pybind.cc 123.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_cache.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
39
#include "paddle/fluid/framework/io/fs.h"
40
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
41
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
42 43 44
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/framework/op_info.h"
46
#include "paddle/fluid/framework/op_registry.h"
47
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
50
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
51
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/selected_rows.h"
54
#include "paddle/fluid/framework/tensor_util.h"
55
#include "paddle/fluid/framework/trainer.h"
56
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
57
#include "paddle/fluid/framework/version.h"
H
hong 已提交
58
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
59
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
60
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
61
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
62
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
63
#include "paddle/fluid/operators/py_func_op.h"
64
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
65
#include "paddle/fluid/platform/cpu_info.h"
66
#include "paddle/fluid/platform/device_context.h"
67
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/platform/enforce.h"
69
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
70
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
71 72
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
73
#include "paddle/fluid/pybind/io.h"
74 75 76
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
77
#include "paddle/fluid/pybind/box_helper_py.h"
78
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
79
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
80
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
81
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
82
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
83
#include "paddle/fluid/pybind/generator_py.h"
84
#include "paddle/fluid/pybind/global_value_getter_setter.h"
85
#include "paddle/fluid/pybind/gloo_context_py.h"
86
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
87
#include "paddle/fluid/pybind/heter_wrapper_py.h"
88
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
89
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
90
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
91
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
92
#include "paddle/fluid/pybind/pybind_boost_headers.h"
93

94
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
95
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
96
#endif
97
#include "paddle/fluid/framework/data_type.h"
98 99
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
100
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
101
#include "paddle/fluid/pybind/tensor_py.h"
102
#include "paddle/fluid/string/to_string.h"
103 104
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
105
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
106
#endif
107
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
108
#include "paddle/fluid/platform/cuda_profiler.h"
109
#endif
Y
Yi Wang 已提交
110
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
111 112
#endif

113 114
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
115
#include "paddle/fluid/platform/npu_profiler.h"
116 117
#endif

118 119 120 121
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
122 123 124 125
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
126
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
127 128 129
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
130 131
#include "pybind11/stl.h"

132
DECLARE_bool(use_mkldnn);
133

Q
Qiao Longfei 已提交
134 135
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
136 137 138
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
139

140
namespace paddle {
141
namespace pybind {
142
bool IsCompiledWithCUDA() {
143 144 145 146 147 148 149 150 151
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
152 153 154 155 156 157
  return false;
#else
  return true;
#endif
}

158 159 160 161 162 163 164 165
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

166 167 168 169 170 171 172 173
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

174 175 176 177 178 179 180 181
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

182 183 184 185 186 187 188 189
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

190 191 192 193 194 195 196 197
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

198 199 200 201 202 203 204 205 206 207 208
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

209 210 211 212 213 214 215 216 217 218 219
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
238 239 240
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

280
bool IsCompiledWithBrpc() {
281
#ifndef PADDLE_WITH_DISTRIBUTE
282 283
  return false;
#endif
284
  return true;
285 286
}

Y
update  
Yancey1989 已提交
287
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
288
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
289 290 291 292 293 294
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
295 296 297 298 299 300 301 302 303 304
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
327 328 329
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
343 344
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
345 346
    }
    vec_res.emplace_back(
347
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
348 349 350 351 352 353 354 355 356 357 358 359
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
360 361
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
362 363 364 365 366 367 368 369 370 371 372 373
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
374 375 376
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
377 378 379 380
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
381 382
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
383 384 385 386
  }
  return vec_res;
}

387 388 389 390 391 392 393 394
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
395 396
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
397 398 399 400 401 402 403 404 405 406 407 408 409
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
410 411 412
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
413 414 415 416 417
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
418 419 420 421 422
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
423 424
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
425 426 427
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
428 429 430 431 432 433 434 435 436
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
437 438
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
439 440 441 442 443
  }

  return;
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

468 469 470 471 472 473
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
474 475 476
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
477
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
478

479 480
  AssertStaticGraphAndDygraphGradMakerNoDiff();

481
  m.doc() = "C++ core of PaddlePaddle";
482

483 484 485 486
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

487
  BindException(&m);
Y
Yu Yang 已提交
488

489 490
  m.def("set_num_threads", &platform::SetNumThreads);

