pybind.cc 90.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
49
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
50
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/op_info.h"
52
#include "paddle/fluid/framework/op_registry.h"
53
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
54
#include "paddle/fluid/framework/parallel_executor.h"
55
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
58
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
74
#include "paddle/fluid/operators/py_func_op.h"
75
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
76
#include "paddle/fluid/platform/cpu_info.h"
77
#include "paddle/fluid/platform/device/device_wrapper.h"
78
#include "paddle/fluid/platform/device_context.h"
79
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/platform/enforce.h"
81
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
82
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
83 84
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
85 86 87
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
88
#include "paddle/fluid/pybind/cuda_streams_py.h"
89
#include "paddle/fluid/pybind/distributed_py.h"
90
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
91
#include "paddle/fluid/pybind/imperative.h"
92
#include "paddle/fluid/pybind/io.h"
93
#include "paddle/fluid/pybind/jit.h"
94 95
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
96
#include "paddle/utils/none.h"
97 98 99
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
100
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
101
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
102
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
103
#include "paddle/fluid/pybind/box_helper_py.h"
104
#include "paddle/fluid/pybind/communication.h"
105
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
106
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
107
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
108
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
110
#include "paddle/fluid/pybind/generator_py.h"
111
#include "paddle/fluid/pybind/global_value_getter_setter.h"
112
#include "paddle/fluid/pybind/gloo_context_py.h"
113
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
114
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
115
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
116
#include "paddle/fluid/pybind/ir.h"
117
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
118
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
119
#include "paddle/fluid/pybind/pybind_variant_caster.h"
120
#include "paddle/phi/backends/device_manager.h"
121

122
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
123
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
124
#endif
125
#include "paddle/fluid/framework/data_type.h"
126 127
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
128 129
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
130
#include "paddle/fluid/pybind/reader_py.h"
131
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
132
#include "paddle/fluid/pybind/tensor_py.h"
133
#include "paddle/fluid/string/to_string.h"
134 135
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
136
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
137
#endif
138
#ifndef PADDLE_WITH_HIP
139
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
140
#endif
141
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
142 143
#endif

144
#ifdef PADDLE_WITH_ASCEND_CL
145
#include "paddle/fluid/platform/collective_helper.h"
146 147
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
148 149
#endif

150
#ifdef PADDLE_WITH_XPU
151
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
152
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
153 154
#endif

155 156 157 158
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/capi/capi.h"
#endif

159
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
160

J
jianghaicheng 已提交
161
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
162 163
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
164
#endif
165

166 167 168 169
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
170 171 172 173
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
174
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
175 176 177
#include "paddle/fluid/pybind/fleet_py.h"
#endif

178 179 180 181
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

182
#include "paddle/fluid/eager/api/utils/global_utils.h"
183
#include "paddle/fluid/imperative/layout_autotune.h"
184 185
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
186 187
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
188 189
#include "pybind11/stl.h"

190
DECLARE_bool(use_mkldnn);
191

Q
Qiao Longfei 已提交
192 193
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
194 195 196
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
197

198
namespace paddle {
199
namespace pybind {
200

0
0x45f 已提交
201
PyTypeObject *g_framework_scope_pytype = nullptr;
202
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
203
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
204

205
bool IsCompiledWithCUDA() {
206 207 208 209 210 211 212
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

213 214 215 216 217 218 219 220
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

221 222
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
223 224 225 226 227 228
  return false;
#else
  return true;
#endif
}

229 230 231 232 233 234 235 236
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

237 238 239 240 241 242 243 244
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

245 246 247 248 249 250 251 252
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
253 254 255 256 257 258 259 260
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

261 262 263 264 265 266 267 268
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

269 270 271 272 273 274 275 276
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

277 278 279 280 281 282 283 284
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

285 286 287 288 289 290 291 292
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

293 294 295 296 297 298 299 300 301 302 303
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

304 305 306 307 308 309 310 311 312 313 314
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

332
bool IsCompiledWithBrpc() {
333
#ifndef PADDLE_WITH_DISTRIBUTE
334
  return false;
335
#else
336
  return true;
337
#endif
338 339
}

Y
update  
Yancey1989 已提交
340
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
341
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
342 343 344 345 346 347
  return true;
#else
  return false;
#endif
}

H
hong 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
370 371
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
372 373
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
387 388
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
389 390
    }
    vec_res.emplace_back(
391
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
392 393 394 395 396 397 398 399 400 401 402 403
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
404 405
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
406 407 408 409 410 411 412 413 414 415 416 417
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
418 419 420
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
421 422 423 424
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
425 426
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
427 428 429 430
  }
  return vec_res;
}

