pybind.cc 155.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/convert_utils.h"
32
#include "paddle/fluid/framework/custom_operator.h"
33
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
34
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/executor.h"
36
#include "paddle/fluid/framework/executor_cache.h"
37
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
41
#include "paddle/fluid/framework/io/fs.h"
42
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
43
#include "paddle/fluid/framework/ir/cost_model.h"
44
#include "paddle/fluid/framework/ir/generate_pass.h"
45
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
48
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/op_info.h"
50
#include "paddle/fluid/framework/op_registry.h"
51
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
52
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/prune.h"
54
#include "paddle/fluid/framework/pten_utils.h"
Y
Refine  
Yu Yang 已提交
55
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
56
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/framework/scope_pool.h"
58
#include "paddle/fluid/framework/selected_rows_utils.h"
59
#include "paddle/fluid/framework/tensor_util.h"
60
#include "paddle/fluid/framework/trainer.h"
61
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
62
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
63
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
64
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
65
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
66
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
67
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
68
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
69
#include "paddle/fluid/operators/py_func_op.h"
70
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
71
#include "paddle/fluid/platform/cpu_info.h"
72
#include "paddle/fluid/platform/device/device_wrapper.h"
73
#include "paddle/fluid/platform/device_context.h"
74
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
75
#include "paddle/fluid/platform/enforce.h"
76
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
77
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
78 79
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
80
#include "paddle/fluid/pybind/cuda_streams_py.h"
81
#include "paddle/pten/core/compat/convert_utils.h"
82
#include "paddle/pten/core/lod_utils.h"
W
wanghuancoder 已提交
83
#ifndef PADDLE_ON_INFERENCE
84
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
85
#endif
86
#include "paddle/fluid/pybind/io.h"
87
#include "paddle/utils/none.h"
88 89 90
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
91
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
92
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
93
#include "paddle/fluid/pybind/box_helper_py.h"
94
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
95
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
96
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
97
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
98
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
99
#include "paddle/fluid/pybind/generator_py.h"
100
#include "paddle/fluid/pybind/global_value_getter_setter.h"
101
#include "paddle/fluid/pybind/gloo_context_py.h"
102
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
103
#include "paddle/fluid/pybind/heter_wrapper_py.h"
104
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
105
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
106
#include "paddle/fluid/pybind/ir.h"
107
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
108
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
109
#include "paddle/fluid/pybind/pybind_boost_headers.h"
110

111
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
112
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
113
#endif
114
#include "paddle/fluid/framework/data_type.h"
115 116
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
117
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
118
#include "paddle/fluid/pybind/tensor_py.h"
119
#include "paddle/fluid/string/to_string.h"
120 121
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
122
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
123
#endif
124
#ifndef PADDLE_WITH_HIP
125
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
126
#endif
127
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
128 129
#endif

130
#ifdef PADDLE_WITH_ASCEND_CL
131
#include "paddle/fluid/platform/collective_helper.h"
132 133
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
134 135
#endif

136
#ifdef PADDLE_WITH_XPU
137
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
138
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
139 140
#endif

141
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
142

J
jianghaicheng 已提交
143
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
144 145
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
146
#endif
147

148 149 150 151
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
152 153 154 155
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
156
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
157 158 159
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
160 161
#include "pybind11/stl.h"

162
DECLARE_bool(use_mkldnn);
163

Q
Qiao Longfei 已提交
164 165
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
166 167 168
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
169

170
namespace paddle {
171
namespace pybind {
172 173 174 175 176 177 178

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
179
PyTypeObject *g_mluplace_pytype = nullptr;
180
PyTypeObject *g_framework_tensor_pytype = nullptr;
181
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
182

183
bool IsCompiledWithCUDA() {
184 185 186 187 188 189 190
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

191 192 193 194 195 196 197 198
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

199 200
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
201 202 203 204 205 206
  return false;
#else
  return true;
#endif
}

207 208 209 210 211 212 213 214
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

215 216 217 218 219 220 221 222
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

223 224 225 226 227 228 229 230
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
231 232 233 234 235 236 237 238
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

239 240 241 242 243 244 245 246
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

247 248 249 250 251 252 253 254
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

255 256 257 258 259 260 261 262
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

263 264 265 266 267 268 269 270
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

271 272 273 274 275 276 277 278 279 280 281
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

282 283 284 285 286 287 288 289 290 291 292
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

310
bool IsCompiledWithBrpc() {
311
#ifndef PADDLE_WITH_DISTRIBUTE
312 313
  return false;
#endif
314
  return true;
315 316
}