491
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
492 493 494
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
495 496 497 498 499
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
500
    framework::Tensor tensor;
6
633WHU 已提交
501 502 503 504

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
505
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
506 507 508 509 510 511
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
512

513 514 515 516 517 518
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

519 520 521 522 523 524
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
525 526
  });

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
552 553 554 555 556 557
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
558
  m.def(
S
sneaxiy 已提交
559
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
560 561 562 563
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
564 565 566
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
583 584 585
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
586
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
587

588
  m.def("_set_fuse_parameter_group_size",
589
        &paddle::framework::ir::SetFuseParameterGroupsSize);
590
  m.def("_set_fuse_parameter_memory_size",
591
        &paddle::framework::ir::SetFuseParameterMemorySize);
592

S
sneaxiy 已提交
593 594 595
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

596 597
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

598 599 600
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

601
  BindImperative(&m);
602

603 604 605
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
606
      .def("_is_initialized",
607
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
608
      .def("_get_dims",
609
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
610
      .def("_set_dims",
611
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
612
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
613
           })
Y
yuyang18 已提交
614
      .def("_set_layout",
615
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
616 617
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
618
      .def("_alloc_float",
619
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
620
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
621
           })
622
      .def("_alloc_float",
623
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
624 625
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
626
      .def("_alloc_float",
627
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
628
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
629
           })
630 631 632 633
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
634
      .def("_alloc_double",
635
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
636 637
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
638
      .def("_alloc_int",
639
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
640
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
641
           })
642
      .def("_alloc_int",
643
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
644 645
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
646
      .def("_alloc_int",
647
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
648
             self.mutable_data<int>(place);
Q
qijun 已提交
649
           })
Y
yuyang18 已提交
650
      .def("_alloc_int",
651 652
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
653 654
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
655
      .def("_alloc_float",
656 657
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
658 659
             self.mutable_data<float>(place);
           })
660
      .def("_mutable_data",
661
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
662 663 664
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
665
      .def("_mutable_data",
666
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
667 668 669
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
670
      .def("_mutable_data",
671
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
672 673 674 675
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
676
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
677 678 679
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
680
      .def("_clear", &framework::Tensor::clear)
681 682 683 684 685
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
686
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
687
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
688 689
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
690
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
691
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
692 693
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
694
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
695 696
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
697 698 699 700
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
701
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
702
          LoDTensor is to be set.
703 704
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
718

719 720 721
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
738
      .def("_to_dlpack",
739
           [](framework::Tensor &self) {
6
633WHU 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
760 761 762 763
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
764 765
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
766
      .def("_layout",
767 768 769 770
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
771
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
772
      .def("__str__", [](const framework::Tensor &self) {
773 774 775 776
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
777

L
Leo Chen 已提交
778
  // TODO(cql): add reference: en_user_guide_lod_tensor
779
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
854 855 856 857 858 859 860

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
861 862

        )DOC")
863 864
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
865 866 867 868 869 870 871 872 873
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
874 875
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
876 877 878 879
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
880 881
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
882
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
883
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
884 885
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
886 887 888
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
889
      .def("set_lod",
890
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
891
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
892
             LoD new_lod;
893 894
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
895 896
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
897 898
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
899
             self.set_lod(new_lod);
S
sneaxiy 已提交
900 901 902 903 904
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
905 906 907 908
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
909 910 911 912 913 914 915 916 917 918

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
919
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
920
           )DOC")
921 922 923 924 925 926 927 928 929 930 931
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
932 933
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
934 935 936 937 938
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
939
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
940 941
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
942
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
943

L
Leo Chen 已提交
944
           For example, if recursive_sequence_lengths=[[2, 3]], which means
945
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
946
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
947 948

           Args:
L
Leo Chen 已提交
949 950 951 952
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
953 954 955 956 957 958 959 960 961 962

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
963 964
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
965
           )DOC")
966 967 968 969 970 971 972 973
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
974 975 976 977 978
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
979 980
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
981 982 983 984 985 986 987 988 989 990
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
991
           )DOC")
G
gongweibao 已提交
992
      // Set above comments of set_lod.
993 994 995 996 997 998 999 1000
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1001 1002
           },
           R"DOC(
L
Leo Chen 已提交
1003 1004
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1005 1006

