733
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
734
      .def("set_lod",
735
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
736
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
737
             LoD new_lod;
738 739
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
740 741
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
742 743
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
744
             self.set_lod(new_lod);
S
sneaxiy 已提交
745 746 747 748 749
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
750 751 752 753
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
754 755 756 757 758 759 760 761 762 763

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
764
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
765
           )DOC")
766 767 768 769 770 771 772 773 774 775 776
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
777 778
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
779 780 781 782 783
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
784
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
785 786
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
787
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
788

L
Leo Chen 已提交
789
           For example, if recursive_sequence_lengths=[[2, 3]], which means
790
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
791
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
792 793

           Args:
L
Leo Chen 已提交
794 795 796 797
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
798 799 800 801 802 803 804 805 806 807

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
808 809
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
810
           )DOC")
811 812 813 814 815 816 817 818
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
819 820 821 822 823
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
824 825
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
826 827 828 829 830 831 832 833 834 835
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
836
           )DOC")
G
gongweibao 已提交
837
      // Set above comments of set_lod.
838 839 840 841 842 843 844 845
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
846 847
           },
           R"DOC(
L
Leo Chen 已提交
848 849
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
850 851

           Returns:
L
Leo Chen 已提交
852
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
853 854 855 856 857 858 859 860 861 862 863

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
864 865 866 867 868 869 870 871
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
872
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
873 874

           Returns:
L
Leo Chen 已提交
875
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
876 877 878 879 880 881 882 883 884 885 886

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
887 888 889 890 891 892 893
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
894
           )DOC")
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
913
#ifdef _WIN32
914
      });
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
965

Q
qijun 已提交
966 967 968 969 970 971 972 973 974 975 976
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
977 978
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
979 980
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
981 982 983 984 985 986 987 988 989
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
990
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
991
      .def("rows", [](SelectedRows &self) {
992 993 994 995 996
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
997
      });
Q
qijun 已提交
998

999
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1000 1001 1002

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1003
      .def(py::init<>())
1004
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1005
      .def("set_int",
1006 1007
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1008 1009 1010 1011 1012 1013 1014
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1015
      .def("get_tensor",
1016 1017
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1018 1019
           },
           py::return_value_policy::reference)
1020 1021 1022 1023
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1024 1025 1026
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1027 1028 1029 1030 1031
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1032 1033 1034
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1035 1036 1037
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1038
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1039 1040 1041 1042 1043
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1044
#endif
Y
Refine  
Yu Yang 已提交
1045 1046
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1047 1048 1049 1050
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1051 1052
             return self.GetMutable<framework::ReaderHolder>();
           },
1053 1054 1055 1056 1057
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1058

S
sneaxiy 已提交
1059
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1060

S
sneaxiy 已提交
1061
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1075
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1076 1077 1078 1079 1080 1081
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1082 1083
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1084
      .def("var",
1085
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1086
             return self.Var(name);
Y
Yu Yang 已提交
1087
           },
S
sneaxiy 已提交
1088 1089
           py::arg("name"),
           R"DOC(
1090
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1091

1092
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1093
           current scope, the variable would be created. Otherwise,
1094
           return the existing variable.
S
sneaxiy 已提交
1095 1096

           Args:
1097 1098
               name (str): the variable name.

S
sneaxiy 已提交
1099
           Returns:
1100
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1101 1102 1103 1104
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1105
           Find variable named :code:`name` in the current scope or
1106
           its parent scope. Return None if not found. 
1107

S
sneaxiy 已提交
1108 1109
           Args:
               name (str): the variable name.
1110

S
sneaxiy 已提交
1111
           Returns:
1112
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1113
           )DOC",
1114
           py::return_value_policy::reference)
1115
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1116 1117 1118 1119 1120 1121
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1122
           py::return_value_policy::reference)
S
sneaxiy 已提交
1123 1124 1125
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1126 1127
           )DOC")
      .def("_kids", &Scope::kids);
1128