Y
update  
Yancey1989 已提交
317
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
318
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
319 320 321 322 323 324
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
325 326 327 328 329 330 331
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
332
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
333 334
}

H
hong 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
357 358 359
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
373 374
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
375 376
    }
    vec_res.emplace_back(
377
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
378 379 380 381 382 383 384 385 386 387 388 389
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
390 391
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
392 393 394 395 396 397 398 399 400 401 402 403
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
404 405 406
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
407 408 409 410
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
411 412
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
413 414 415 416
  }
  return vec_res;
}

417 418 419 420 421 422 423 424
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
425 426
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
427 428 429 430 431 432 433 434 435 436 437 438 439
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
440 441 442
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
443 444 445 446 447
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
448 449 450 451 452
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
453 454
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
455 456 457
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
458 459 460 461
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
462
        tensor_temp->Resize(pten::make_ddim(var_desc.GetShape()));
463 464 465
        tensor_temp->mutable_data(
            exe->GetPlace(),
            framework::TransToPtenDataType(var_desc.GetDataType()));
466 467 468
      }
    }
  } else {
469 470
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
471 472 473 474 475
  }

  return;
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
500 501 502 503
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
504
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
505 506 507 508 509 510 511 512
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
513 514 515 516 517 518 519 520 521 522 523
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

524 525 526 527 528 529
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
530
#ifndef PADDLE_ON_INFERENCE
531
  BindEager(&m);
W
wanghuancoder 已提交
532
#endif
533 534
  BindCudaStream(&m);

Y
Yu Yang 已提交
535 536 537
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
538
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
539

540 541
  AssertStaticGraphAndDygraphGradMakerNoDiff();

542
  m.doc() = "C++ core of PaddlePaddle";
543

544 545 546 547
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

548
  BindException(&m);
Y
Yu Yang 已提交
549

550 551
  m.def("set_num_threads", &platform::SetNumThreads);

552 553
  m.def("disable_signal_handler", &DisableSignalHandler);

554 555 556 557 558 559 560 561
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

562
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
563
  m.def("cudnn_version", &platform::DnnVersion);
564 565 566 567 568 569
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
570
#endif
571

Z
Zeng Jinle 已提交
572 573 574 575
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

576 577 578 579 580 581 582 583 584 585
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
586 587
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
588 589
#endif

Z
Zeng Jinle 已提交
590 591 592 593
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
594 595 596
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
597 598 599 600 601 602

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
603 604
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
605
    framework::Tensor tensor;
6
633WHU 已提交
606

S
Siming Dai 已提交
607
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
608 609
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
610
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
611
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
612 613 614 615 616
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
617

618 619 620 621 622 623
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

624 625 626 627 628 629
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
630 631
  });

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
657 658
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
659 660
    return pten::vectorize(operators::details::BroadcastTwoDims(
        pten::make_ddim(x_dim), pten::make_ddim(y_dim), -1));
L
Leo Chen 已提交
661 662
  });

S
sneaxiy 已提交
663
  m.def(
S
sneaxiy 已提交
664
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
665 666 667 668
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
669 670 671
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
            }
            all_kernels_info.emplace(op_type, kernel_types);
          }
        }
        if (lib == "pten" || lib == "all") {
          auto pten_kernels = pten::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : pten_kernels) {
            auto op_type = pten::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPtenKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
                }
              } else {
                kernel_types.emplace_back(kernel_type_str);
              }
            }
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
          }
        }

        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
           Return the registered kernels in paddle.

           Args:
               lib[string]: the libarary, could be 'pten', 'fluid' and 'all'.
           )DOC");
727

S
sneaxiy 已提交
728 729 730
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
731
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
732

733
  m.def("_set_fuse_parameter_group_size",
734
        &paddle::framework::ir::SetFuseParameterGroupsSize);
735
  m.def("_set_fuse_parameter_memory_size",
736
        &paddle::framework::ir::SetFuseParameterMemorySize);
737

