pybind.cc 118.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33 34
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
35
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
37
#include "paddle/fluid/framework/io/fs.h"
38
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
39
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
40 41 42
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/op_info.h"
44
#include "paddle/fluid/framework/op_registry.h"
45
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
46
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
49
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
51
#include "paddle/fluid/framework/selected_rows.h"
52
#include "paddle/fluid/framework/tensor_util.h"
53
#include "paddle/fluid/framework/trainer.h"
54
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
55
#include "paddle/fluid/framework/version.h"
H
hong 已提交
56
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
58
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
59
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
60
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/operators/py_func_op.h"
62
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
63
#include "paddle/fluid/platform/cpu_info.h"
64
#include "paddle/fluid/platform/device_context.h"
65
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/platform/enforce.h"
67
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
68
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
69 70
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
71 72 73
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
74
#include "paddle/fluid/pybind/box_helper_py.h"
75
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
76
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
77
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
78
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
79
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
80
#include "paddle/fluid/pybind/generator_py.h"
81
#include "paddle/fluid/pybind/global_value_getter_setter.h"
82
#include "paddle/fluid/pybind/gloo_context_py.h"
83
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
84
#include "paddle/fluid/pybind/heter_wrapper_py.h"
85
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
86
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
87
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
88
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
89
#include "paddle/fluid/pybind/pybind_boost_headers.h"
90

91
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
92
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
93
#endif
94
#include "paddle/fluid/framework/data_type.h"
95 96
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
97
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
98
#include "paddle/fluid/pybind/tensor_py.h"
99
#include "paddle/fluid/string/to_string.h"
100 101
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
102
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
103
#endif
104
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
105
#include "paddle/fluid/platform/cuda_profiler.h"
106
#endif
Y
Yi Wang 已提交
107
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
108 109
#endif

110 111 112 113
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
114 115 116 117
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
118
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
119 120 121
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
122 123
#include "pybind11/stl.h"

124
DECLARE_bool(use_mkldnn);
125

Q
Qiao Longfei 已提交
126 127
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
128 129 130
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
131

132
namespace paddle {
133
namespace pybind {
134
bool IsCompiledWithCUDA() {
135 136 137 138 139 140 141 142 143
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
144 145 146 147 148 149
  return false;
#else
  return true;
#endif
}

150 151 152 153 154 155 156 157
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

158 159 160 161 162 163 164 165
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

166 167 168 169 170 171 172 173
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

174 175 176 177 178 179 180 181 182 183 184
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

185 186 187 188 189 190 191 192 193 194 195
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

254
bool IsCompiledWithBrpc() {
255
#ifndef PADDLE_WITH_DISTRIBUTE
256 257
  return false;
#endif
258 259 260 261 262 263

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
264 265
}

Y
update  
Yancey1989 已提交
266
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
267
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
268 269 270 271 272 273
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
274 275 276 277 278 279 280 281 282 283
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
306 307 308
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
322 323
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
324 325
    }
    vec_res.emplace_back(
326
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
327 328 329 330 331 332 333 334 335 336 337 338
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
339 340
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
341 342 343 344 345 346 347 348 349 350 351 352
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
353 354 355
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
356 357 358 359
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
360 361
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
362 363 364 365
  }
  return vec_res;
}

366 367 368 369 370 371 372 373
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
374 375
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
376 377 378 379 380 381 382 383 384 385 386 387 388
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
389 390 391
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
392 393 394 395 396
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
397 398 399 400 401
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
402 403
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
404 405 406
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
407 408 409 410 411 412 413 414 415
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
416 417
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
418 419 420 421 422
  }

  return;
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

447 448 449 450 451 452
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
453 454 455
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
456
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
457

458 459
  AssertStaticGraphAndDygraphGradMakerNoDiff();

460
  m.doc() = "C++ core of PaddlePaddle";
461

462 463 464 465
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

466
  BindException(&m);
Y
Yu Yang 已提交
467

468 469
  m.def("set_num_threads", &platform::SetNumThreads);

470
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
471 472 473
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
474 475 476 477 478
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
479
    framework::Tensor tensor;
6
633WHU 已提交
480 481 482 483