           Returns:
L
Leo Chen 已提交
1007
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1019 1020 1021 1022 1023 1024 1025 1026
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1027
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1028 1029

           Returns:
L
Leo Chen 已提交
1030
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1042 1043 1044 1045 1046 1047 1048
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1049
           )DOC")
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1068
#ifdef _WIN32
1069
      });
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1120

Q
qijun 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1132 1133
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1134 1135
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1136 1137
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1138
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1139 1140 1141 1142 1143 1144
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1145
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1146
      .def("rows", [](SelectedRows &self) {
1147 1148 1149 1150 1151
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1152
      });
Q
qijun 已提交
1153

1154
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1155 1156 1157

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1158
      .def(py::init<>())
1159
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1160
      .def("set_int",
1161 1162
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1163 1164 1165 1166 1167 1168 1169
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1170
      .def("get_tensor",
1171 1172
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1173 1174
           },
           py::return_value_policy::reference)
1175 1176 1177 1178
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1179 1180 1181
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1182 1183 1184 1185 1186
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1187 1188 1189
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1190 1191 1192
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1193
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1194 1195 1196 1197 1198
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1199
#endif
Y
Refine  
Yu Yang 已提交
1200 1201
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1202 1203 1204 1205
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1206 1207
             return self.GetMutable<framework::ReaderHolder>();
           },
1208 1209 1210 1211 1212
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1213

S
sneaxiy 已提交
1214
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1215

S
sneaxiy 已提交
1216
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1230
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1231 1232 1233 1234 1235 1236
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1237 1238
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1239
      .def("var",
1240
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1241
             return self.Var(name);
Y
Yu Yang 已提交
1242
           },
S
sneaxiy 已提交
1243 1244
           py::arg("name"),
           R"DOC(
1245
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1246

1247
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1248
           current scope, the variable would be created. Otherwise,
1249
           return the existing variable.
S
sneaxiy 已提交
1250 1251

           Args:
1252 1253
               name (str): the variable name.

S
sneaxiy 已提交
1254
           Returns:
1255
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1256 1257 1258 1259
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1260
           Find variable named :code:`name` in the current scope or
1261
           its parent scope. Return None if not found. 
1262

S
sneaxiy 已提交
1263 1264
           Args:
               name (str): the variable name.
1265

S
sneaxiy 已提交
1266
           Returns:
1267
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1268
           )DOC",
1269
           py::return_value_policy::reference)
1270
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1271 1272 1273 1274 1275 1276
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1277
           py::return_value_policy::reference)
S
sneaxiy 已提交
1278 1279 1280
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1281 1282
           )DOC")
      .def("_kids", &Scope::kids);
1283

S
sneaxiy 已提交
1284 1285 1286 1287 1288 1289
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1290 1291
        R"DOC(
        Create a new scope.
1292

S
sneaxiy 已提交
1293 1294 1295
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1296 1297
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1298 1299
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1300 1301
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1302 1303 1304 1305
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1306 1307
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1308 1309
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1310 1311 1312
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1313 1314
    return ret_values;
  });
1315 1316 1317 1318 1319 1320 1321 1322
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1323
              res = op_checker->GetDefaultAttrsMap();
1324 1325 1326 1327
            }
          }
          return res;
        });
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1344 1345 1346
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1347 1348 1349 1350 1351
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1352 1353 1354
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1369
  m.def("prune", [](const ProgramDesc &origin,
1370
                    const std::set<std::string> &feeded_var_names,
1371
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1372
    ProgramDesc prog_with_targets(origin);
1373

1374
    for (const auto &t : targets) {
1375
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1376
    }
1377
    proto::ProgramDesc pruned_desc;
1378 1379 1380 1381
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1382
  });
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1400 1401 1402 1403
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1404 1405 1406
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1407 1408
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1409

Q
qijun 已提交
1410
  // clang-format off
Y
Yu Yang 已提交
1411
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1412 1413
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1414
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1415 1416
                    return new paddle::platform::CPUDeviceContext();
                  })
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1441
      .def_static("create",
D
dzhwinter 已提交
1442
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1443
                      -> paddle::platform::DeviceContext* {
1444
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1445 1446 1447 1448
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1449
#else
Q
qijun 已提交
1450
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1451
#endif
C
chengduoZH 已提交
1452 1453 1454 1455
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1456
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1457 1458 1459 1460
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1461 1462 1463 1464
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1465
// clang-format on
1466
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1467 1468
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1469
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1470 1471 1472 1473 1474