S
sneaxiy 已提交
1129 1130 1131 1132 1133 1134
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1135 1136
        R"DOC(
        Create a new scope.
1137

S
sneaxiy 已提交
1138 1139 1140
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1141 1142
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1143 1144
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1145 1146
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1147 1148 1149 1150
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1151 1152
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1153 1154
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1155 1156 1157
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1158 1159
    return ret_values;
  });
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1189 1190 1191
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1192 1193 1194 1195 1196
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1197 1198 1199
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1214
  m.def("prune", [](const ProgramDesc &origin,
1215
                    const std::set<std::string> &feeded_var_names,
1216
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1217
    ProgramDesc prog_with_targets(origin);
1218

1219
    for (const auto &t : targets) {
1220
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1221
    }
1222
    proto::ProgramDesc pruned_desc;
1223 1224 1225 1226
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1227
  });
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1245 1246 1247 1248
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1249 1250 1251
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1252 1253
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1254
  // clang-format off
Y
Yu Yang 已提交
1255
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1256 1257
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1258
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1259 1260
                    return new paddle::platform::CPUDeviceContext();
                  })
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1273
      .def_static("create",
D
dzhwinter 已提交
1274
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1275
                      -> paddle::platform::DeviceContext* {
1276
#ifndef PADDLE_WITH_CUDA
1277 1278 1279 1280
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1281
#else
Q
qijun 已提交
1282
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1283
#endif
C
chengduoZH 已提交
1284 1285 1286 1287 1288
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1289 1290 1291 1292
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1293 1294 1295 1296
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1297
// clang-format on
1298
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1299 1300
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1301
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1302 1303 1304 1305 1306 1307 1308 1309
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1310
    The memory of CUDAPlace with different dev_id is not accessible.
1311 1312 1313 1314 1315 1316 1317 1318
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1319 1320 1321 1322

    Examples:
        .. code-block:: python

1323
          import paddle.fluid as fluid
L
lujun 已提交
1324 1325
          gpu_place = fluid.CUDAPlace(0)

1326
        )DOC")
S
sneaxiy 已提交
1327 1328 1329
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1354 1355
             new (&self) platform::CUDAPlace(dev_id);
#else
1356 1357 1358 1359 1360 1361 1362 1363 1364
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1365 1366
#endif
           })
1367
#ifdef PADDLE_WITH_CUDA
1368 1369
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1370 1371 1372 1373
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1374
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1375 1376
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1377 1378 1379
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
D
dzhwinter 已提交
1380
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
      .def("__str__", string::to_string<const platform::XPUPlace &>);

1436
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1437 1438
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1439 1440 1441 1442

    Examples:
        .. code-block:: python

1443
          import paddle.fluid as fluid
1444
          cpu_place = fluid.CPUPlace()
L
lujun 已提交
1445

1446
        )DOC")
1447
      .def(py::init<>())
S
sneaxiy 已提交
1448 1449
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1450
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1451 1452 1453 1454
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1455
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1456

1457
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1458 1459 1460 1461 1462 1463
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1464 1465 1466 1467

    Examples:
        .. code-block:: python

1468
          import paddle.fluid as fluid
L
lujun 已提交
1469 1470
          place = fluid.CUDAPinnedPlace()

1471
        )DOC")
S
sneaxiy 已提交
1472
      .def("__init__",
S
sneaxiy 已提交
1473
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1474
#ifndef PADDLE_WITH_CUDA
1475 1476 1477
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1478
#endif
S
sneaxiy 已提交
1479
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1480
           })
S
sneaxiy 已提交
1481 1482 1483 1484
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1485 1486
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1487 1488 1489 1490
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1491 1492
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1493 1494
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1495 1496 1497 1498
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1499
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1500
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1501 1502
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1503 1504
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1505 1506
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1507 1508 1509 1510
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1511 1512
      .def("gpu_device_id",
           [](platform::Place &self) {
1513
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1514
           })
1515 1516 1517 1518
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1519 1520
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1521 1522 1523 1524
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1525 1526 1527 1528
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1529
      .def("set_place",
D
dzhwinter 已提交
1530
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1531
             self = gpu_place;
C
chengduoZH 已提交
1532 1533
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1534 1535
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1536
      });
Y
Yu Yang 已提交
1537