O
OccupyMars2025 已提交
431
static void inline CreateVariableIfNotExist(
432 433
    const py::handle &py_handle,
    const framework::Scope &scope,
434 435 436 437 438 439
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
440 441
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
442 443 444 445 446 447 448 449 450 451 452 453 454
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
455 456 457
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
458 459 460 461 462
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
463 464 465 466 467
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
468 469
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
470
        PADDLE_ENFORCE_NOT_NULL(
471 472 473
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
474 475 476 477
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
478
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
479 480
        tensor_temp->mutable_data(
            exe->GetPlace(),
481
            framework::TransToPhiDataType(var_desc.GetDataType()));
482 483 484
      }
    }
  } else {
485 486
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
487 488 489 490 491
  }

  return;
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
508 509
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
510 511 512 513 514 515 516
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
517 518 519 520
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
521
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
522 523 524 525 526 527 528 529
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

530 531 532 533 534 535
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
536
  BindImperative(&m);
537
  BindEager(&m);
J
Jack Zhou 已提交
538
  BindEagerStringTensor(&m);
539
  BindCudaStream(&m);
540
  BindJit(&m);
541

Y
Yu Yang 已提交
542 543 544
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
545
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
546

547 548
  AssertStaticGraphAndDygraphGradMakerNoDiff();

549
  m.doc() = "C++ core of PaddlePaddle";
550

551 552 553 554
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

555
  BindException(&m);
Y
Yu Yang 已提交
556

557 558
  m.def("set_num_threads", &platform::SetNumThreads);

559 560
  m.def("disable_signal_handler", &DisableSignalHandler);

561 562 563 564 565 566 567 568
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

569
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
570
  m.def("cudnn_version", &platform::DnnVersion);
571 572 573 574 575 576
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
577
#endif
578

Z
Zeng Jinle 已提交
579 580 581 582
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

583 584 585 586 587 588 589 590 591
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
592 593
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
594
      .def("replay", &platform::CUDAGraph::Replay)
595 596
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
597 598
#endif

Z
Zeng Jinle 已提交
599 600 601 602
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
603 604 605
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
606 607

    PADDLE_ENFORCE_NOT_NULL(
608 609 610 611
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
612

6
633WHU 已提交
613 614
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
615
    framework::Tensor tensor;
6
633WHU 已提交
616

S
Siming Dai 已提交
617
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
618 619
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
620
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
621
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
622 623 624 625 626
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
627

628
  m.def("_create_loaded_parameter",
629 630
        [](const py::handle &vec_var_list,
           const Scope &scope,
631
           const Executor *executor) {
O
OccupyMars2025 已提交
632
          CreateVariableIfNotExist(vec_var_list, scope, executor);
633 634
        });

635 636 637 638 639 640
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
641 642
  });

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

668 669 670 671 672 673
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
674

S
sneaxiy 已提交
675
  m.def(
S
sneaxiy 已提交
676
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
677 678 679 680
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
681 682 683
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
700
            }
701
            all_kernels_info.emplace(op_type, kernel_types);
702
          }
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
719
                }
720 721
              } else {
                kernel_types.emplace_back(kernel_type_str);
722
              }
723
            }
724 725 726
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
727
          }
728
        }
729

730 731 732 733
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
734 735 736
           Return the registered kernels in paddle.

           Args:
737
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
738
           )DOC");
739

740 741 742 743 744 745
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
746 747 748 749 750
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
751

S
sneaxiy 已提交
752 753 754
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
755
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
756

757
  m.def("_set_fuse_parameter_group_size",
758
        &paddle::framework::ir::SetFuseParameterGroupsSize);
759
  m.def("_set_fuse_parameter_memory_size",
760
        &paddle::framework::ir::SetFuseParameterMemorySize);
761

S
sneaxiy 已提交
762 763 764
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

765 766
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

767 768 769
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
811 812 813 814 815 816 817 818 819 820 821 822 823
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
824 825 826 827 828
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
829

830
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
831 832 833

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
834
      .def(py::init<>())
835
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
836
      .def("set_int",
837 838
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
839 840 841 842 843 844 845
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
846 847 848 849 850 851
      .def(
          "get_tensor",
          [](Variable &self) -> LoDTensor * {
            return self.GetMutable<LoDTensor>();
          },
          py::return_value_policy::reference)
852 853 854 855
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
856 857 858 859
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
860 861 862 863
      .def("set_vocab",
           [](Variable &self, Vocab vocab) {
             *self.GetMutable<Vocab>() = vocab;
           })
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
890
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
891 892 893 894 895 896
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
897
#endif
898 899 900
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
901 902
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
903 904 905 906 907 908 909 910 911 912
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
913 914
                scope_vec->size(),
                0,
915 916 917 918 919
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
920 921 922 923
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
924