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1475
    The memory of CUDAPlace with different dev_id is not accessible.
1476 1477 1478 1479 1480 1481 1482 1483
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1484 1485 1486 1487

    Examples:
        .. code-block:: python

1488 1489 1490
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1491

1492
        )DOC")
S
sneaxiy 已提交
1493 1494
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1495
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1520 1521
             new (&self) platform::CUDAPlace(dev_id);
#else
1522 1523 1524 1525 1526 1527 1528 1529 1530
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1531 1532
#endif
           })
1533
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1534 1535
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1536 1537 1538 1539
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1540
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1541
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1542 1543
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1544 1545 1546
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1547
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1548
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1595
#ifdef PADDLE_WITH_XPU
1596 1597 1598 1599 1600 1601 1602
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1603 1604 1605
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1606
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1607
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1608 1609 1610
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1611

1612
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1613
    CPUPlace is a descriptor of a device.
1614
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1615 1616 1617 1618

    Examples:
        .. code-block:: python

1619 1620
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1621

1622
        )DOC")
1623
      .def(py::init<>())
S
sneaxiy 已提交
1624 1625
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1626
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1627
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1628 1629 1630 1631
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1632
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1633
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1634

1635
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1636 1637 1638 1639 1640 1641
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1642 1643 1644 1645

    Examples:
        .. code-block:: python

1646 1647
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1648

1649
        )DOC")
S
sneaxiy 已提交
1650
      .def("__init__",
S
sneaxiy 已提交
1651
           [](platform::CUDAPinnedPlace &self) {
1652
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1653 1654 1655
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1656
#endif
S
sneaxiy 已提交
1657
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1658
           })
S
sneaxiy 已提交
1659 1660 1661 1662
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1663 1664
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1665 1666
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1667 1668 1669 1670
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1671
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1672 1673
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1716
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1731 1732
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1733 1734
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1735 1736
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1737 1738 1739 1740
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1741
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1742
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1743
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1744 1745
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1746 1747
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1748 1749
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1750 1751
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1752 1753 1754 1755
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1756 1757
      .def("gpu_device_id",
           [](platform::Place &self) {
1758
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1759
           })
1760 1761 1762 1763
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1764 1765 1766 1767
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1768 1769
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1770 1771 1772 1773
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1774 1775 1776 1777
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1778
      .def("set_place",
D
dzhwinter 已提交
1779
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1780
             self = gpu_place;
C
chengduoZH 已提交
1781
           })
1782 1783 1784 1785 1786
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1787 1788 1789 1790
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1791 1792
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1793

Y
Yu Yang 已提交
1794
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1795 1796 1797 1798 1799
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1800 1801 1802 1803 1804 1805 1806
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1807 1808
            return OpRegistry::CreateOp(desc);
          })
1809
      .def("run",
1810
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1811
              const platform::CPUPlace &place) { self.Run(scope, place); })
1812 1813 1814
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1815 1816 1817
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1818 1819
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1820
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1821 1822 1823 1824 1825
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1826 1827 1828 1829 1830 1831 1832
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1833 1834
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1835
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1836
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1837 1838 1839 1840
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1841

1842 1843 1844
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1845 1846 1847 1848 1849 1850 1851 1852 1853
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1854 1855
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1856
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1857
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1858
      .def("close", &Executor::Close)
1859 1860
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1861 1862
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1863 1864 1865 1866
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1867
             pybind11::gil_scoped_release release;
1868 1869 1870 1871 1872 1873 1874
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1875 1876 1877
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1878
              std::map<std::string, FetchType *> *fetch_targets,
1879 1880 1881 1882 1883 1884 1885 1886
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1887
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1888 1889 1890 1891 1892 1893 1894
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1905
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1906 1907
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1908
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1909 1910
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1911
      });
S
sneaxiy 已提交
1912

D
dzhwinter 已提交
1913
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1914
  m.def("init_glog", framework::InitGLOG);
1915 1916
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1917
  m.def("init_devices", []() { framework::InitDevices(); });
1918