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
484
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
485 486 487 488 489 490 491
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
492 493 494 495 496 497 498 499 500
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
501
           const Scope &scope, const Executor *executor) {
H
hong 已提交
502
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
503
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
504 505 506
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

507 508 509 510 511 512
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
532

533 534 535 536 537 538
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
539 540
  });

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
566 567 568 569 570 571
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
572
  m.def(
S
sneaxiy 已提交
573
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
574 575 576 577
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
578 579 580
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
597 598 599
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
600
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
601

602
  m.def("_set_fuse_parameter_group_size",
603
        &paddle::framework::ir::SetFuseParameterGroupsSize);
604
  m.def("_set_fuse_parameter_memory_size",
605
        &paddle::framework::ir::SetFuseParameterMemorySize);
606

S
sneaxiy 已提交
607 608 609
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

610 611
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

612 613 614
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

615
  BindImperative(&m);
616

617 618 619
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
620
      .def("_is_initialized",
621
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
622
      .def("_get_dims",
623
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
624
      .def("_set_dims",
625
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
626
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
627
           })
Y
yuyang18 已提交
628
      .def("_set_layout",
629
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
630 631
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
632
      .def("_alloc_float",
633
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
634
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
635
           })
636
      .def("_alloc_float",
637
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
638 639
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
640
      .def("_alloc_float",
641
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
642
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
643
           })
644
      .def("_alloc_double",
645
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
646 647
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
648
      .def("_alloc_int",
649
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
650
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
651
           })
652
      .def("_alloc_int",
653
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
654 655
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
656
      .def("_alloc_int",
657
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
658
             self.mutable_data<int>(place);
Q
qijun 已提交
659
           })
Y
yuyang18 已提交
660
      .def("_alloc_int",
661 662
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
663 664
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
665
      .def("_alloc_float",
666 667
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
668 669
             self.mutable_data<float>(place);
           })
670
      .def("_mutable_data",
671
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
672 673 674
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
675
      .def("_mutable_data",
676
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
677 678 679
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
680
      .def("_mutable_data",
681
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
682 683 684 685
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
686
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
687 688 689
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
690
      .def("_clear", &framework::Tensor::clear)
691
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
692
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
693 694
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
695
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
696
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
697
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
698 699
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
700 701 702 703
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
704
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
705
          LoDTensor is to be set.
706 707
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
721

722 723 724
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
741
      .def("_to_dlpack",
742
           [](framework::Tensor &self) {
6
633WHU 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
763 764 765 766
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
767 768
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
769
      .def("_layout",
770 771 772 773
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
774
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
775
      .def("__str__", [](const framework::Tensor &self) {
776 777 778 779
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
780

L
Leo Chen 已提交
781
  // TODO(cql): add reference: en_user_guide_lod_tensor
782
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
857 858 859 860 861 862 863

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
864 865

        )DOC")
866 867
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
868 869 870 871 872 873 874 875 876
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
877 878
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
879 880 881 882
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
883 884
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
885
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
886
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
887 888
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
889 890 891
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
892
      .def("set_lod",
893
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
894
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
895
             LoD new_lod;
896 897
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
898 899
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
900 901
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
902
             self.set_lod(new_lod);
S
sneaxiy 已提交
903 904 905 906 907
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
908 909 910 911
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
912 913 914 915 916 917 918 919 920 921

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
922
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
923
           )DOC")
924 925 926 927 928 929 930 931 932 933 934
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
935 936
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
937 938 939 940 941
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
942
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
943 944
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
945
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
946

L
Leo Chen 已提交
947
           For example, if recursive_sequence_lengths=[[2, 3]], which means
948
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
949
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
950 951

           Args:
L
Leo Chen 已提交
952 953 954 955
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
956 957 958 959 960 961 962 963 964 965

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
966 967
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
968
           )DOC")
969 970 971 972 973 974 975 976
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
977 978 979 980 981
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
982 983
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
984 985 986 987 988 989 990 991 992 993
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
994
           )DOC")
G
gongweibao 已提交
995
      // Set above comments of set_lod.
996 997 998 999 1000 1001 1002 1003
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1004 1005
           },
           R"DOC(
L
Leo Chen 已提交
1006 1007
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1008 1009