Y
Yu Yang 已提交
1538
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1539 1540 1541 1542 1543
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1544 1545 1546 1547 1548 1549 1550
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1551 1552
            return OpRegistry::CreateOp(desc);
          })
1553
      .def("run",
1554
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1555
              const platform::CPUPlace &place) { self.Run(scope, place); })
1556 1557 1558
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1559 1560
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1561
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1562 1563 1564 1565 1566
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1567 1568 1569 1570 1571 1572 1573
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1574 1575
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1576
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1577
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1578 1579 1580 1581
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1582

1583 1584 1585
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1586 1587 1588 1589 1590 1591 1592 1593 1594
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1595
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1596
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1597
      .def("close", &Executor::Close)
1598 1599
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1600 1601
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1602 1603 1604 1605
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1606
             pybind11::gil_scoped_release release;
1607 1608 1609 1610 1611 1612 1613
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1614 1615 1616
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1617
              std::map<std::string, FetchType *> *fetch_targets,
1618 1619 1620 1621 1622 1623 1624 1625
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1626
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1627 1628 1629 1630 1631 1632 1633
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1644
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1645 1646
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1647
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1648 1649
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1650
      });
S
sneaxiy 已提交
1651

D
dzhwinter 已提交
1652
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1653
  m.def("init_glog", framework::InitGLOG);
1654
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1655 1656
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1657

1658
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1659
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1660
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1661
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1662
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
H
hutuxian 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1682 1683 1684 1685 1686 1687 1688
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1698 1699 1700 1701 1702 1703
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1704

1705
  m.def("set_feed_variable", framework::SetFeedVariable);
1706 1707 1708 1709 1710
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1711
            return py::cast(BOOST_GET(LoDTensor, var));
1712
          } else {
1713
            return py::cast(BOOST_GET(LoDTensorArray, var));
1714 1715
          }
        });
1716
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1717

X
Xin Pan 已提交
1718 1719
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1720 1721 1722 1723 1724
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1725
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1726

Y
Yu Yang 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1736
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1737
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1738 1739 1740

    Examples:
        .. code-block:: python
1741

Z
Zeng Jinle 已提交
1742 1743 1744 1745
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1746 1747
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1748 1749 1750 1751 1752 1753
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1754 1755 1756 1757
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1758 1759 1760
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1761 1762 1763 1764 1765 1766
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1767 1768
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1769 1770 1771 1772 1773 1774
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1797

1798 1799 1800 1801 1802 1803 1804 1805
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1806
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1807 1808
                 res[i] = py::cast(std::move(data));
               } else {
1809
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1825
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1826 1827 1828 1829 1830 1831 1832 1833
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1834
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1835 1836 1837 1838 1839 1840 1841 1842 1843
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1844 1845
        )DOC")
      .def("_move_to_list",
1846
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1847 1848 1849 1850
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1851
                 if (data_is_lod_tensor(self[i][j])) {
1852
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1853 1854
                   tmp[j] = py::cast(std::move(var));
                 } else {
1855
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1856 1857 1858 1859 1860 1861
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1871
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1872
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1873
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1874

P
peizhilin 已提交
1875
#ifndef _WIN32
D
dangqingqing 已提交
1876 1877 1878
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1879
#endif
P
peizhilin 已提交
1880
#endif
Y
Yu Yang 已提交
1881

1882 1883 1884 1885 1886 1887
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1888 1889 1890 1891
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1892
      .value("kAll", platform::ProfilerState::kAll)
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1904
  m.def("set_tracer_option", platform::SetTracerOption);
1905 1906
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1907
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1908
  m.def("reset_profiler", platform::ResetProfiler);
1909
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1910 1911 1912
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1913