S
sneaxiy 已提交
738 739 740
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

741 742
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

743 744 745
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

746
  BindImperative(&m);
747

748 749 750 751 752
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
753 754
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
755 756 757 758
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
S
sneaxiy 已提交
759
      .def("_is_initialized",
760
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
761
      .def("_get_dims",
762
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
763
      .def("_set_dims",
764
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
765
             self.Resize(pten::make_ddim(dim));
Y
Yu Yang 已提交
766
           })
Y
yuyang18 已提交
767
      .def("_set_layout",
768
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
769 770
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
771
      .def("_alloc_float",
772
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
773
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
774
           })
775
      .def("_alloc_float",
776
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
777 778
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
779
      .def("_alloc_float",
780
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
781
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
782
           })
783 784 785 786
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
787 788 789 790
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
791
      .def("_alloc_double",
792
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
793 794
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
795
      .def("_alloc_int",
796
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
797
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
798
           })
799
      .def("_alloc_int",
800
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
801 802
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
803
      .def("_alloc_int",
804
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
805
             self.mutable_data<int>(place);
Q
qijun 已提交
806
           })
807 808 809 810
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
811
      .def("_alloc_int",
812 813
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
814 815
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
816
      .def("_alloc_float",
817 818
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
819 820
             self.mutable_data<float>(place);
           })
821
      .def("_mutable_data",
822
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
823
              paddle::framework::proto::VarType::Type type) {
824 825
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
826
           })
827
      .def("_mutable_data",
828
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
829
              paddle::framework::proto::VarType::Type type) {
830 831
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
832
           })
833
      .def("_mutable_data",
834
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
835
              paddle::framework::proto::VarType::Type type) {
836 837
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
838 839
           })
      .def("_mutable_data",
840
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
841
              paddle::framework::proto::VarType::Type type) {
842 843
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
844
           })
845 846 847
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
848 849
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
850
           })
851
      .def("_clear", &framework::Tensor::clear)
852 853 854
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
855 856
             return reinterpret_cast<uintptr_t>(self.mutable_data(
                 place, framework::TransToPtenDataType(type)));
857
           })
Z
Zeng Jinle 已提交
858 859 860 861 862 863 864 865 866 867
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
868 869
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
870
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
871
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
872
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
873
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
874 875
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
876
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
877
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
878 879
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
880 881
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
882 883
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
884
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
885 886
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
887
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
888 889 890
        
        Args:
          lod (numpy.ndarray): The data to set.
891
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
892
          Tensor is to be set.
893 894
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
895 896 897 898 899 900 901 902 903 904

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

905
                t = fluid.Tensor()
L
Leo Chen 已提交
906 907
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
908

909 910 911
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
912
           Return the shape of Tensor.
L
Leo Chen 已提交
913 914

           Returns:
915
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
916 917 918 919 920 921 922 923


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

924
                  t = fluid.Tensor()
L
Leo Chen 已提交
925 926 927
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
928
      .def("_to_dlpack",
929
           [](framework::Tensor &self) {
6
633WHU 已提交
930
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
931
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
949 950 951 952
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
953
      .def("_place", [](framework::Tensor &self) { return self.place(); })
954 955 956 957
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
958
      .def("_layout",
959 960 961 962
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
963
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
983 984
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
985 986 987 988
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
989
      .def("__init__",
990 991
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
992
           })
G
gongweibao 已提交
993
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
994 995
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
996 997 998
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
999
      .def("set_lod",
1000 1001
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1002
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1003
             LoD new_lod;
1004 1005
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1006 1007
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1008 1009
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1010
             self.set_lod(new_lod);
S
sneaxiy 已提交
1011 1012
           },
           py::arg("lod"), R"DOC(
1013
           Set LoD of the Tensor.
S
sneaxiy 已提交
1014 1015

           Args:
L
Leo Chen 已提交
1016 1017 1018 1019
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1020 1021 1022 1023 1024 1025 1026

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1027
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1028 1029
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1030
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1031
           )DOC")
1032
      .def("set_recursive_sequence_lengths",
1033 1034
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1035 1036 1037 1038 1039 1040 1041 1042
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1043 1044
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1045
                 platform::errors::InvalidArgument(
1046 1047
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1048 1049 1050
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1051
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1052 1053
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1054
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1055

L
Leo Chen 已提交
1056
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1057
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1058
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1059 1060

           Args:
L
Leo Chen 已提交
1061 1062 1063 1064
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1065 1066 1067 1068 1069 1070 1071

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1072
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1073 1074
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1075
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1076
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1077
           )DOC")
1078
      .def("lod",
1079
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1080 1081 1082 1083 1084 1085
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1086 1087
           },
           R"DOC(
1088
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1089 1090

           Returns:
1091
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1092
           
Z
Zeng Jinle 已提交
1093 1094 1095 1096 1097 1098
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1099
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1100 1101 1102
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1103
           )DOC")
G
gongweibao 已提交
1104
      // Set above comments of set_lod.
1105
      .def("recursive_sequence_lengths",
1106
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1107
             // output the length-based lod info
1108
             LoD lod = pten::ConvertToLengthBasedLoD(self.lod());
1109 1110 1111 1112
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1113 1114
           },
           R"DOC(
L
Leo Chen 已提交
1115
           Return the recursive sequence lengths corresponding to of the LodD 
1116
           of the Tensor.
S
sneaxiy 已提交
1117 1118

