pybind.cc 29.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

24
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
25 26 27 28 29 30
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
D
dzhwinter 已提交
36
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/platform/enforce.h"
39
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
40 41 42 43
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
44 45
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
46
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
48

49
#include "paddle/fluid/string/to_string.h"
50

D
Dong Zhihong 已提交
51
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
52 53 54
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
55 56
#endif

M
minqiyang 已提交
57 58
#include "pybind11/stl.h"

Q
Qiao Longfei 已提交
59 60 61
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

62
namespace paddle {
63
namespace pybind {
64
bool IsCompiledWithCUDA() {
65
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
66 67 68 69 70 71
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
72
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
73
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
74 75 76 77 78 79
  return true;
#else
  return false;
#endif
}

80 81
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
82

83 84 85 86
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

87
  BindException(&m);
Y
Yu Yang 已提交
88

89 90 91
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
92
      .def("_get_dims",
93
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
94
      .def("_set_dims",
Q
qijun 已提交
95
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
96
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
97
           })
Y
yuyang18 已提交
98
      .def("_set_layout",
D
dzhwinter 已提交
99 100 101
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
102
      .def("_alloc_float",
D
dzhwinter 已提交
103
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
104
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
105
           })
Y
yuyang18 已提交
106
      .def("_alloc_float",
Y
Yu Yang 已提交
107
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
108
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
109
           })
Y
yuyang18 已提交
110
      .def("_alloc_int",
Y
Yu Yang 已提交
111
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
112
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
113
           })
Y
yuyang18 已提交
114
      .def("_alloc_int",
D
dzhwinter 已提交
115
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
116
             self.mutable_data<int>(place);
Q
qijun 已提交
117
           })
Y
yuyang18 已提交
118
      .def("_alloc_int",
C
chengduoZH 已提交
119 120 121
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
122
      .def("_alloc_float",
C
chengduoZH 已提交
123 124 125
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
126 127
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
128
      .def("set", PyCPUTensorSetFromArray<double>)
129
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
130
      .def("set", PyCPUTensorSetFromArray<bool>)
131
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
132
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
133
      .def("set", PyCPUTensorSetFromArray<int8_t>)
134
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
135 136
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
137
      .def("set", PyCUDATensorSetFromArray<double>)
138
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
139
      .def("set", PyCUDATensorSetFromArray<bool>)
140
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
141
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
142
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
143 144 145 146 147 148
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
149
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
150
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
151
#endif
152
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
153 154 155 156 157
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
158

159
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
160 161
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
162 163 164 165 166 167 168 169 170 171 172 173 174 175
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
176
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
177 178 179 180 181
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
182
      .def("set_lod",
183
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
184
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
185
             LoD new_lod;
186 187
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
188 189
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
190
             self.set_lod(new_lod);
D
dangqingqing 已提交
191
           })
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
217
      // Set above comments of set_lod.
218 219 220 221 222 223 224 225 226 227 228 229 230
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
231 232
      });

Q
qijun 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
246 247 248 249 250 251 252 253 254
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
255
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
256
      .def("rows", [](SelectedRows &self) {
257 258 259 260 261
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
262
      });
Q
qijun 已提交
263

264
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
265 266 267

All parameter, weight, gradient are variables in Paddle.
)DOC")
268
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
269
      .def("set_int",
270 271
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
272 273 274 275 276 277 278
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
279
      .def("get_tensor",
280 281
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
282 283
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
284 285 286
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
287 288 289 290 291
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
292 293 294
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
295 296 297 298 299 300 301
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
302 303 304 305 306
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
307
           py::return_value_policy::reference);
308

Y
Refine  
Yu Yang 已提交
309
  py::class_<framework::ReaderHolder>(m, "Reader", "")
310
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
311

S
sneaxiy 已提交
312 313 314 315
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
316 317
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
318
      .def("push",
S
sneaxiy 已提交
319
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
320
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
321
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
322
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
323
           })
S
sneaxiy 已提交
324 325 326 327
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
328

S
sneaxiy 已提交
329
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
330
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
331
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
332
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
333 334 335 336 337 338 339
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
              holder->InitOnce(capacity, dims);
S
sneaxiy 已提交
340
              return holder->GetQueue();
S
sneaxiy 已提交
341
            },
S
sneaxiy 已提交
342
        py::return_value_policy::copy);
S
sneaxiy 已提交
343

344
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
345
      .def("var",
346
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
347
             return self.Var(name);
Y
Yu Yang 已提交
348
           },
349
           py::return_value_policy::reference)
350
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
351
      .def(py::init<>())
352
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
353
           py::return_value_policy::reference)
Y
Yu Yang 已提交
354
      .def("drop_kids", &Scope::DropKids);
355

