pybind.cc 115.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/custom_operator.h"
28
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
29 30
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
31
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
36 37 38
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/op_info.h"
40
#include "paddle/fluid/framework/op_registry.h"
41
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
42
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
43
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
44
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
45
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/selected_rows.h"
48
#include "paddle/fluid/framework/tensor_util.h"
49
#include "paddle/fluid/framework/trainer.h"
50
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
51
#include "paddle/fluid/framework/version.h"
H
hong 已提交
52
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
53
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
54
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
55
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
56
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/operators/py_func_op.h"
58
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
59
#include "paddle/fluid/platform/cpu_info.h"
60
#include "paddle/fluid/platform/device_context.h"
61
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/platform/enforce.h"
63
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
64
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
67 68 69
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
70
#include "paddle/fluid/pybind/box_helper_py.h"
71
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
73
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
74
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
75
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
76
#include "paddle/fluid/pybind/generator_py.h"
77
#include "paddle/fluid/pybind/global_value_getter_setter.h"
78
#include "paddle/fluid/pybind/gloo_context_py.h"
79
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
80
#include "paddle/fluid/pybind/heter_wrapper_py.h"
81
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
82
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
83
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
84
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
85
#include "paddle/fluid/pybind/pybind_boost_headers.h"
86

87
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
88
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
89
#endif
90
#include "paddle/fluid/framework/data_type.h"
91 92
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
93
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
94
#include "paddle/fluid/pybind/tensor_py.h"
95
#include "paddle/fluid/string/to_string.h"
96 97
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
98
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
99
#endif
100
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
101
#include "paddle/fluid/platform/cuda_profiler.h"
102
#endif
Y
Yi Wang 已提交
103
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
104 105
#endif

106 107 108 109
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
110 111 112 113
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
114
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
115 116 117
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
118 119
#include "pybind11/stl.h"

120
DECLARE_bool(use_mkldnn);
121

Q
Qiao Longfei 已提交
122 123
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
124 125 126
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
127

128
namespace paddle {
129
namespace pybind {
130
bool IsCompiledWithCUDA() {
131 132 133 134 135 136 137 138 139
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
140 141 142 143 144 145
  return false;
#else
  return true;
#endif
}

146 147 148 149 150 151 152 153
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

154 155 156 157 158 159 160 161
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

162 163 164 165 166 167 168 169 170 171 172
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

173 174 175 176 177 178 179 180 181 182 183
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

184
bool IsCompiledWithBrpc() {
185
#ifndef PADDLE_WITH_DISTRIBUTE
186 187
  return false;
#endif
188 189 190 191 192 193

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
194 195
}

Y
update  
Yancey1989 已提交
196
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
197
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
198 199 200 201 202 203
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
204 205 206 207 208 209 210 211 212 213
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
236 237 238
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
252 253
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
254 255
    }
    vec_res.emplace_back(
256
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
257 258 259 260 261 262 263 264 265 266 267 268
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
269 270
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
271 272 273 274 275 276 277 278 279 280 281 282
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
283 284 285
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
286 287 288 289
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
290 291
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
292 293 294 295
  }
  return vec_res;
}

296 297 298 299 300 301 302 303
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
304 305
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
306 307 308 309 310 311 312 313 314 315 316 317 318
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
319 320 321
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
322 323 324 325 326
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
327 328 329 330 331
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
332 333
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
334 335 336
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
337 338 339 340 341 342 343 344 345
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
346 347
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
348 349 350 351 352
  }

  return;
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

377 378 379 380 381 382
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
383 384 385
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
386
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
387

388 389
  AssertStaticGraphAndDygraphGradMakerNoDiff();

390
  m.doc() = "C++ core of PaddlePaddle";
391

392 393 394 395
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

396
  BindException(&m);
Y
Yu Yang 已提交
397

398 399
  m.def("set_num_threads", &platform::SetNumThreads);

400
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
401 402 403
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
404 405 406 407 408
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
409
    framework::Tensor tensor;
6
633WHU 已提交
410 411 412 413