           Returns:
L
Leo Chen 已提交
1119
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1120 1121 1122 1123 1124 1125 1126

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1127
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1128 1129 1130
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1131 1132
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1133
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1134
             // Check that the lod info is valid and match the outermost
1135
             // dimension of the Tensor data
S
sneaxiy 已提交
1136 1137 1138
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1139
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1140 1141

           Returns:
L
Leo Chen 已提交
1142
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1143 1144 1145 1146 1147 1148 1149

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1150
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1151 1152 1153
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1154
           )DOC")
L
Leo Chen 已提交
1155
      .def("_as_type",
1156
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1157
              paddle::framework::proto::VarType::Type type) {
1158
             framework::Tensor dst;
L
Leo Chen 已提交
1159 1160 1161 1162 1163
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1177
#ifdef _WIN32
1178
           });
1179 1180 1181
#else
           })
      .def(py::pickle(
1182
          [](const framework::Tensor &t) {  // __getstate__
1183
            auto holder = t.Holder();
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1196 1197 1198
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1199 1200
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1201 1202 1203
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1204
              throw std::runtime_error("Invalid Tensor state!");
1205 1206

            // 1. Create a new C++ instance
1207
            framework::Tensor tensor;
1208 1209 1210 1211 1212

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1213 1214
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1215 1216

            // 3. Maintain global fd set
1217
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1218 1219
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1220 1221 1222
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1223
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1224
            tensor.Resize(pten::make_ddim(t[3].cast<std::vector<int>>()));
1225 1226 1227 1228 1229
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1230

1231
  py::class_<pten::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1232
      .def("__init__",
1233 1234 1235
           [](pten::SelectedRows &instance) {
             new (&instance) pten::SelectedRows();
           })
Q
qijun 已提交
1236
      .def("__init__",
1237
           [](pten::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1238
              const int64_t &height) {
1239
             new (&instance) pten::SelectedRows(rows, height);
Q
qijun 已提交
1240 1241
           })
      .def("get_tensor",
1242
           [](pten::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1243
           py::return_value_policy::reference)
1244
      .def("numel",
1245 1246 1247 1248 1249
           [](pten::SelectedRows &self) -> int64_t {
             return self.value().numel();
           })
      .def("set_height", &pten::SelectedRows::set_height)
      .def("height", &pten::SelectedRows::height)
Q
qijun 已提交
1250
      .def("set_rows",
1251
           [](pten::SelectedRows &self, std::vector<int64_t> rows) {
1252
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1253 1254 1255 1256 1257 1258
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1259 1260 1261
      .def("sync_index",
           [](pten::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](pten::SelectedRows &self) {
1262 1263 1264 1265 1266
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1267
      });
Q
qijun 已提交
1268

1269
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1270 1271 1272

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1273
      .def(py::init<>())
1274
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1275
      .def("set_int",
1276 1277
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1278 1279 1280 1281 1282 1283 1284
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1285
      .def("get_tensor",
1286 1287
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1288 1289
           },
           py::return_value_policy::reference)
1290 1291 1292 1293
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1306 1307 1308
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1309
      .def("get_selected_rows",
1310 1311
           [](Variable &self) -> pten::SelectedRows * {
             return self.GetMutable<pten::SelectedRows>();
Q
qijun 已提交
1312 1313
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1314 1315 1316
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1317 1318 1319
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1320
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1321 1322 1323 1324 1325
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1326
#endif
Y
Refine  
Yu Yang 已提交
1327 1328
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1329 1330 1331 1332
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1333 1334
             return self.GetMutable<framework::ReaderHolder>();
           },
1335
           py::return_value_policy::reference)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1347 1348 1349 1350
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1351

S
sneaxiy 已提交
1352
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1353

S
sneaxiy 已提交
1354
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1368
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1369 1370 1371 1372 1373 1374
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1375 1376
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1377
      .def("var",
1378
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1379
             return self.Var(name);
Y
Yu Yang 已提交
1380
           },
S
sneaxiy 已提交
1381 1382
           py::arg("name"),
           R"DOC(
1383
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1384

1385
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1386
           current scope, the variable would be created. Otherwise,
1387
           return the existing variable.
S
sneaxiy 已提交
1388 1389

           Args:
1390 1391
               name (str): the variable name.