S
sneaxiy 已提交
925
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
926

0
0x45f 已提交
927
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

941
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
942 943 944 945 946
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
947 948 949
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
950 951
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
952 953 954 955 956 957 958
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
959
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
960

961
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
962
           current scope, the variable would be created. Otherwise,
963
           return the existing variable.
S
sneaxiy 已提交
964 965

           Args:
966 967
               name (str): the variable name.

S
sneaxiy 已提交
968
           Returns:
969
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
970
           )DOC",
971
          py::return_value_policy::reference)
972 973 974
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
975
           R"DOC(
976
           Find variable named :code:`name` in the current scope or
977
           its parent scope. Return None if not found. 
978

S
sneaxiy 已提交
979 980
           Args:
               name (str): the variable name.
981

S
sneaxiy 已提交
982
           Returns:
983
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
984
           )DOC",
985
           py::return_value_policy::reference)
986
      .def("size", &Scope::Size)
987 988 989
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
990 991 992 993 994 995 996 997 998 999 1000
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1001
      .def(
1002 1003
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1004
          R"DOC(
S
sneaxiy 已提交
1005 1006 1007 1008 1009
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1010
          py::return_value_policy::reference)
1011 1012
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1013 1014
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1015 1016
           )DOC")
      .def("_kids", &Scope::kids);
1017

1018 1019 1020 1021 1022 1023 1024 1025
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1026
        Create a new scope.
1027

S
sneaxiy 已提交
1028 1029 1030
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1031
      py::return_value_policy::reference);
S
sneaxiy 已提交
1032

Y
Yu Yang 已提交
1033 1034
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1035 1036
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1037 1038 1039 1040
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1041
        PADDLE_ENFORCE_EQ(
1042 1043
            info.Proto().SerializeToString(&str),
            true,
1044 1045
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1046 1047 1048
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1049 1050
    return ret_values;
  });
1051 1052 1053 1054 1055 1056 1057
  m.def("get_all_op_names", []() {
    std::vector<std::string> op_names;
    for (auto &iter : OpInfoMap::Instance().map()) {
      op_names.emplace_back(iter.first);
    }
    return op_names;
  });
1058 1059 1060 1061 1062 1063 1064 1065
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1066
              res = op_checker->GetDefaultAttrsMap();
1067 1068 1069 1070
            }
          }
          return res;
        });
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1089 1090 1091
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1092 1093 1094 1095 1096
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1097 1098 1099
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1100
  m.def("infer_no_need_buffer_slots",
1101 1102
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1130 1131 1132 1133 1134 1135
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1136 1137 1138
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
1139
            Args:
1140 1141 1142 1143 1144 1145 1146 1147
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1148 1149 1150 1151
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1152 1153
    VLOG(4) << s;
    return s;
1154 1155 1156 1157 1158 1159
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1160
  });
1161 1162 1163 1164
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1165 1166 1167
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1168 1169
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1170