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
414
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
415 416 417 418 419 420 421
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
422 423 424 425 426 427 428 429 430
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
431
           const Scope &scope, const Executor *executor) {
H
hong 已提交
432
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
433
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
434 435 436
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

437 438 439 440 441 442
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
462

463 464 465 466 467 468
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
469 470
  });

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
496 497 498 499 500 501
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
502
  m.def(
S
sneaxiy 已提交
503
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
504 505 506 507
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
508 509 510
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
527 528 529
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
530
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
531

532
  m.def("_set_fuse_parameter_group_size",
533
        &paddle::framework::ir::SetFuseParameterGroupsSize);
534
  m.def("_set_fuse_parameter_memory_size",
535
        &paddle::framework::ir::SetFuseParameterMemorySize);
536

S
sneaxiy 已提交
537 538 539
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

540 541
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

542 543 544
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

545
  BindImperative(&m);
546

547 548 549
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
550
      .def("_is_initialized",
551
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
552
      .def("_get_dims",
553
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
554
      .def("_set_dims",
555
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
556
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
557
           })
Y
yuyang18 已提交
558
      .def("_set_layout",
559
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
560 561
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
562
      .def("_alloc_float",
563
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
564
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
565
           })
566
      .def("_alloc_float",
567
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
568 569
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
570
      .def("_alloc_float",
571
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
572
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
573
           })
574
      .def("_alloc_double",
575
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
576 577
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
578
      .def("_alloc_int",
579
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
580
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
581
           })
582
      .def("_alloc_int",
583
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
584 585
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
586
      .def("_alloc_int",
587
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
588
             self.mutable_data<int>(place);
Q
qijun 已提交
589
           })
Y
yuyang18 已提交
590
      .def("_alloc_int",
591 592
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
593 594
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
595
      .def("_alloc_float",
596 597
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
598 599
             self.mutable_data<float>(place);
           })
600
      .def("_mutable_data",
601
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
602 603 604
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
605
      .def("_mutable_data",
606
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
607 608 609
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
610
      .def("_mutable_data",
611
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
612 613 614 615
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
616
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
617 618 619
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
620
      .def("_clear", &framework::Tensor::clear)
621
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
622
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
623 624
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
625
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
626
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
627
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
628 629
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
630 631 632 633
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
634
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
635
          LoDTensor is to be set.
636 637
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
651

652 653 654
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
671
      .def("_to_dlpack",
672
           [](framework::Tensor &self) {
6
633WHU 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
693 694 695 696
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
697 698
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
699
      .def("_layout",
700 701 702 703
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
704
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
705
      .def("__str__", [](const framework::Tensor &self) {
706 707 708 709
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
710

L
Leo Chen 已提交
711
  // TODO(cql): add reference: en_user_guide_lod_tensor
712
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
787 788 789 790 791 792 793

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
794 795

        )DOC")
796 797
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
798 799 800 801 802 803 804 805 806
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
807 808
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
809 810 811 812
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
813 814
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
815
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
816
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
817 818
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
819 820 821
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
822
      .def("set_lod",
823
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
824
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
825
             LoD new_lod;
826 827
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
828 829
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
830 831
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
832
             self.set_lod(new_lod);
S
sneaxiy 已提交
833 834 835 836 837
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
838 839 840 841
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
842 843 844 845 846 847 848 849 850 851

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
852
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
853
           )DOC")
854 855 856 857 858 859 860 861 862 863 864
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
865 866
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
867 868 869 870 871
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
872
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
873 874
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
875
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
876

L
Leo Chen 已提交
877
           For example, if recursive_sequence_lengths=[[2, 3]], which means
878
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
879
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
880 881

           Args:
L
Leo Chen 已提交
882 883 884 885
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
886 887 888 889 890 891 892 893 894 895

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
896 897
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
898
           )DOC")
899 900 901 902 903 904 905 906
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
907 908 909 910 911
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
912 913
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
914 915 916 917 918 919 920 921 922 923
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
924
           )DOC")
G
gongweibao 已提交
925
      // Set above comments of set_lod.
926 927 928 929 930 931 932 933
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
934 935
           },
           R"DOC(
L
Leo Chen 已提交
936 937
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
938 939