Y
Yu Yang 已提交
356 357
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
358 359
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
360 361 362 363 364 365 366 367 368 369
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
370 371
    return ret_values;
  });
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
388
  m.def("prune", [](const ProgramDesc &origin,
389
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
390
    ProgramDesc prog_with_targets(origin);
391
    for (const auto &t : targets) {
392
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
393
    }
394
    proto::ProgramDesc pruned_desc;
395
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
396
    return new ProgramDesc(pruned_desc);
397
  });
Y
Yu Yang 已提交
398
  m.def("inference_optimize", [](ProgramDesc &origin) {
399
    proto::ProgramDesc pruned_desc;
400
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
401
    return new ProgramDesc(pruned_desc);
402
  });
403 404 405 406
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
407 408 409
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
410 411
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
412
  // clang-format off
Y
Yu Yang 已提交
413
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
414 415
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
416
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
417 418 419
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
420
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
421
                      -> paddle::platform::DeviceContext* {
422
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
423
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
424
#else
Q
qijun 已提交
425
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
426
#endif
C
chengduoZH 已提交
427 428 429 430 431 432 433 434 435 436 437
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
438 439 440 441
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
442
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
443
      .def(py::init<int>())
D
dzhwinter 已提交
444
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
445

446 447 448
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
449

C
chengduoZH 已提交
450 451 452 453
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
454 455 456 457 458 459 460
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
461
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
462
             self = gpu_place;
C
chengduoZH 已提交
463 464
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
465 466
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
467
      });
Y
Yu Yang 已提交
468

Y
Yu Yang 已提交
469 470 471
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
472
                    proto::OpDesc desc;
Y
Yu Yang 已提交
473 474 475 476 477
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
478
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
479
                  })
480
      .def("run",
481
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
482 483 484
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
485
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
486 487 488 489 490
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
491 492 493 494 495 496 497
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
498 499
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
500
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
501
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
502 503 504 505
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
506

F
fengjiayi 已提交
507
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
508
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
509
      .def("close", &Executor::Close)
S
sneaxiy 已提交
510 511 512 513 514
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
515

D
dzhwinter 已提交
516
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
517
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
518 519
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
X
version  
Xin Pan 已提交
520 521 522 523
  m.def("_supported_version", []() {
    std::vector<int> supported_versions;
    return supported_versions;
  });
524

525
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
526
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
527 528 529 530 531 532
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
533

534
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
535
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
536

537 538 539 540 541
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
542

Y
Yu Yang 已提交
543 544 545 546 547 548 549 550 551
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
552
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
553 554
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
571 572 573
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
574
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
575
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
576
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
577 578 579 580

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
581
#endif
Y
Yu Yang 已提交
582

583 584 585 586
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
587
      .value("kAll", platform::ProfilerState::kAll)
588 589 590 591 592 593 594 595 596 597 598 599 600
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
601
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
602
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
603

Y
yuyang18 已提交
604
  // -- python binds for parallel executor.
Y
yuyang18 已提交
605
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
Y
yuyang18 已提交
606 607
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy");
  exec_strategy.def(py::init())
Y
yuyang18 已提交
608 609 610 611 612 613 614
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
          })
      .def_property(
615 616 617 618
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
Y
yuyang18 已提交
619 620 621 622 623 624
          })
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
Y
yuyang18 已提交
625 626 627 628 629 630 631 632
          })
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
Y
yuyang18 已提交
633
          });
Y
yuyang18 已提交
634
  exec_strategy.def_property(
Y
yuyang18 已提交
635 636 637 638 639 640 641
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
642 643
      });

Y
yuyang18 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy");

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
          })
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
Y
yuyang18 已提交
669 670 671 672 673 674
          })
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
F
fengjiayi 已提交
675 676 677 678 679
          })
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
          [](BuildStrategy &self, bool b) { self.enable_data_balance_ = b; });
Y
yuyang18 已提交
680 681 682 683

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
684
                  const std::string &, Scope *, std::vector<Scope *> &,
685 686
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
W
Wu Yi 已提交
687
      .def("_bcast_params", &ParallelExecutor::BCastParamsToDevices)
Y
Yu Yang 已提交
688 689 690 691
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
692 693 694 695 696
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
697 698 699 700
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
701 702 703 704 705 706
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
707

708
  BindRecordIOWriter(&m);
709
  return m.ptr();
L
Luo Tao 已提交
710
}
711
}  // namespace pybind
712
}  // namespace paddle