S
sneaxiy 已提交
1392
           Returns:
1393
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1394 1395 1396 1397
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1398
           Find variable named :code:`name` in the current scope or
1399
           its parent scope. Return None if not found. 
1400

S
sneaxiy 已提交
1401 1402
           Args:
               name (str): the variable name.
1403

S
sneaxiy 已提交
1404
           Returns:
1405
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1406
           )DOC",
1407
           py::return_value_policy::reference)
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1420
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1421 1422 1423 1424 1425 1426
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1427
           py::return_value_policy::reference)
S
sneaxiy 已提交
1428 1429 1430
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1431 1432
           )DOC")
      .def("_kids", &Scope::kids);
1433

S
sneaxiy 已提交
1434 1435 1436 1437 1438 1439
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1440 1441
        R"DOC(
        Create a new scope.
1442

S
sneaxiy 已提交
1443 1444 1445
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1446 1447
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1448 1449
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1450 1451
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1452 1453 1454 1455
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1456 1457
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1458 1459
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1460 1461 1462
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1463 1464
    return ret_values;
  });
1465 1466 1467 1468 1469 1470 1471 1472
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1473
              res = op_checker->GetDefaultAttrsMap();
1474 1475 1476 1477
            }
          }
          return res;
        });
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1494 1495 1496
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1497 1498 1499 1500 1501
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1502 1503 1504
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1519
  m.def("prune", [](const ProgramDesc &origin,
1520
                    const std::set<std::string> &feeded_var_names,
1521
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1522
    ProgramDesc prog_with_targets(origin);
1523

1524
    for (const auto &t : targets) {
1525
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1526
    }
1527
    proto::ProgramDesc pruned_desc;
1528 1529 1530 1531
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1532
  });
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1550 1551 1552 1553
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1554 1555 1556
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1557 1558
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1559

Q
qijun 已提交
1560
  // clang-format off
Y
Yu Yang 已提交
1561
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1562 1563
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1564
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1579
                  })
1580 1581 1582 1583 1584 1585 1586 1587 1588
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1615 1616
#endif
                  })
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1629
      .def_static("create",
D
dzhwinter 已提交
1630
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1631
                      -> paddle::platform::DeviceContext* {
1632
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1633 1634 1635 1636
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1637
#else
W
Wilber 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1653
#endif
C
chengduoZH 已提交
1654 1655 1656 1657
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1658
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1659 1660 1661 1662
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1663 1664 1665 1666
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1667
// clang-format on
1668
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1669 1670
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    device_types = platform::DeviceManager::GetAllDeviceTypes();
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    device_types = platform::DeviceManager::GetAllCustomDeviceTypes();
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    devices = platform::DeviceManager::GetAllDeviceList();
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    devices = platform::DeviceManager::GetAllCustomDeviceList();
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  py::class_<platform::CustomPlace>(m, "CustomPlace",
                                    R"DOC(
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
                                             )DOC")
      .def("__init__",
           [](platform::CustomPlace &self, const std::string &device_type,
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
                   device_type, dev_id);
               std::exit(-1);
             }

             if (LIKELY(platform::DeviceManager::HasDeviceType(device_type) &&
                        platform::DeviceManager::IsCustom(device_type))) {
               int dev_count = static_cast<int>(
                   platform::DeviceManager::GetDeviceCount(device_type));
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
                       device_type, dev_id, dev_count, device_type, dev_count);
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
                   device_type, dev_id);
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
                 "PaddlePaddle by: pip install paddlepaddle-core\n"
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
1804
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1805 1806 1807 1808 1809

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1810
    The memory of CUDAPlace with different dev_id is not accessible.
1811 1812 1813 1814 1815 1816 1817 1818
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1819 1820 1821 1822

    Examples:
        .. code-block:: python

1823 1824 1825
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1826

1827 1828 1829
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1830 1831
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1832
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1833 1834 1835 1836 1837 1838 1839 1840
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1841 1842
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1843 1844 1845 1846 1847 1848 1849 1850
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1851 1852
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1853 1854 1855 1856
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1857 1858
             new (&self) platform::CUDAPlace(dev_id);
#else
1859 1860 1861 1862 1863 1864 1865 1866 1867
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1868 1869
#endif
           })
1870
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1871 1872
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1873 1874 1875 1876
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1877
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1878
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1879
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1880 1881
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1882 1883 1884
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1885
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1886
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1887