           Returns:
L
Leo Chen 已提交
940
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
941 942 943 944 945 946 947 948 949 950 951

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
952 953 954 955 956 957 958 959
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
960
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
961 962

           Returns:
L
Leo Chen 已提交
963
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
964 965 966 967 968 969 970 971 972 973 974

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
975 976 977 978 979 980 981
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
982
           )DOC")
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1001
#ifdef _WIN32
1002
      });
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1053

Q
qijun 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1065 1066
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1067 1068
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1069 1070
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1071
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1072 1073 1074 1075 1076 1077
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1078
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1079
      .def("rows", [](SelectedRows &self) {
1080 1081 1082 1083 1084
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1085
      });
Q
qijun 已提交
1086

1087
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1088 1089 1090

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1091
      .def(py::init<>())
1092
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1093
      .def("set_int",
1094 1095
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1096 1097 1098 1099 1100 1101 1102
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1103
      .def("get_tensor",
1104 1105
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1106 1107
           },
           py::return_value_policy::reference)
1108 1109 1110 1111
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1112 1113 1114
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1115 1116 1117 1118 1119
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1120 1121 1122
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1123 1124 1125
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1126
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1127 1128 1129 1130 1131
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1132
#endif
Y
Refine  
Yu Yang 已提交
1133 1134
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1135 1136 1137 1138
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1139 1140
             return self.GetMutable<framework::ReaderHolder>();
           },
1141 1142 1143 1144 1145
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1146

S
sneaxiy 已提交
1147
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1148

S
sneaxiy 已提交
1149
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1163
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1164 1165 1166 1167 1168 1169
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1170 1171
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1172
      .def("var",
1173
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1174
             return self.Var(name);
Y
Yu Yang 已提交
1175
           },
S
sneaxiy 已提交
1176 1177
           py::arg("name"),
           R"DOC(
1178
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1179

1180
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1181
           current scope, the variable would be created. Otherwise,
1182
           return the existing variable.
S
sneaxiy 已提交
1183 1184

           Args:
1185 1186
               name (str): the variable name.

S
sneaxiy 已提交
1187
           Returns:
1188
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1189 1190 1191 1192
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1193
           Find variable named :code:`name` in the current scope or
1194
           its parent scope. Return None if not found. 
1195

S
sneaxiy 已提交
1196 1197
           Args:
               name (str): the variable name.
1198

S
sneaxiy 已提交
1199
           Returns:
1200
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1201
           )DOC",
1202
           py::return_value_policy::reference)
1203
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1204 1205 1206 1207 1208 1209
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1210
           py::return_value_policy::reference)
S
sneaxiy 已提交
1211 1212 1213
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1214 1215
           )DOC")
      .def("_kids", &Scope::kids);
1216

S
sneaxiy 已提交
1217 1218 1219 1220 1221 1222
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1223 1224
        R"DOC(
        Create a new scope.
1225

S
sneaxiy 已提交
1226 1227 1228
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1229 1230
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1231 1232
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1233 1234
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1235 1236 1237 1238
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1239 1240
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1241 1242
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1243 1244 1245
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1246 1247
    return ret_values;
  });
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1277 1278 1279
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1280 1281 1282 1283 1284
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1285 1286 1287
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1302
  m.def("prune", [](const ProgramDesc &origin,
1303
                    const std::set<std::string> &feeded_var_names,
1304
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1305
    ProgramDesc prog_with_targets(origin);
1306

1307
    for (const auto &t : targets) {
1308
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1309
    }
1310
    proto::ProgramDesc pruned_desc;
1311 1312 1313 1314
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1315
  });
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1333 1334 1335 1336
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1337 1338 1339
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1340 1341
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1342

Q
qijun 已提交
1343
  // clang-format off
Y
Yu Yang 已提交
1344
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1345 1346
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1347
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1348 1349
                    return new paddle::platform::CPUDeviceContext();
                  })
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1362
      .def_static("create",
D
dzhwinter 已提交
1363
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1364
                      -> paddle::platform::DeviceContext* {
1365
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1366 1367 1368 1369
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1370
#else
Q
qijun 已提交
1371
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1372
#endif
C
chengduoZH 已提交
1373 1374 1375 1376
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1377
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1378 1379 1380 1381
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1382 1383 1384 1385
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1386
// clang-format on
1387
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1388 1389
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1390
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1391 1392 1393 1394 1395