Y
Yu Yang 已提交
1171
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1172
      .def_static("create",
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
                    return context;
Q
qijun 已提交
1189
                  })
1190 1191 1192 1193
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1194
#ifndef PADDLE_WITH_XPU
1195 1196 1197
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1198
#else
W
Wilber 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1213
#endif
1214 1215 1216 1217 1218
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1219
#ifndef PADDLE_WITH_MLU
1220 1221 1222
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1223 1224
#else
                    return new paddle::platform::MLUDeviceContext(place);
1225
#endif
1226 1227 1228 1229 1230
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1231
#ifndef PADDLE_WITH_ASCEND_CL
1232 1233 1234
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1235 1236
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1237
#endif
1238 1239 1240 1241
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1242
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1243 1244 1245 1246
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1247 1248
#else
                return new paddle::platform::CustomDeviceContext(place);
1249
#endif
1250 1251 1252 1253 1254
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1255
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1256 1257 1258
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1259
#else
L
Leo Chen 已提交
1260
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
1273 1274 1275 1276
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1277 1278
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1279
#endif
1280 1281 1282 1283 1284
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1285
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1286 1287 1288
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1289 1290 1291
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1292
          });
1293
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1294 1295
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1296 1297 1298
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1299
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1300
#else
R
ronnywang 已提交
1301
          VLOG(1) << string::Sprintf(
1302 1303 1304 1305
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1306
              "PaddlePaddle by: pip install paddlepaddle\n");
1307 1308 1309 1310 1311 1312
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1313
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1314
#else
R
ronnywang 已提交
1315
          VLOG(1) << string::Sprintf(
1316 1317 1318 1319
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1320
              "PaddlePaddle by: pip install paddlepaddle\n");
1321 1322 1323 1324 1325 1326
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1327
    devices = phi::DeviceManager::GetAllDeviceList();
1328
#else
R
ronnywang 已提交
1329
          VLOG(1) << string::Sprintf(
1330 1331 1332 1333
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1334
              "PaddlePaddle by: pip install paddlepaddle\n");
1335 1336 1337 1338 1339 1340
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1341
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1342
#else
R
ronnywang 已提交
1343
          VLOG(1) << string::Sprintf(
1344 1345 1346 1347 1348 1349
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1350
              "PaddlePaddle by: pip install paddlepaddle\n");
1351 1352 1353
#endif
    return devices;
  });
Y
Yu Yang 已提交
1354

Y
Yu Yang 已提交
1355
  py::class_<OperatorBase>(m, "Operator")
1356 1357 1358 1359 1360 1361 1362
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1363 1364
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1365 1366 1367 1368 1369 1370
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1371
      .def("run",
1372 1373
           [](OperatorBase &self,
              const Scope &scope,
1374 1375 1376 1377
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1378
      .def("run",
1379 1380
           [](OperatorBase &self,
              const Scope &scope,
1381 1382 1383 1384
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1385
      .def("run",
1386 1387
           [](OperatorBase &self,
              const Scope &scope,
1388 1389 1390 1391
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1392
      .def("run",
1393 1394
           [](OperatorBase &self,
              const Scope &scope,
1395 1396 1397 1398
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1399
      .def("run",
1400 1401
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1402
              const platform::CUDAPinnedPlace &place) {
1403
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1404 1405
             self.Run(scope, place);
           })
1406
      .def("run",
1407 1408
           [](OperatorBase &self,
              const Scope &scope,
1409 1410 1411 1412
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1413
      .def("run",
1414 1415
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1416 1417 1418 1419
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1420 1421 1422 1423 1424
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1425 1426
             return op.Outputs();
           })
Q
qijun 已提交
1427 1428
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1429
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1430
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1431 1432 1433 1434
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1435

1436 1437 1438
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1439 1440
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1441 1442 1443 1444 1445 1446
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1447 1448
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1449

1450 1451
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1452
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1453
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1454
      .def("close", &Executor::Close)
1455 1456
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1457
           py::call_guard<py::gil_scoped_release>())
1458 1459
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1460
           py::call_guard<py::gil_scoped_release>())
1461
      .def("init_for_dataset",
1462 1463 1464 1465
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1466
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1467
             pybind11::gil_scoped_release release;
1468 1469 1470 1471 1472 1473 1474
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1475
      .def("run_prepared_ctx",
1476 1477 1478
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1479
              std::map<std::string, const LoDTensor *> *feed_targets,
1480
              std::map<std::string, FetchType *> *fetch_targets,
1481 1482
              bool create_local_scope = true,
              bool create_vars = true,
1483 1484 1485
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1486 1487 1488 1489 1490 1491 1492 1493
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1494
           })
1495
      .def("run_prepared_ctx",
1496 1497 1498 1499 1500
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1501 1502
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1503 1504
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1505
           })
1506
      .def("prepare",
1507 1508 1509
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1510 1511 1512 1513
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1514 1515
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1516 1517
           })
      .def("create_variables", &Executor::CreateVariables)
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1534

1535
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1536
      .def(py::init<>())
1537 1538 1539 1540 1541
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1542

1543
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1544
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1545
      .def("run",
1546
           [](StandaloneExecutor &self,
1547
              Scope *scope,
1548
              std::vector<std::string> feed_names,
1549 1550 1551 1552
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1553
               ret = self.Run(scope, feed_names, fetch_names);
1554 1555 1556
             }
             return py::cast(std::move(ret));
           })
1557 1558
      .def("dry_run",
           [](StandaloneExecutor &self,
1559
              Scope *scope,
1560
              const std::unordered_map<std::string, py::array> &input_dict) {
1561
             std::vector<framework::LoDTensor> feed_tensors;
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1572
             framework::interpreter::CostInfo cost_info;
1573 1574
             {
               pybind11::gil_scoped_release release;
1575
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1576 1577
             }
             return cost_info;
H
hong 已提交
1578 1579
           });