1888
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1889 1890 1891 1892 1893
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1894 1895 1896
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1935
#ifdef PADDLE_WITH_XPU
1936 1937 1938 1939 1940 1941 1942
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1943 1944 1945
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1946
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1947
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1948
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
1949 1950 1951
  py::enum_<pten::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", pten::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", pten::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1952
      .export_values();
1953
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1954 1955
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
W
Wilber 已提交
1956 1957 1958 1959 1960 1961
  m.def(
      "get_xpu_device_op_support_types",
      [](const std::string &op_name, pten::backends::xpu::XPUVersion version) {
        return platform::get_xpu_op_support_type(op_name, version);
      });
  m.def("get_xpu_device_op_list", [](pten::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1962 1963
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1964 1965
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1966 1967
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1968 1969 1970
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1971 1972
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1973
  });
1974
#endif
1975

1976
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1977
    CPUPlace is a descriptor of a device.
1978
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1979 1980 1981 1982

    Examples:
        .. code-block:: python

1983 1984
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1985

1986 1987 1988
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1989 1990
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1991
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1992
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1993 1994 1995 1996
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1997
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1998
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1999

2000 2001
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
2002 2003 2004 2005 2006 2007
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2008 2009 2010 2011

    Examples:
        .. code-block:: python

2012 2013
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2014

2015 2016 2017 2018
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2019
      .def("__init__",
S
sneaxiy 已提交
2020
           [](platform::CUDAPinnedPlace &self) {
2021
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2022 2023 2024
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2025
#endif
S
sneaxiy 已提交
2026
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2027
           })
S
sneaxiy 已提交
2028 2029 2030 2031
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2032 2033
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2034 2035
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2036 2037 2038 2039
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2040
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2041 2042
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2043
  // NPUPlace
2044
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2045 2046 2047 2048 2049 2050 2051 2052
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2053 2054 2055
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2087
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2102 2103
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2104 2105
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2227 2228 2229
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2230 2231 2232 2233
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2234
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2235
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2236
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2237
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2238
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2239 2240
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2241 2242
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2243 2244
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2245 2246
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2247 2248
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2249 2250 2251 2252
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2253 2254
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2255 2256 2257
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2258 2259 2260 2261 2262
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2263 2264
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2265 2266
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2267 2268 2269 2270
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2271 2272 2273 2274
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2275
      .def("set_place",
D
dzhwinter 已提交
2276
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2277
             self = gpu_place;
C
chengduoZH 已提交
2278
           })
2279 2280 2281 2282 2283
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2284 2285 2286 2287
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2288 2289 2290 2291
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2292 2293 2294 2295
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2296 2297 2298 2299
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2300 2301
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2302

Y
Yu Yang 已提交
2303
  py::class_<OperatorBase>(m, "Operator")
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2318
      .def("run",
2319
           [](OperatorBase &self, const Scope &scope,
2320 2321 2322 2323
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2324 2325
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2326 2327 2328 2329
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2330 2331
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2332 2333 2334 2335
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2336 2337
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2338 2339 2340 2341
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2342 2343 2344
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2345
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2346 2347
             self.Run(scope, place);
           })
2348 2349 2350 2351 2352 2353
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2354 2355 2356 2357 2358 2359 2360
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2361 2362
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2363
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2364
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2365 2366 2367 2368
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2369

2370 2371 2372
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2373 2374 2375 2376 2377 2378 2379
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2380 2381
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2382

2383 2384
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2385
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2386
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2387
      .def("close", &Executor::Close)
2388 2389
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2390 2391
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2392 2393 2394 2395
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2396
             pybind11::gil_scoped_release release;
2397 2398 2399 2400 2401 2402 2403
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2404 2405 2406
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2407
              std::map<std::string, FetchType *> *fetch_targets,
2408 2409 2410 2411 2412 2413 2414 2415
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2416
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2417 2418 2419 2420 2421 2422 2423
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2434
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2435 2436
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2437
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2438 2439
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2440
      });
S
sneaxiy 已提交
2441

2442
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2443
      .def(py::init<>())
2444 2445 2446 2447 2448
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2449

2450
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2451 2452 2453
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2454
           [](StandaloneExecutor &self,
H
hong 已提交
2455
              const std::unordered_map<std::string, py::array> &input_dict,
2456
              std::vector<std::string> fetch_names) {
2457
             std::vector<framework::LoDTensor> feed_tensors;
2458
             std::vector<std::string> feed_names;
H
hong 已提交
2459 2460 2461 2462 2463

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2464 2465
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2466 2467
             }