           Returns:
L
Leo Chen 已提交
1010
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1022 1023 1024 1025 1026 1027 1028 1029
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1030
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1031 1032

           Returns:
L
Leo Chen 已提交
1033
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1045 1046 1047 1048 1049 1050 1051
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1052
           )DOC")
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1071
#ifdef _WIN32
1072
      });
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1123

Q
qijun 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1135 1136
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1137 1138
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1139 1140
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1141
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1142 1143 1144 1145 1146 1147
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1148
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1149
      .def("rows", [](SelectedRows &self) {
1150 1151 1152 1153 1154
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1155
      });
Q
qijun 已提交
1156

1157
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1158 1159 1160

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1161
      .def(py::init<>())
1162
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1163
      .def("set_int",
1164 1165
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1166 1167 1168 1169 1170 1171 1172
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1173
      .def("get_tensor",
1174 1175
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1176 1177
           },
           py::return_value_policy::reference)
1178 1179 1180 1181
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1182 1183 1184
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1185 1186 1187 1188 1189
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1190 1191 1192
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1193 1194 1195
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1196
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1197 1198 1199 1200 1201
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1202
#endif
Y
Refine  
Yu Yang 已提交
1203 1204
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1205 1206 1207 1208
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1209 1210
             return self.GetMutable<framework::ReaderHolder>();
           },
1211 1212 1213 1214 1215
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1216

S
sneaxiy 已提交
1217
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1218

S
sneaxiy 已提交
1219
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1233
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1234 1235 1236 1237 1238 1239
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1240 1241
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1242
      .def("var",
1243
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1244
             return self.Var(name);
Y
Yu Yang 已提交
1245
           },
S
sneaxiy 已提交
1246 1247
           py::arg("name"),
           R"DOC(
1248
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1249

1250
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1251
           current scope, the variable would be created. Otherwise,
1252
           return the existing variable.
S
sneaxiy 已提交
1253 1254

           Args:
1255 1256
               name (str): the variable name.

S
sneaxiy 已提交
1257
           Returns:
1258
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1259 1260 1261 1262
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1263
           Find variable named :code:`name` in the current scope or
1264
           its parent scope. Return None if not found. 
1265

S
sneaxiy 已提交
1266 1267
           Args:
               name (str): the variable name.
1268

S
sneaxiy 已提交
1269
           Returns:
1270
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1271
           )DOC",
1272
           py::return_value_policy::reference)
1273
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1274 1275 1276 1277 1278 1279
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1280
           py::return_value_policy::reference)
S
sneaxiy 已提交
1281 1282 1283
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1284 1285
           )DOC")
      .def("_kids", &Scope::kids);
1286

S
sneaxiy 已提交
1287 1288 1289 1290 1291 1292
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1293 1294
        R"DOC(
        Create a new scope.
1295

S
sneaxiy 已提交
1296 1297 1298
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1299 1300
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1301 1302
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1303 1304
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1305 1306 1307 1308
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1309 1310
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1311 1312
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1313 1314 1315
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1316 1317
    return ret_values;
  });
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1347 1348 1349
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1350 1351 1352 1353 1354
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1355 1356 1357
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1372
  m.def("prune", [](const ProgramDesc &origin,
1373
                    const std::set<std::string> &feeded_var_names,
1374
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1375
    ProgramDesc prog_with_targets(origin);
1376

1377
    for (const auto &t : targets) {
1378
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1379
    }
1380
    proto::ProgramDesc pruned_desc;
1381 1382 1383 1384
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1385
  });
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1403 1404 1405 1406
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1407 1408 1409
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1410 1411
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1412

Q
qijun 已提交
1413
  // clang-format off
Y
Yu Yang 已提交
1414
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1415 1416
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1417
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1418 1419
                    return new paddle::platform::CPUDeviceContext();
                  })
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1432
      .def_static("create",
D
dzhwinter 已提交
1433
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1434
                      -> paddle::platform::DeviceContext* {
1435
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1436 1437 1438 1439
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1440
#else
Q
qijun 已提交
1441
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1442
#endif
C
chengduoZH 已提交
1443 1444 1445 1446
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1447
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1448 1449 1450 1451
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1452 1453 1454 1455
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1456
// clang-format on
1457
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1458 1459
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1460
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1461 1462 1463 1464 1465