1919
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1920
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1921
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1922
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1923
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1924
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1925
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1926
  m.def("supports_bfloat16", SupportsBfloat16);
1927
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1928
  m.def("op_supported_infos", OpSupportedInfos);
1929
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1930
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1931 1932 1933
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1953 1954 1955 1956 1957 1958 1959
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1969
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1970 1971 1972 1973 1974
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1975

1976
  m.def("set_feed_variable", framework::SetFeedVariable);
1977 1978 1979 1980 1981
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1982
            return py::cast(BOOST_GET(LoDTensor, var));
1983
          } else {
1984
            return py::cast(BOOST_GET(LoDTensorArray, var));
1985 1986
          }
        });
1987
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1988

X
Xin Pan 已提交
1989 1990
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1991 1992 1993 1994 1995
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1996
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1997

Y
Yu Yang 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2007
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2008
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2009 2010 2011

    Examples:
        .. code-block:: python
2012

Z
Zeng Jinle 已提交
2013 2014 2015 2016
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2017 2018
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2019 2020 2021 2022 2023 2024
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2025 2026 2027 2028
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2029 2030 2031
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2032 2033 2034 2035 2036 2037
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2038 2039
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2040 2041 2042 2043 2044 2045
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2068

2069 2070 2071 2072 2073 2074 2075 2076
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2077
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2078 2079
                 res[i] = py::cast(std::move(data));
               } else {
2080
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2096
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2097 2098 2099 2100 2101 2102 2103 2104
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2105
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2106 2107 2108 2109 2110 2111 2112 2113 2114
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2115 2116
        )DOC")
      .def("_move_to_list",
2117
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2118 2119 2120 2121
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2122
                 if (data_is_lod_tensor(self[i][j])) {
2123
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2124 2125
                   tmp[j] = py::cast(std::move(var));
                 } else {
2126
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2127 2128 2129 2130 2131 2132
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2142
  m.def("op_support_gpu", OpSupportGPU);
2143
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2144
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2145

2146
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2147 2148 2149
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2150 2151 2152 2153
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2154
#endif
P
peizhilin 已提交
2155
#endif
Y
Yu Yang 已提交
2156

2157 2158
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2159
  m.def("npu_finalize", []() { platform::AclInstance::Instance().Finalize(); });
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2180 2181 2182 2183 2184 2185
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2186 2187 2188 2189
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2190
      .value("kAll", platform::ProfilerState::kAll)
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2202
  m.def("set_tracer_option", platform::SetTracerOption);
2203 2204
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2205
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2206
  m.def("reset_profiler", platform::ResetProfiler);
2207
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2208 2209 2210
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2211

2212 2213
  m.def("size_of_dtype", framework::SizeOfType);

2214
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2215 2216
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2217 2218
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2219
#endif  // PADDLE_WITH_CUDA
2220 2221
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2222

2223 2224 2225
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2226 2227
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2228
      .def("has", &ir::Pass::Has)
2229 2230 2231
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2232
           })
2233
      .def(
2234
          "set",
2235 2236 2237
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2238 2239
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2240 2241
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2256 2257
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2258
        self.Apply(graph.get());
F
flame 已提交
2259
      });
2260

X
fix  
Xin Pan 已提交
2261 2262
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2277
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2278

Y
yuyang18 已提交
2279
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2280 2281 2282 2283
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2284 2285 2286
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2287 2288 2289
    Examples:
        .. code-block:: python

2290 2291 2292 2293 2294 2295 2296 2297 2298
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2299

2300 2301
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2302

2303
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2304 2305
          sgd_optimizer.minimize(avg_loss)

2306
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2307 2308
          exec_strategy.num_threads = 4

2309 2310 2311
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2312 2313
        )DOC");

2314 2315 2316 2317
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2318

Y
yuyang18 已提交
2319
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2320 2321 2322 2323 2324
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2325
          },
2326 2327
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2328 2329 2330 2331 2332 2333 2334
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2348
      .def_property(
2349 2350
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2351
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2352 2353 2354
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2355 2356 2357 2358 2359
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2360 2361 2362
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2363 2364
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2365 2366 2367 2368 2369 2370 2371
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2372 2373 2374 2375
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2376
                because the temp variable's shape maybe the same between two iterations.
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2387