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1396
    The memory of CUDAPlace with different dev_id is not accessible.
1397 1398 1399 1400 1401 1402 1403 1404
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1405 1406 1407 1408

    Examples:
        .. code-block:: python

1409 1410 1411
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1412

1413
        )DOC")
S
sneaxiy 已提交
1414 1415
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1416
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1441 1442
             new (&self) platform::CUDAPlace(dev_id);
#else
1443 1444 1445 1446 1447 1448 1449 1450 1451
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1452 1453
#endif
           })
1454
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1455 1456
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1457 1458 1459 1460
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1461
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1462 1463
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1464 1465 1466
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1467
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1468
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1469

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1515
#ifdef PADDLE_WITH_XPU
1516 1517 1518 1519 1520 1521 1522
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1523 1524 1525
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1526
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1527
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1528 1529 1530
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1531
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1532
    CPUPlace is a descriptor of a device.
1533
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1534 1535 1536 1537

    Examples:
        .. code-block:: python

1538 1539
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1540

1541
        )DOC")
1542
      .def(py::init<>())
S
sneaxiy 已提交
1543 1544
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1545
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1546 1547 1548 1549
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1550
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1551
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1552

1553
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1554 1555 1556 1557 1558 1559
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1560 1561 1562 1563

    Examples:
        .. code-block:: python

1564 1565
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1566

1567
        )DOC")
S
sneaxiy 已提交
1568
      .def("__init__",
S
sneaxiy 已提交
1569
           [](platform::CUDAPinnedPlace &self) {
1570
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1571 1572 1573
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1574
#endif
S
sneaxiy 已提交
1575
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1576
           })
S
sneaxiy 已提交
1577 1578 1579 1580
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1581 1582
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1583 1584 1585 1586
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1587
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1588 1589
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1590 1591
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1592 1593 1594 1595
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1596
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1597
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1598 1599
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1600 1601
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1602 1603
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1604 1605 1606 1607
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1608 1609
      .def("gpu_device_id",
           [](platform::Place &self) {
1610
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1611
           })
1612 1613 1614 1615
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1616 1617
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1618 1619 1620 1621
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1622 1623 1624 1625
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1626
      .def("set_place",
D
dzhwinter 已提交
1627
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1628
             self = gpu_place;
C
chengduoZH 已提交
1629
           })
1630 1631 1632 1633 1634 1635 1636
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1637

Y
Yu Yang 已提交
1638
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1639 1640 1641 1642 1643
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1644 1645 1646 1647 1648 1649 1650
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1651 1652
            return OpRegistry::CreateOp(desc);
          })
1653
      .def("run",
1654
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1655
              const platform::CPUPlace &place) { self.Run(scope, place); })
1656 1657 1658
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1659 1660
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1661
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1662 1663 1664 1665 1666
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1667 1668 1669 1670 1671 1672 1673
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1674 1675
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1676
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1677
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1678 1679 1680 1681
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1682

1683 1684 1685
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1686 1687 1688 1689 1690 1691 1692 1693 1694
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1695
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1696
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1697
      .def("close", &Executor::Close)
1698 1699
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1700 1701
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1702 1703 1704 1705
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1706
             pybind11::gil_scoped_release release;
1707 1708 1709 1710 1711 1712 1713
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1714 1715 1716
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1717
              std::map<std::string, FetchType *> *fetch_targets,
1718 1719 1720 1721 1722 1723 1724 1725
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1726
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1727 1728 1729 1730 1731 1732 1733
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1744
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1745 1746
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1747
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1748 1749
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1750
      });
S
sneaxiy 已提交
1751

D
dzhwinter 已提交
1752
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1753
  m.def("init_glog", framework::InitGLOG);
1754 1755
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1756
  m.def("init_devices", []() { framework::InitDevices(); });
1757