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1466
    The memory of CUDAPlace with different dev_id is not accessible.
1467 1468 1469 1470 1471 1472 1473 1474
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1475 1476 1477 1478

    Examples:
        .. code-block:: python

1479 1480 1481
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1482

1483
        )DOC")
S
sneaxiy 已提交
1484 1485
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1486
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1511 1512
             new (&self) platform::CUDAPlace(dev_id);
#else
1513 1514 1515 1516 1517 1518 1519 1520 1521
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1522 1523
#endif
           })
1524
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1525 1526
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1527 1528 1529 1530
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1531
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1532 1533
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1534 1535 1536
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1537
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1538
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1539

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1585
#ifdef PADDLE_WITH_XPU
1586 1587 1588 1589 1590 1591 1592
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1593 1594 1595
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1596
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1597
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1598 1599 1600
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1601
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1602
    CPUPlace is a descriptor of a device.
1603
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1604 1605 1606 1607

    Examples:
        .. code-block:: python

1608 1609
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1610

1611
        )DOC")
1612
      .def(py::init<>())
S
sneaxiy 已提交
1613 1614
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1615
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1616 1617 1618 1619
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1620
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1621
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1622

1623
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1624 1625 1626 1627 1628 1629
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1630 1631 1632 1633

    Examples:
        .. code-block:: python

1634 1635
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1636

1637
        )DOC")
S
sneaxiy 已提交
1638
      .def("__init__",
S
sneaxiy 已提交
1639
           [](platform::CUDAPinnedPlace &self) {
1640
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1641 1642 1643
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1644
#endif
S
sneaxiy 已提交
1645
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1646
           })
S
sneaxiy 已提交
1647 1648 1649 1650
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1651 1652
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1653 1654 1655 1656
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1657
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1658 1659
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1660 1661
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1662 1663 1664 1665
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1666
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1667
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1668 1669
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1670 1671
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1672 1673
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1674 1675 1676 1677
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1678 1679
      .def("gpu_device_id",
           [](platform::Place &self) {
1680
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1681
           })
1682 1683 1684 1685
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1686 1687
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1688 1689 1690 1691
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1692 1693 1694 1695
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1696
      .def("set_place",
D
dzhwinter 已提交
1697
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1698
             self = gpu_place;
C
chengduoZH 已提交
1699
           })
1700 1701 1702 1703 1704 1705 1706
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1707

Y
Yu Yang 已提交
1708
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1709 1710 1711 1712 1713
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1714 1715 1716 1717 1718 1719 1720
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1721 1722
            return OpRegistry::CreateOp(desc);
          })
1723
      .def("run",
1724
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1725
              const platform::CPUPlace &place) { self.Run(scope, place); })
1726 1727 1728
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1729 1730
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1731
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1732 1733 1734 1735 1736
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1737 1738 1739 1740 1741 1742 1743
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1744 1745
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1746
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1747
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1748 1749 1750 1751
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1752

1753 1754 1755
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1756 1757 1758 1759 1760 1761 1762 1763 1764
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1765
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1766
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1767
      .def("close", &Executor::Close)
1768 1769
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1770 1771
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1772 1773 1774 1775
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1776
             pybind11::gil_scoped_release release;
1777 1778 1779 1780 1781 1782 1783
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1784 1785 1786
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1787
              std::map<std::string, FetchType *> *fetch_targets,
1788 1789 1790 1791 1792 1793 1794 1795
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1796
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1797 1798 1799 1800 1801 1802 1803
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1814
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1815 1816
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1817
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1818 1819
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1820
      });
S
sneaxiy 已提交
1821

D
dzhwinter 已提交
1822
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1823
  m.def("init_glog", framework::InitGLOG);
1824 1825
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1826
  m.def("init_devices", []() { framework::InitDevices(); });
1827