D
dzhwinter 已提交
1580
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1581
  m.def("init_glog", framework::InitGLOG);
1582 1583 1584 1585
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1586
  m.def("init_devices", []() { framework::InitDevices(); });
1587 1588
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1589
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1590
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1591
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1592
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1593
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1594
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1595
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1596
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
1597
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1598
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1599
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1600
  m.def("supports_bfloat16", SupportsBfloat16);
1601
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1602 1603
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1604
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1605
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1606
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1607 1608 1609
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1629 1630 1631
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1632 1633
  m.def(
      "run_cmd",
1634 1635
      [](const std::string &cmd,
         int time_out = -1,
1636
         int sleep_inter = -1) -> const std::string {
1637 1638
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1639
      },
1640 1641 1642
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1643 1644
  m.def(
      "shell_execute_cmd",
1645 1646 1647
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1648
         bool redirect_stderr = false) -> std::vector<std::string> {
1649 1650
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1651
      },
1652 1653 1654
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1655
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1656

1657
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1658 1659
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1660
    return platform::GetGPUComputeCapability(place.device) >= 53;
1661
  });
1662 1663 1664 1665
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1666
#endif
1667

S
Steffy-zxf 已提交
1668
  m.def("set_feed_variable",
1669 1670 1671 1672 1673
        static_cast<void (*)(  // NOLINT
            Scope *,
            const LoDTensor &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1674
  m.def("set_feed_variable",
1675 1676 1677 1678 1679
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1680
  m.def("get_fetch_variable",
1681 1682
        [](const Scope &scope,
           const std::string &var_name,
1683 1684 1685
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
R
Ruibiao Chen 已提交
1686
            return py::cast(PADDLE_GET(LoDTensor, var));
1687
          } else {
R
Ruibiao Chen 已提交
1688
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1689 1690
          }
        });
1691
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1692

X
Xin Pan 已提交
1693 1694
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1695 1696 1697 1698
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1699
  BindCostModel(&m);
1700
  BindConstValue(&m);
1701
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1702
  BindFleetExecutor(&m);
1703
  BindTCPStore(&m);
1704
  BindAutoParallel(&m);
1705
  BindJitProperty(&m);
Y
Yu Yang 已提交
1706

Y
Yu Yang 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1716
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1717
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1718 1719 1720

    Examples:
        .. code-block:: python
1721

Z
Zeng Jinle 已提交
1722 1723 1724
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1725 1726 1727 1728
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1729 1730
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1731 1732 1733 1734
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1735 1736 1737
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1738 1739
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1740 1741 1742
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1743 1744 1745
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1746 1747 1748 1749 1750 1751 1752
      .def(
          "append",
          [](LoDTensorArray &self, const LoDTensor &t) {
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1753 1754
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1755
             Append a LoDensor to LoDTensorArray.
1756 1757 1758 1759 1760 1761
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1773
           )DOC")
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1785

1786
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
1787
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
1788
        )DOC")
1789 1790 1791 1792 1793 1794
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
R
Ruibiao Chen 已提交
1795
                auto &data = PADDLE_GET(LoDTensor, self[i]);
1796 1797
                res[i] = py::cast(std::move(data));
              } else {
R
Ruibiao Chen 已提交
1798
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
1810

1811 1812 1813 1814
      .def(
          "append",
          [](FetchList &self, const LoDTensor &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1815
            auto &lod_tensor = PADDLE_GET(LoDTensor, self.back());
1816 1817 1818 1819 1820 1821 1822 1823 1824
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1825
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
1826 1827 1828 1829 1830 1831
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
1832 1833

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
1834
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1835
        )DOC")
1836 1837 1838 1839 1840 1841 1842 1843
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
R
Ruibiao Chen 已提交
1844
                  auto &var = PADDLE_GET(LoDTensor, self[i][j]);
1845 1846
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
1847
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
1862

Y
Yu Yang 已提交
1863
  m.def("op_support_gpu", OpSupportGPU);
1864
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1865
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
1866
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
1867 1868 1869 1870 1871 1872 1873 1874
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
1875 1876 1877 1878 1879 1880
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
1881 1882

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
1908
      });
D
dangqingqing 已提交
1909

1910
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
1911 1912 1913
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
1914 1915 1916 1917
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
1918
#endif
P
peizhilin 已提交
1919
#endif
Y
Yu Yang 已提交
1920