1758
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1759
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1760
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1761
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1762
  m.def("supports_bfloat16", SupportsBfloat16);
1763
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1764
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1765
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1766 1767 1768
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1788 1789 1790 1791 1792 1793 1794
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1804
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1805 1806 1807 1808 1809
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1810

1811
  m.def("set_feed_variable", framework::SetFeedVariable);
1812 1813 1814 1815 1816
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1817
            return py::cast(BOOST_GET(LoDTensor, var));
1818
          } else {
1819
            return py::cast(BOOST_GET(LoDTensorArray, var));
1820 1821
          }
        });
1822
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1823

X
Xin Pan 已提交
1824 1825
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1826 1827 1828 1829 1830
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1831
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1832

Y
Yu Yang 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1842
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1843
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1844 1845 1846

    Examples:
        .. code-block:: python
1847

Z
Zeng Jinle 已提交
1848 1849 1850 1851
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1852 1853
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1854 1855 1856 1857 1858 1859
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1860 1861 1862 1863
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1864 1865 1866
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1867 1868 1869 1870 1871 1872
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1873 1874
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1875 1876 1877 1878 1879 1880
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1903

1904 1905 1906 1907 1908 1909 1910 1911
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1912
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1913 1914
                 res[i] = py::cast(std::move(data));
               } else {
1915
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1931
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1932 1933 1934 1935 1936 1937 1938 1939
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1940
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1941 1942 1943 1944 1945 1946 1947 1948 1949
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1950 1951
        )DOC")
      .def("_move_to_list",
1952
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1953 1954 1955 1956
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1957
                 if (data_is_lod_tensor(self[i][j])) {
1958
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1959 1960
                   tmp[j] = py::cast(std::move(var));
                 } else {
1961
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1962 1963 1964 1965 1966 1967
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1977
  m.def("op_support_gpu", OpSupportGPU);
1978
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
1979
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1980

1981
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
1982 1983 1984
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
1985 1986 1987 1988
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
1989
#endif
P
peizhilin 已提交
1990
#endif
Y
Yu Yang 已提交
1991

1992 1993 1994 1995 1996 1997
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1998 1999 2000 2001
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2002
      .value("kAll", platform::ProfilerState::kAll)
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2014
  m.def("set_tracer_option", platform::SetTracerOption);
2015 2016
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2017
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2018
  m.def("reset_profiler", platform::ResetProfiler);
2019
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2020 2021 2022
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2023

2024 2025
  m.def("size_of_dtype", framework::SizeOfType);

2026
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2027 2028
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2029 2030
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2031 2032
#endif  // PADDLE_WITH_CUDA

2033 2034 2035
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2036 2037
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2038
      .def("has", &ir::Pass::Has)
2039 2040 2041
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2042
           })
2043
      .def(
2044
          "set",
2045 2046 2047
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2048 2049
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2050 2051
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2066 2067
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2068
        self.Apply(graph.get());
F
flame 已提交
2069
      });
2070

X
fix  
Xin Pan 已提交
2071 2072
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2087
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2088

Y
yuyang18 已提交
2089
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2090 2091 2092 2093
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2094 2095 2096
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2097 2098 2099
    Examples:
        .. code-block:: python

2100 2101 2102 2103 2104 2105 2106 2107 2108
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2109

2110 2111
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2112

2113
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2114 2115
          sgd_optimizer.minimize(avg_loss)

2116
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2117 2118
          exec_strategy.num_threads = 4

2119 2120 2121
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2122 2123
        )DOC");

2124 2125 2126 2127
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2128

Y
yuyang18 已提交
2129
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2130 2131 2132 2133 2134
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2135
          },
2136 2137
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2138 2139 2140 2141 2142 2143 2144
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2158
      .def_property(
2159 2160
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2161
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2162 2163 2164
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2165 2166 2167 2168 2169
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2170 2171 2172
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2173 2174
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2175 2176 2177 2178 2179 2180 2181
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2182 2183 2184 2185
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2186
                because the temp variable's shape maybe the same between two iterations.
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2197

2198 2199 2200 2201 2202 2203 2204
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2205
              )DOC")
Q
Qiao Longfei 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2227
              )DOC")
2228 2229 2230 2231 2232 2233 2234 2235
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2236 2237 2238 2239 2240
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2241