1828
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1829
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1830
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1831
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1832
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1833
  m.def("supports_bfloat16", SupportsBfloat16);
1834
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1835
  m.def("op_supported_infos", OpSupportedInfos);
1836
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1837
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1838 1839 1840
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1860 1861 1862 1863 1864 1865 1866
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1876
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1877 1878 1879 1880 1881
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1882

1883
  m.def("set_feed_variable", framework::SetFeedVariable);
1884 1885 1886 1887 1888
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1889
            return py::cast(BOOST_GET(LoDTensor, var));
1890
          } else {
1891
            return py::cast(BOOST_GET(LoDTensorArray, var));
1892 1893
          }
        });
1894
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1895

X
Xin Pan 已提交
1896 1897
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1898 1899 1900 1901 1902
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1903
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1904

Y
Yu Yang 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1914
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1915
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1916 1917 1918

    Examples:
        .. code-block:: python
1919

Z
Zeng Jinle 已提交
1920 1921 1922 1923
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1924 1925
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1926 1927 1928 1929 1930 1931
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1932 1933 1934 1935
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1936 1937 1938
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1939 1940 1941 1942 1943 1944
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1945 1946
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1947 1948 1949 1950 1951 1952
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1975

1976 1977 1978 1979 1980 1981 1982 1983
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1984
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1985 1986
                 res[i] = py::cast(std::move(data));
               } else {
1987
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2003
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2004 2005 2006 2007 2008 2009 2010 2011
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2012
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2013 2014 2015 2016 2017 2018 2019 2020 2021
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2022 2023
        )DOC")
      .def("_move_to_list",
2024
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2025 2026 2027 2028
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2029
                 if (data_is_lod_tensor(self[i][j])) {
2030
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2031 2032
                   tmp[j] = py::cast(std::move(var));
                 } else {
2033
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2034 2035 2036 2037 2038 2039
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2049
  m.def("op_support_gpu", OpSupportGPU);
2050
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2051
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2052

2053
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2054 2055 2056
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2057 2058 2059 2060
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2061
#endif
P
peizhilin 已提交
2062
#endif
Y
Yu Yang 已提交
2063

2064 2065 2066 2067 2068 2069
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2070 2071 2072 2073
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2074
      .value("kAll", platform::ProfilerState::kAll)
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2086
  m.def("set_tracer_option", platform::SetTracerOption);
2087 2088
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2089
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2090
  m.def("reset_profiler", platform::ResetProfiler);
2091
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2092 2093 2094
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2095

2096 2097
  m.def("size_of_dtype", framework::SizeOfType);

2098
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2099 2100
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2101 2102
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2103 2104
#endif  // PADDLE_WITH_CUDA

2105 2106 2107
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2108 2109
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2110
      .def("has", &ir::Pass::Has)
2111 2112 2113
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2114
           })
2115
      .def(
2116
          "set",
2117 2118 2119
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2120 2121
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2122 2123
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2138 2139
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2140
        self.Apply(graph.get());
F
flame 已提交
2141
      });
2142

X
fix  
Xin Pan 已提交
2143 2144
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2159
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2160

Y
yuyang18 已提交
2161
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2162 2163 2164 2165
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2166 2167 2168
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2169 2170 2171
    Examples:
        .. code-block:: python

2172 2173 2174 2175 2176 2177 2178 2179 2180
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2181

2182 2183
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2184

2185
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2186 2187
          sgd_optimizer.minimize(avg_loss)

2188
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2189 2190
          exec_strategy.num_threads = 4

2191 2192 2193
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2194 2195
        )DOC");

2196 2197 2198 2199
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2200

Y
yuyang18 已提交
2201
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2202 2203 2204 2205 2206
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2207
          },
2208 2209
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2210 2211 2212 2213 2214 2215 2216
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2230
      .def_property(
2231 2232
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2233
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2234 2235 2236
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2237 2238 2239 2240 2241
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2242 2243 2244
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2245 2246
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2247 2248 2249 2250 2251 2252 2253
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2254 2255 2256 2257
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2258
                because the temp variable's shape maybe the same between two iterations.
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2269

2270 2271 2272 2273 2274 2275 2276
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2277
              )DOC")
Q
Qiao Longfei 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2299
              )DOC")
2300 2301 2302 2303 2304 2305 2306 2307
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2308 2309 2310 2311 2312
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2313