1914 1915
  m.def("size_of_dtype", framework::SizeOfType);

1916 1917 1918
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1919 1920
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1921
      .def("has", &ir::Pass::Has)
1922 1923 1924
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1925
           })
1926
      .def(
1927
          "set",
1928 1929 1930
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1931 1932
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1933 1934
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1949 1950
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1951
        self.Apply(graph.get());
F
flame 已提交
1952
      });
1953

X
fix  
Xin Pan 已提交
1954 1955
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1970
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1971

Y
yuyang18 已提交
1972
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1973 1974 1975 1976
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1977 1978 1979
    Examples:
        .. code-block:: python

1980
          import paddle.fluid as fluid
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1991 1992 1993
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1994 1995
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1996 1997
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1998 1999
        )DOC");

Y
yuyang18 已提交
2000
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2001 2002 2003 2004 2005
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
2016
      .def_property(
2017 2018 2019 2020
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
2021 2022 2023 2024
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
2025 2026 2027 2028 2029
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2030 2031 2032
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2033 2034
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2035 2036 2037 2038 2039 2040 2041
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2042 2043 2044 2045
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2046 2047
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
2048 2049 2050 2051 2052 2053

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
2054
              )DOC")
Q
Qiao Longfei 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2064
                user call exe.run() in python
Q
Qiao Longfei 已提交
2065
              )DOC")
2066 2067 2068 2069 2070 2071 2072 2073
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2074 2075 2076 2077 2078
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2079

Y
yuyang18 已提交
2080
  exec_strategy.def_property(
Y
yuyang18 已提交
2081 2082 2083 2084 2085 2086 2087
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2088 2089
      });

C
chengduo 已提交
2090 2091 2092 2093
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
2094 2095 2096
    Examples:
        .. code-block:: python

2097 2098
            import os
            import numpy as np
F
flame 已提交
2099
            import paddle.fluid as fluid
2100 2101 2102 2103 2104 2105 2106 2107 2108

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
2109
            build_strategy = fluid.BuildStrategy()
2110 2111
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
2112
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
2113 2114 2115 2116
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
2117
)DOC");
Y
yuyang18 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2134 2135 2136 2137
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2138
            self.reduce_ = strategy;
C
chengduo 已提交
2139
          },
2140
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2141 2142
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2143
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2144 2145
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2146
                Default is 'AllReduce'.
F
flame 已提交
2147 2148 2149 2150 2151 2152 2153 2154

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
2155 2156 2157 2158 2159
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2160 2161 2162 2163
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2164
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2165
          },
2166 2167
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2168 2169
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2170
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2171 2172 2173 2174 2175

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
2204
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2219
                   )DOC")
Y
yuyang18 已提交
2220 2221 2222 2223
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2224 2225 2226 2227
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2228
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2229
          },
2230
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2231
                writing the SSA Graph to file in the form of graphviz.
2232
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2233 2234 2235 2236 2237 2238

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
2239 2240
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
2241
                    )DOC")
S
sneaxiy 已提交
2242 2243 2244 2245 2246 2247
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2248 2249 2250 2251
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2252 2253
            self.enable_sequential_execution_ = b;
          },
2254 2255
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2256 2257 2258 2259 2260 2261 2262 2263

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2264 2265 2266 2267 2268 2269
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2270 2271 2272 2273
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2274 2275
            self.remove_unnecessary_lock_ = b;
          },
2276 2277
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2278 2279 2280 2281 2282 2283 2284 2285