Y
yuyang18 已提交
2242
  exec_strategy.def_property(
Y
yuyang18 已提交
2243 2244 2245 2246 2247 2248 2249
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2250 2251
      });

C
chengduo 已提交
2252 2253 2254 2255
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2256 2257 2258
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2259 2260 2261
    Examples:
        .. code-block:: python

2262
            import os
2263 2264 2265 2266
            import paddle
            import paddle.static as static

            paddle.enable_static()
2267

2268 2269
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2270

2271 2272 2273 2274
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2275

2276
            build_strategy = static.BuildStrategy()
2277 2278
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2279 2280
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2281
            program = program.with_data_parallel(loss_name=loss.name,
2282 2283
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2284
)DOC");
Y
yuyang18 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2301 2302 2303 2304
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2305
            self.reduce_ = strategy;
C
chengduo 已提交
2306
          },
2307
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2308 2309
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2310
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2311 2312
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2313
                Default is 'AllReduce'.
F
flame 已提交
2314 2315 2316 2317

                Examples:
                    .. code-block:: python

2318 2319 2320 2321 2322 2323 2324
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2325
                  )DOC")
Y
yuyang18 已提交
2326 2327 2328 2329 2330
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2331 2332 2333 2334
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2335
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2336
          },
2337
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2338
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2339 2340
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2341
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2342 2343 2344 2345

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2346 2347
                        import numpy
                        import os
2348 2349 2350 2351
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2352 2353

                        use_cuda = True
2354 2355
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2356 2357

                        # NOTE: If you use CPU to run the program, you need
2358
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2359 2360 2361 2362 2363 2364
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2365
                            places = static.cpu_places()
C
chengduo 已提交
2366
                        else:
2367
                            places = static.cuda_places()
C
chengduo 已提交
2368

2369 2370 2371 2372
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2373

2374
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2375

2376
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2377
                        build_strategy.gradient_scale_strategy = \
2378 2379 2380
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2381
                                          loss_name=loss.name, build_strategy=build_strategy,
2382
                                          places=places)
C
chengduo 已提交
2383 2384 2385 2386 2387 2388

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2389 2390
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2391
                   )DOC")
Y
yuyang18 已提交
2392 2393 2394 2395
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2396 2397 2398 2399
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2400
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2401
          },
2402
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2403
                writing the SSA Graph to file in the form of graphviz.
2404
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2405 2406 2407 2408

                Examples:
                    .. code-block:: python

2409 2410 2411 2412
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2413

2414 2415
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2416
                    )DOC")
S
sneaxiy 已提交
2417 2418 2419 2420 2421 2422
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2423 2424 2425 2426
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2427 2428
            self.enable_sequential_execution_ = b;
          },
2429 2430
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2431 2432 2433 2434

                Examples:
                    .. code-block:: python

2435 2436 2437 2438 2439 2440
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2441 2442
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2443 2444 2445 2446 2447 2448
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2449 2450 2451 2452
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2453 2454
            self.remove_unnecessary_lock_ = b;
          },
2455 2456
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2457 2458 2459 2460

                Examples:
                    .. code-block:: python

2461 2462 2463 2464 2465 2466
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2467 2468
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2469 2470 2471 2472
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2473
#ifdef WIN32
2474
            PADDLE_THROW(platform::errors::Unavailable(
2475
                "Distribution mode is not supported on Windows platform."));
2476
#endif
2477 2478
            self.num_trainers_ = num_trainers;
          })
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2491 2492 2493 2494 2495 2496
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2497 2498 2499 2500 2501 2502
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2503
      .def_property("use_hierarchical_allreduce",
2504 2505 2506 2507 2508 2509
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2510
      .def_property("hierarchical_allreduce_inter_nranks",
2511 2512 2513 2514 2515 2516 2517
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2518 2519 2520 2521 2522 2523
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2524 2525 2526 2527
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2528 2529
            self.fuse_elewise_add_act_ops_ = b;
          },
2530
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2531
                to fuse elementwise_add_op and activation_op,
2532
                it may make the execution faster. Default is False.
F
flame 已提交
2533 2534 2535 2536