Y
yuyang18 已提交
2314
  exec_strategy.def_property(
Y
yuyang18 已提交
2315 2316 2317 2318 2319 2320 2321
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2322 2323
      });

C
chengduo 已提交
2324 2325 2326 2327
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2328 2329 2330
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2331 2332 2333
    Examples:
        .. code-block:: python

2334
            import os
2335 2336 2337 2338
            import paddle
            import paddle.static as static

            paddle.enable_static()
2339

2340 2341
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2342

2343 2344 2345 2346
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2347

2348
            build_strategy = static.BuildStrategy()
2349 2350
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2351 2352
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2353
            program = program.with_data_parallel(loss_name=loss.name,
2354 2355
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2356
)DOC");
Y
yuyang18 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2373 2374 2375 2376
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2377
            self.reduce_ = strategy;
C
chengduo 已提交
2378
          },
2379
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2380 2381
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2382
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2383 2384
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2385
                Default is 'AllReduce'.
F
flame 已提交
2386 2387 2388 2389

                Examples:
                    .. code-block:: python

2390 2391 2392 2393 2394 2395 2396
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2397
                  )DOC")
Y
yuyang18 已提交
2398 2399 2400 2401 2402
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2403 2404 2405 2406
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2407
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2408
          },
2409
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2410
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2411 2412
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2413
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2414 2415 2416 2417

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2418 2419
                        import numpy
                        import os
2420 2421 2422 2423
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2424 2425

                        use_cuda = True
2426 2427
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2428 2429

                        # NOTE: If you use CPU to run the program, you need
2430
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2431 2432 2433 2434 2435 2436
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2437
                            places = static.cpu_places()
C
chengduo 已提交
2438
                        else:
2439
                            places = static.cuda_places()
C
chengduo 已提交
2440

2441 2442 2443 2444
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2445

2446
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2447

2448
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2449
                        build_strategy.gradient_scale_strategy = \
2450 2451 2452
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2453
                                          loss_name=loss.name, build_strategy=build_strategy,
2454
                                          places=places)
C
chengduo 已提交
2455 2456 2457 2458 2459 2460

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2461 2462
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2463
                   )DOC")
Y
yuyang18 已提交
2464 2465 2466 2467
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2468 2469 2470 2471
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2472
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2473
          },
2474
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2475
                writing the SSA Graph to file in the form of graphviz.
2476
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2477 2478 2479 2480

                Examples:
                    .. code-block:: python

2481 2482 2483 2484
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2485

2486 2487
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2488
                    )DOC")
S
sneaxiy 已提交
2489 2490 2491 2492 2493 2494
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2495 2496 2497 2498
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2499 2500
            self.enable_sequential_execution_ = b;
          },
2501 2502
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2503 2504 2505 2506

                Examples:
                    .. code-block:: python

2507 2508 2509 2510 2511 2512
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2513 2514
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2515 2516 2517 2518 2519 2520
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2521 2522 2523 2524
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2525 2526
            self.remove_unnecessary_lock_ = b;
          },
2527 2528
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2529 2530 2531 2532

                Examples:
                    .. code-block:: python

2533 2534 2535 2536 2537 2538
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2539 2540
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2541 2542 2543 2544
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2545
#ifdef WIN32
2546
            PADDLE_THROW(platform::errors::Unavailable(
2547
                "Distribution mode is not supported on Windows platform."));
2548
#endif
2549 2550
            self.num_trainers_ = num_trainers;
          })
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2563 2564 2565 2566 2567 2568
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2569 2570 2571 2572 2573 2574
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2575
      .def_property("use_hierarchical_allreduce",
2576 2577 2578 2579 2580 2581
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2582
      .def_property("hierarchical_allreduce_inter_nranks",
2583 2584 2585 2586 2587 2588 2589
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2590 2591 2592 2593 2594 2595
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2596 2597 2598 2599
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2600 2601
            self.fuse_elewise_add_act_ops_ = b;
          },
2602
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2603
                to fuse elementwise_add_op and activation_op,
2604
                it may make the execution faster. Default is False.
F
flame 已提交
2605 2606 2607 2608