1921 1922
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
1923
  m.def("npu_finalize", []() {
1924 1925
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

1926 1927 1928
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
1929
      platform::NPUDeviceGuard guard(devices[i]);
1930 1931 1932 1933
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
1954 1955 1956 1957
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

1958 1959 1960 1961
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

1962 1963 1964 1965 1966 1967
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1968 1969 1970 1971
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1972
      .value("kAll", platform::ProfilerState::kAll)
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1984
  m.def("set_tracer_option", platform::SetTracerOption);
1985 1986
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1987
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1988
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
1989
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
1990
    PADDLE_ENFORCE_EQ(
1991 1992
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
1993 1994 1995
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
1996
    callable.inc_ref();
1997 1998 1999 2000 2001 2002 2003 2004
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2005
  });
2006
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2007 2008 2009
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2010

2011
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2012 2013
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2014 2015
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2016 2017 2018 2019
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2062 2063 2064 2065
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
C
chenjian 已提交
2066 2067 2068 2069 2070
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2071 2072 2073
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2074 2075

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2076 2077
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2078
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2079
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2080 2081
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2082 2083 2084 2085 2086 2087
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2111 2112 2113 2114 2115 2116 2117 2118
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2137 2138 2139 2140 2141 2142
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
  m.def("enable_input_shape_recorder",
        &paddle::platform::EnableInputShapeRecorder);
  m.def("disable_input_shape_recorder",
        &paddle::platform::DisableInputShapeRecorder);
2143

2144
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2145 2146
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2147 2148
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2149
#endif  // PADDLE_WITH_CUDA
2150 2151 2152 2153 2154 2155 2156 2157
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2158

J
jianghaicheng 已提交
2159 2160
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2161 2162 2163
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2164 2165 2166 2167 2168 2169 2170
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2171
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2172 2173
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2174
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2185 2186 2187 2188
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2211 2212
                         option.get_type(),
                         option_name));
2213 2214 2215 2216 2217 2218 2219
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2220 2221
                         option_name,
                         option.first.cast<std::string>(),
2222 2223
                         option.second.cast<std::uint64_t>());
                   }
2224 2225 2226 2227 2228 2229
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2275 2276
                           option.second.get_type(),
                           option_key));
2277
                     }
2278 2279
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2280 2281 2282 2283 2284 2285
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2286 2287
                     element.second.get_type(),
                     option_name));
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2318 2319
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2320 2321 2322
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2323 2324
#endif

2325 2326 2327 2328 2329 2330 2331 2332
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2333
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2334 2335 2336 2337 2338 2339 2340 2341 2342
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2343
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2344 2345 2346 2347 2348 2349 2350
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
  m.def("enable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .EnableLayoutAutoTune();
  });

  m.def("disable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .DisableLayoutAutoTune();
  });

  m.def("use_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance().UseLayoutAutoTune();
  });

D
dongdaxiang 已提交
2365
  BindFleetWrapper(&m);
2366
  BindIO(&m);
2367 2368 2369
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2370

T
Thunderbrook 已提交
2371
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2372
  BindHeterWrapper(&m);
2373
  BindMetrics(&m);
T
Thunderbrook 已提交
2374
#endif
T
Thunderbrook 已提交
2375
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2376
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2377 2378 2379
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2380
#endif
2381
  BindGlooWrapper(&m);
H
hutuxian 已提交
2382
  BindBoxHelper(&m);
H
hutuxian 已提交
2383 2384 2385
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2386
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2387
  BindNCCLWrapper(&m);
2388 2389 2390
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2391
#endif
F
flame 已提交
2392 2393
  BindGraph(&m);
  BindNode(&m);
2394
  BindPass(&m);
F
flame 已提交
2395
  BindInferenceApi(&m);
2396
  BindCompatible(&m);
2397
  BindDataset(&m);
Y
yaoxuefeng 已提交
2398
  BindGenerator(&m);
2399 2400 2401
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
2402 2403 2404
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2405
  BindAscendDevice(&m);
2406
#endif
Y
Yanghello 已提交
2407 2408 2409
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2410

T
tangwei12 已提交
2411
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2412 2413
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2414
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2415 2416
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2417 2418 2419 2420 2421
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2422 2423 2424 2425
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2426
#ifdef PADDLE_WITH_HETERPS
2427 2428
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2429 2430 2431
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2432
#endif
L
Luo Tao 已提交
2433
}
2434
}  // namespace pybind
2435
}  // namespace paddle