2468 2469 2470 2471 2472 2473 2474 2475 2476
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2477
              const std::unordered_map<std::string, framework::LoDTensor>
2478 2479
                  &input_dict,
              std::vector<std::string> fetch_names) {
2480
             std::vector<framework::LoDTensor> feed_tensors;
2481 2482 2483 2484 2485 2486 2487
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2488 2489 2490 2491
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2492
             }
W
wanghuancoder 已提交
2493
             return py::cast(std::move(ret));
2494
           })
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2505 2506 2507
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2508
             std::vector<framework::LoDTensor> feed_tensors;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2519
             framework::interpreter::CostInfo cost_info;
2520 2521 2522 2523 2524
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2525 2526
           });

D
dzhwinter 已提交
2527
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2528
  m.def("init_glog", framework::InitGLOG);
2529 2530
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2531
  m.def("init_devices", []() { framework::InitDevices(); });
2532

2533
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2534
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2535
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2536
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2537
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2538
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2539
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2540
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2541
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2542
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2543
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2544
  m.def("supports_bfloat16", SupportsBfloat16);
2545
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2546 2547
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2548
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2549
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2550
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2551 2552 2553
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2573 2574 2575 2576 2577 2578 2579
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2589
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2590 2591
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2592
    return platform::GetGPUComputeCapability(place.device) >= 53;
2593 2594
  });
#endif
2595

S
Steffy-zxf 已提交
2596 2597 2598 2599 2600 2601
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2602 2603 2604 2605 2606
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2607
            return py::cast(BOOST_GET(LoDTensor, var));
2608
          } else {
2609
            return py::cast(BOOST_GET(LoDTensorArray, var));
2610 2611
          }
        });
2612
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2613

X
Xin Pan 已提交
2614 2615
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2616 2617 2618 2619
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2620
  BindCostModel(&m);
2621
  BindConstValue(&m);
2622
  BindGlobalValueGetterSetter(&m);
2623
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2624
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2625

Y
Yu Yang 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2635
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2636
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2637 2638 2639

    Examples:
        .. code-block:: python
2640

Z
Zeng Jinle 已提交
2641 2642 2643
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2644 2645 2646 2647
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2648 2649
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2650 2651 2652 2653 2654 2655
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2656 2657 2658 2659
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2660 2661 2662
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2663 2664 2665 2666 2667 2668
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2669 2670
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2671 2672 2673 2674 2675 2676
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2699

2700 2701 2702 2703 2704 2705 2706 2707
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2708
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2709 2710
                 res[i] = py::cast(std::move(data));
               } else {
2711
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2727
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2728 2729 2730 2731 2732 2733 2734 2735
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2736
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2737 2738 2739 2740 2741 2742 2743 2744 2745
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2746 2747
        )DOC")
      .def("_move_to_list",
2748
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2749 2750 2751 2752
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2753
                 if (data_is_lod_tensor(self[i][j])) {
2754
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2755 2756
                   tmp[j] = py::cast(std::move(var));
                 } else {
2757
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2758 2759 2760 2761 2762 2763
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2773
  m.def("op_support_gpu", OpSupportGPU);
2774
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2775
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2776 2777 2778 2779 2780 2781 2782 2783
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2784 2785 2786 2787 2788 2789 2790
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2816
      });
D
dangqingqing 已提交
2817

2818
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2819 2820 2821
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2822 2823 2824 2825
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2826
#endif
P
peizhilin 已提交
2827
#endif
Y
Yu Yang 已提交
2828

2829 2830
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2831
  m.def("npu_finalize", []() {
2832 2833
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2834 2835 2836
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2837
      platform::NPUDeviceGuard guard(devices[i]);
2838 2839 2840 2841
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2862 2863 2864 2865
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2866 2867 2868 2869
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2870 2871 2872 2873 2874 2875
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2876 2877 2878 2879
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2880
      .value("kAll", platform::ProfilerState::kAll)
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2892
  m.def("set_tracer_option", platform::SetTracerOption);
2893 2894
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2895
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2896
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2897
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2898 2899
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
2900 2901 2902
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2903
    callable.inc_ref();
2904 2905 2906 2907 2908 2909 2910 2911
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2912
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2913 2914 2915
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2916

2917 2918
  m.def("size_of_dtype", framework::SizeOfType);

2919
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2920 2921
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2922 2923
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2924
#endif  // PADDLE_WITH_CUDA
2925 2926
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2927

2928 2929 2930
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2931 2932
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2933
      .def("has", &ir::Pass::Has)
2934 2935 2936
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2937
           })
2938
      .def(
2939
          "set",
2940 2941 2942
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2943 2944
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2945 2946
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2947 2948 2949 2950 2951
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2966 2967
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2968
        self.Apply(graph.get());
F
flame 已提交
2969
      });
2970