                Examples:
                    .. code-block:: python

2609 2610 2611 2612 2613 2614
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2615 2616
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2617 2618 2619 2620
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2621
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2622
                              platform::errors::PreconditionNotMet(
2623 2624
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2634 2635 2636 2637 2638 2639
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2640 2641
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2667 2668 2669 2670
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2671
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2672
                              platform::errors::PreconditionNotMet(
2673 2674
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2685 2686 2687 2688 2689 2690
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2691 2692
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2693 2694 2695 2696 2697 2698
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2699 2700 2701 2702
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2703 2704
            self.fuse_relu_depthwise_conv_ = b;
          },
2705
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2706 2707 2708
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2709
                Default is False.
F
flame 已提交
2710 2711 2712 2713

                Examples:
                    .. code-block:: python

2714 2715 2716 2717 2718 2719
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2720 2721
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2722 2723 2724 2725 2726 2727
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2728 2729 2730 2731
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2732 2733
                      self.fuse_broadcast_ops_ = b;
                    },
2734
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2735 2736 2737 2738
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2739 2740 2741 2742 2743
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2744 2745 2746 2747 2748 2749
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2750 2751
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2752 2753
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2754 2755
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2756 2757
                    },
                    [](BuildStrategy &self, bool b) {
2758 2759 2760 2761
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2762 2763
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2764 2765 2766 2767
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2768 2769 2770 2771
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2772 2773
            self.sync_batch_norm_ = b;
          },
2774
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2775 2776 2777
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2778 2779
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2780 2781 2782 2783

                Examples:
                    .. code-block:: python

2784 2785 2786 2787 2788 2789
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2790 2791
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2792 2793
      .def_property(
          "memory_optimize",
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2808 2809 2810
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2811 2812
            }
          },
2813
          R"DOC((bool, optional): memory opitimize aims to save total memory
2814
                consumption, set to True to enable it.
2815

2816 2817 2818
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2833 2834 2835
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2836 2837 2838
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2839
              PADDLE_THROW(platform::errors::Unavailable(
2840
                  "Distribution mode is not supported on Windows platform."));
2841 2842 2843 2844 2845
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2846 2847 2848
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2849
      .def_property(
D
dzhwinter 已提交
2850 2851 2852
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2853 2854 2855 2856
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2857 2858
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2859 2860 2861 2862
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2863
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2864 2865 2866 2867 2868 2869 2870
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2871 2872 2873 2874
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2875 2876 2877 2878 2879 2880 2881 2882 2883
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2884
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2885
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2886 2887 2888 2889 2890
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2891 2892

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2893
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2894
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2895
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2896 2897 2898 2899
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2900 2901 2902 2903 2904
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2905 2906 2907
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2908 2909 2910 2911
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2912 2913
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2914 2915 2916 2917 2918 2919 2920 2921
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2922
               return py::cast(
2923
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2924 2925
             } else {
               return py::cast(std::move(
2926
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2927
             }
2928 2929
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2930

D
dongdaxiang 已提交
2931
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2932

T
Thunderbrook 已提交
2933 2934
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2935
#endif
2936 2937
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
2938
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2939
#endif
2940
  BindGlooWrapper(&m);
H
hutuxian 已提交
2941
  BindBoxHelper(&m);
H
hutuxian 已提交
2942 2943 2944
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2945
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2946
  BindNCCLWrapper(&m);
2947 2948 2949
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2950
#endif
F
flame 已提交
2951 2952
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2953
  BindInferenceApi(&m);
2954
  BindCompatible(&m);
2955
  BindDataset(&m);
Y
yaoxuefeng 已提交
2956
  BindGenerator(&m);
2957 2958 2959
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2960
  BindAscendDevice(&m);
2961
#endif
Y
Yanghello 已提交
2962 2963 2964
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2965

T
tangwei12 已提交
2966
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2967 2968
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2969
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2970 2971
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2972 2973 2974 2975 2976
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
2977
#endif
L
Luo Tao 已提交
2978
}
2979
}  // namespace pybind
2980
}  // namespace paddle