                Examples:
                    .. code-block:: python

2537 2538 2539 2540 2541 2542
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2543 2544
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2545 2546 2547 2548
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2549
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2550
                              platform::errors::PreconditionNotMet(
2551 2552
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2562 2563 2564 2565 2566 2567
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2568 2569
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2595 2596 2597 2598
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2599
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2600
                              platform::errors::PreconditionNotMet(
2601 2602
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2613 2614 2615 2616 2617 2618
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2619 2620
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2621 2622 2623 2624 2625 2626
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2627 2628 2629 2630
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2631 2632
            self.fuse_relu_depthwise_conv_ = b;
          },
2633
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2634 2635 2636
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2637
                Default is False.
F
flame 已提交
2638 2639 2640 2641

                Examples:
                    .. code-block:: python

2642 2643 2644 2645 2646 2647
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2648 2649
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2650 2651 2652 2653 2654 2655
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2656 2657 2658 2659
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2660 2661
                      self.fuse_broadcast_ops_ = b;
                    },
2662
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2663 2664 2665 2666
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2667 2668 2669 2670 2671
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2672 2673 2674 2675 2676 2677
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2678 2679
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2680 2681
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2682 2683
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2684 2685
                    },
                    [](BuildStrategy &self, bool b) {
2686 2687 2688 2689
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2690 2691
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2692 2693 2694 2695
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2696 2697 2698 2699
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2700 2701
            self.sync_batch_norm_ = b;
          },
2702
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2703 2704 2705
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2706 2707
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2708 2709 2710 2711

                Examples:
                    .. code-block:: python

2712 2713 2714 2715 2716 2717
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2718 2719
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2720 2721
      .def_property(
          "memory_optimize",
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2736 2737 2738
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2739 2740
            }
          },
2741
          R"DOC((bool, optional): memory opitimize aims to save total memory
2742
                consumption, set to True to enable it.
2743

2744 2745 2746
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2761 2762 2763
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2764 2765 2766
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2767
              PADDLE_THROW(platform::errors::Unavailable(
2768
                  "Distribution mode is not supported on Windows platform."));
2769 2770 2771 2772 2773
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2774 2775 2776
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2777
      .def_property(
D
dzhwinter 已提交
2778 2779 2780
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2781 2782 2783 2784
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2785 2786
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2787 2788 2789 2790
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2791
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2792 2793 2794 2795 2796 2797 2798
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2799 2800 2801 2802
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2803 2804 2805 2806 2807 2808 2809 2810 2811
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2812
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2813
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2814 2815 2816 2817 2818
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2819 2820

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2821
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2822
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2823
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2824 2825 2826 2827
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2828 2829 2830 2831 2832
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2833 2834 2835
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2836 2837 2838 2839
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2840 2841
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2842 2843 2844 2845 2846 2847 2848 2849
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2850
               return py::cast(
2851
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2852 2853
             } else {
               return py::cast(std::move(
2854
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2855
             }
2856 2857
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2858

D
dongdaxiang 已提交
2859
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2860

T
Thunderbrook 已提交
2861 2862
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2863
#endif
2864 2865
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
2866
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2867
#endif
2868
  BindGlooWrapper(&m);
H
hutuxian 已提交
2869
  BindBoxHelper(&m);
H
hutuxian 已提交
2870 2871 2872
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2873
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2874
  BindNCCLWrapper(&m);
2875 2876 2877
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2878
#endif
F
flame 已提交
2879 2880
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2881
  BindInferenceApi(&m);
2882
  BindCompatible(&m);
2883
  BindDataset(&m);
Y
yaoxuefeng 已提交
2884
  BindGenerator(&m);
2885 2886 2887 2888
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
#endif
Y
Yanghello 已提交
2889 2890 2891
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2892

T
tangwei12 已提交
2893
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2894 2895
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2896
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2897 2898
  BindDistCommunicator(&m);
  BindHeterClient(&m);
2899
#endif
L
Luo Tao 已提交
2900
}
2901
}  // namespace pybind
2902
}  // namespace paddle