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2286 2287 2288 2289
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2290
#ifdef WIN32
2291
            PADDLE_THROW(platform::errors::Unavailable(
2292
                "Distribution mode is not supported on Windows platform."));
2293
#endif
2294 2295
            self.num_trainers_ = num_trainers;
          })
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2308 2309 2310 2311 2312 2313
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2314
      .def_property("use_hierarchical_allreduce",
2315 2316 2317 2318 2319 2320
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2321
      .def_property("hierarchical_allreduce_inter_nranks",
2322 2323 2324 2325 2326 2327 2328
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2329 2330 2331 2332 2333 2334
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2335 2336 2337 2338
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2339 2340
            self.fuse_elewise_add_act_ops_ = b;
          },
2341
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2342
                to fuse elementwise_add_op and activation_op,
2343
                it may make the execution faster. Default is False.
F
flame 已提交
2344 2345 2346 2347 2348 2349 2350 2351

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2352 2353 2354 2355
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2356
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2357
                              platform::errors::PreconditionNotMet(
2358 2359
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2373 2374 2375 2376
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2377
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2378
                              platform::errors::PreconditionNotMet(
2379 2380
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2395 2396 2397 2398 2399 2400
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2401 2402 2403 2404
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2405 2406
            self.fuse_relu_depthwise_conv_ = b;
          },
2407
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2408 2409 2410
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2411
                Default is False.
F
flame 已提交
2412 2413 2414 2415 2416 2417 2418 2419

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2420 2421 2422 2423 2424 2425
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2426 2427 2428 2429
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2430 2431
                      self.fuse_broadcast_ops_ = b;
                    },
2432
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2433 2434 2435 2436
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2437 2438 2439 2440 2441 2442 2443 2444 2445
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2446 2447
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2448 2449
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2450 2451
                    },
                    [](BuildStrategy &self, bool b) {
2452 2453 2454 2455
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2456 2457
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2458 2459 2460 2461
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2462 2463 2464 2465
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2466 2467
            self.sync_batch_norm_ = b;
          },
2468
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2469 2470 2471
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2472 2473
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2474 2475 2476 2477 2478 2479 2480 2481

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2482 2483
      .def_property(
          "memory_optimize",
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2498 2499 2500
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2501 2502
            }
          },
2503
          R"DOC((bool, optional): memory opitimize aims to save total memory
2504
                consumption, set to True to enable it.
2505

2506 2507 2508
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2509
                True means enabling and False means disabling. Default is None.)DOC")
2510 2511 2512
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2513 2514 2515
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2516
              PADDLE_THROW(platform::errors::Unavailable(
2517
                  "Distribution mode is not supported on Windows platform."));
2518 2519 2520 2521 2522
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2523 2524 2525
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2526
      .def_property(
D
dzhwinter 已提交
2527 2528 2529
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
2530 2531
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2532 2533 2534 2535
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2536
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2537 2538 2539 2540 2541 2542 2543
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2544 2545 2546 2547
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2548 2549 2550 2551 2552 2553 2554 2555 2556
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2557
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2558
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2559 2560 2561 2562 2563
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2564 2565

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2566
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2567
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2568
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2569 2570 2571 2572
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2573 2574 2575 2576 2577
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2578 2579 2580
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2581 2582 2583 2584
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2585 2586
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2587 2588 2589 2590 2591 2592 2593 2594
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2595
               return py::cast(
2596
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2597 2598
             } else {
               return py::cast(std::move(
2599
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2600
             }
2601 2602
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2603

D
dongdaxiang 已提交
2604
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2605 2606 2607
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
#endif
2608
  BindGlooWrapper(&m);
H
hutuxian 已提交
2609
  BindBoxHelper(&m);
H
hutuxian 已提交
2610 2611 2612
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2613
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2614
  BindNCCLWrapper(&m);
2615 2616 2617
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2618
#endif
F
flame 已提交
2619 2620
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2621
  BindInferenceApi(&m);
2622
  BindDataset(&m);
Y
yaoxuefeng 已提交
2623
  BindGenerator(&m);
Y
Yanghello 已提交
2624 2625 2626
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
2627 2628
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
2629 2630
  BindCommunicatorContext(&m);
  BindLargeScaleKV(&m);
2631
#endif
L
Luo Tao 已提交
2632
}
2633
}  // namespace pybind
2634
}  // namespace paddle