2388 2389 2390 2391 2392 2393 2394
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2395
              )DOC")
Q
Qiao Longfei 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2417
              )DOC")
2418 2419 2420 2421 2422 2423 2424 2425
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2426 2427 2428 2429 2430
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2431

Y
yuyang18 已提交
2432
  exec_strategy.def_property(
Y
yuyang18 已提交
2433 2434 2435 2436 2437 2438 2439
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2440 2441
      });

C
chengduo 已提交
2442 2443 2444 2445
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2446 2447 2448
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2449 2450 2451
    Examples:
        .. code-block:: python

2452
            import os
2453 2454 2455 2456
            import paddle
            import paddle.static as static

            paddle.enable_static()
2457

2458 2459
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2460

2461 2462 2463 2464
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2465

2466
            build_strategy = static.BuildStrategy()
2467 2468
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2469 2470
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2471
            program = program.with_data_parallel(loss_name=loss.name,
2472 2473
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2474
)DOC");
Y
yuyang18 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2491 2492 2493 2494
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2495
            self.reduce_ = strategy;
C
chengduo 已提交
2496
          },
2497
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2498 2499
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2500
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2501 2502
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2503
                Default is 'AllReduce'.
F
flame 已提交
2504 2505 2506 2507

                Examples:
                    .. code-block:: python

2508 2509 2510 2511 2512 2513 2514
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2515
                  )DOC")
Y
yuyang18 已提交
2516 2517 2518 2519 2520
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2521 2522 2523 2524
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2525
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2526
          },
2527
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2528
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2529 2530
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2531
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2532 2533 2534 2535

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2536 2537
                        import numpy
                        import os
2538 2539 2540 2541
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2542 2543

                        use_cuda = True
2544 2545
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2546 2547

                        # NOTE: If you use CPU to run the program, you need
2548
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2549 2550 2551 2552 2553 2554
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2555
                            places = static.cpu_places()
C
chengduo 已提交
2556
                        else:
2557
                            places = static.cuda_places()
C
chengduo 已提交
2558

2559 2560 2561 2562
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2563

2564
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2565

2566
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2567
                        build_strategy.gradient_scale_strategy = \
2568 2569 2570
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2571
                                          loss_name=loss.name, build_strategy=build_strategy,
2572
                                          places=places)
C
chengduo 已提交
2573 2574 2575 2576 2577 2578

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2579 2580
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2581
                   )DOC")
Y
yuyang18 已提交
2582 2583 2584 2585
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2586 2587 2588 2589
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2590
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2591
          },
2592
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2593
                writing the SSA Graph to file in the form of graphviz.
2594
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2595 2596 2597 2598

                Examples:
                    .. code-block:: python

2599 2600 2601 2602
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2603

2604 2605
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2606
                    )DOC")
S
sneaxiy 已提交
2607 2608 2609 2610 2611 2612
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2613 2614 2615 2616
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2617 2618
            self.enable_sequential_execution_ = b;
          },
2619 2620
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2621 2622 2623 2624

                Examples:
                    .. code-block:: python

2625 2626 2627 2628 2629 2630
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2631 2632
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2633 2634 2635 2636 2637 2638
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2639 2640 2641 2642
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2643 2644
            self.remove_unnecessary_lock_ = b;
          },
2645 2646
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2647 2648 2649 2650

                Examples:
                    .. code-block:: python

2651 2652 2653 2654 2655 2656
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2657 2658
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2659 2660 2661 2662
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2663
#ifdef WIN32
2664
            PADDLE_THROW(platform::errors::Unavailable(
2665
                "Distribution mode is not supported on Windows platform."));
2666
#endif
2667 2668
            self.num_trainers_ = num_trainers;
          })
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2681 2682 2683 2684 2685 2686
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2687 2688 2689 2690 2691 2692
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2693
      .def_property("use_hierarchical_allreduce",
2694 2695 2696 2697 2698 2699
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2700
      .def_property("hierarchical_allreduce_inter_nranks",
2701 2702 2703 2704 2705 2706 2707
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2708 2709 2710 2711 2712 2713
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2714 2715 2716 2717
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2718 2719
            self.fuse_elewise_add_act_ops_ = b;
          },
2720
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2721
                to fuse elementwise_add_op and activation_op,
2722
                it may make the execution faster. Default is False.
F
flame 已提交
2723 2724 2725 2726

                Examples:
                    .. code-block:: python

2727 2728 2729 2730 2731 2732
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2733 2734
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2735 2736 2737 2738
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2739
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2740
                              platform::errors::PreconditionNotMet(
2741 2742
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2752 2753 2754 2755 2756 2757
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2758 2759
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2785 2786 2787 2788
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2789
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2790
                              platform::errors::PreconditionNotMet(
2791 2792
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2803 2804 2805 2806 2807 2808
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2809 2810
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2811 2812 2813 2814 2815 2816
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2817 2818 2819 2820
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2821 2822
            self.fuse_relu_depthwise_conv_ = b;
          },
2823
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2824 2825 2826
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2827
                Default is False.
F
flame 已提交
2828 2829 2830 2831

                Examples:
                    .. code-block:: python

2832 2833 2834 2835 2836 2837
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2838 2839
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2840 2841 2842 2843 2844 2845
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2846 2847 2848 2849
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2850 2851
                      self.fuse_broadcast_ops_ = b;
                    },
2852
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2853 2854 2855 2856
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2857 2858 2859 2860 2861
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2862 2863 2864 2865 2866 2867
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2868 2869
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2870 2871
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2872 2873
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2874 2875
                    },
                    [](BuildStrategy &self, bool b) {
2876 2877 2878 2879
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2880 2881
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2882 2883 2884 2885
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2886 2887 2888 2889
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2890 2891
            self.sync_batch_norm_ = b;
          },
2892
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2893 2894 2895
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2896 2897
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2898 2899 2900 2901

                Examples:
                    .. code-block:: python

2902 2903 2904 2905 2906 2907
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2908 2909
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2910 2911
      .def_property(
          "memory_optimize",
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2926 2927 2928
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2929 2930
            }
          },
2931
          R"DOC((bool, optional): memory opitimize aims to save total memory
2932
                consumption, set to True to enable it.
2933

2934 2935 2936
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2951 2952 2953
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2954 2955 2956
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2957
              PADDLE_THROW(platform::errors::Unavailable(
2958
                  "Distribution mode is not supported on Windows platform."));
2959 2960 2961 2962 2963
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2964 2965 2966
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2967
      .def_property(
D
dzhwinter 已提交
2968 2969 2970
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2971 2972 2973 2974
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2975 2976
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2977 2978 2979 2980
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2981
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2982 2983 2984 2985 2986 2987 2988
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2989 2990 2991 2992
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2993 2994 2995 2996 2997 2998 2999 3000 3001
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
3002
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3003
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3004 3005 3006 3007 3008
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3009 3010

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3011
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3012
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3013
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3014 3015 3016 3017
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3018 3019 3020 3021 3022
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3023 3024 3025
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3026 3027 3028 3029
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3030 3031
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3032 3033 3034 3035 3036 3037 3038 3039
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3040
               return py::cast(
3041
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3042 3043
             } else {
               return py::cast(std::move(
3044
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3045
             }
3046 3047
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3048

D
dongdaxiang 已提交
3049
  BindFleetWrapper(&m);
3050
  BindIO(&m);
T
Thunderbrook 已提交
3051

T
Thunderbrook 已提交
3052 3053
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3054
#endif
T
Thunderbrook 已提交
3055
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3056
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3057
#endif
3058
  BindGlooWrapper(&m);
H
hutuxian 已提交
3059
  BindBoxHelper(&m);
H
hutuxian 已提交
3060 3061 3062
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3063
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3064
  BindNCCLWrapper(&m);
3065 3066 3067
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3068
#endif
F
flame 已提交
3069 3070
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
3071
  BindInferenceApi(&m);
3072
  BindCompatible(&m);
3073
  BindDataset(&m);
Y
yaoxuefeng 已提交
3074
  BindGenerator(&m);
3075 3076 3077
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3078
  BindAscendDevice(&m);
3079
#endif
Y
Yanghello 已提交
3080 3081 3082
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3083

T
tangwei12 已提交
3084
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3085 3086
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3087
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3088 3089
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3090 3091 3092 3093 3094
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3095 3096 3097 3098
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3099
  BindSparseShardingTools(&m);
3100
#endif
L
Luo Tao 已提交
3101
}
3102
}  // namespace pybind
3103
}  // namespace paddle