X
fix  
Xin Pan 已提交
2971 2972
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2987
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2988
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2989 2990 2991 2992
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2993 2994 2995
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2996 2997 2998
    Examples:
        .. code-block:: python

2999 3000 3001 3002 3003 3004 3005 3006 3007
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3008

3009 3010
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3011

3012
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3013 3014
          sgd_optimizer.minimize(avg_loss)

3015
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3016 3017
          exec_strategy.num_threads = 4

3018 3019 3020
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3021 3022
        )DOC");

3023 3024 3025 3026
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3027

Y
yuyang18 已提交
3028
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3029 3030 3031 3032 3033
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3034
          },
3035 3036
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3037 3038 3039 3040 3041 3042 3043
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3057
      .def_property(
3058 3059
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3060
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3061 3062 3063
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3064 3065 3066 3067 3068
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3069 3070 3071
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3072 3073
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3074 3075 3076 3077 3078 3079 3080
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3081 3082 3083 3084
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3085
                because the temp variable's shape maybe the same between two iterations.
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3096

3097 3098 3099 3100 3101 3102 3103
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3104
              )DOC")
Q
Qiao Longfei 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3126
              )DOC")
3127 3128 3129 3130 3131 3132 3133 3134
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3135 3136 3137 3138 3139
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3140

Y
yuyang18 已提交
3141
  exec_strategy.def_property(
Y
yuyang18 已提交
3142 3143 3144 3145 3146 3147 3148
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3149 3150
      });

C
chengduo 已提交
3151 3152 3153 3154
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3155 3156 3157
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3158 3159 3160
    Examples:
        .. code-block:: python

3161
            import os
3162 3163 3164 3165
            import paddle
            import paddle.static as static

            paddle.enable_static()
3166

3167 3168
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3169

3170 3171 3172 3173
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3174

3175
            build_strategy = static.BuildStrategy()
3176 3177
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3178 3179
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3180
            program = program.with_data_parallel(loss_name=loss.name,
3181 3182
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3183
)DOC");
Y
yuyang18 已提交
3184 3185 3186

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3187 3188
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3189 3190 3191 3192 3193 3194 3195 3196
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3197
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3198 3199 3200 3201
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3202 3203 3204 3205
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3206
            self.reduce_ = strategy;
C
chengduo 已提交
3207
          },
3208
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3209 3210
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3211
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3212 3213
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3214
                Default is 'AllReduce'.
F
flame 已提交
3215 3216 3217 3218

                Examples:
                    .. code-block:: python

3219 3220 3221 3222 3223 3224 3225
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3226
                  )DOC")
Y
yuyang18 已提交
3227 3228 3229 3230 3231
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3232 3233 3234 3235
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3236
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3237
          },
3238
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3239
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3240 3241
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3242
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3243 3244 3245 3246

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3247 3248
                        import numpy
                        import os
3249 3250 3251 3252
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3253 3254

                        use_cuda = True
3255 3256
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3257 3258

                        # NOTE: If you use CPU to run the program, you need
3259
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3260 3261 3262 3263 3264 3265
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3266
                            places = static.cpu_places()
C
chengduo 已提交
3267
                        else:
3268
                            places = static.cuda_places()
C
chengduo 已提交
3269

3270 3271 3272 3273
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3274

3275
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3276

3277
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3278
                        build_strategy.gradient_scale_strategy = \
3279 3280 3281
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3282
                                          loss_name=loss.name, build_strategy=build_strategy,
3283
                                          places=places)
C
chengduo 已提交
3284 3285 3286 3287 3288 3289

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3290 3291
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3292
                   )DOC")
Y
yuyang18 已提交
3293 3294 3295 3296
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3297 3298 3299 3300
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3301
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3302
          },
3303
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3304
                writing the SSA Graph to file in the form of graphviz.
3305
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3306 3307 3308 3309

                Examples:
                    .. code-block:: python

3310 3311 3312 3313
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3314

3315 3316
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3317
                    )DOC")
S
sneaxiy 已提交
3318 3319 3320 3321 3322 3323
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3324 3325 3326 3327
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3328 3329
            self.enable_sequential_execution_ = b;
          },
3330 3331
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3332 3333 3334 3335

                Examples:
                    .. code-block:: python

3336 3337 3338 3339 3340 3341
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3342 3343
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3344 3345 3346 3347 3348 3349
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3350 3351 3352 3353
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3354 3355
            self.remove_unnecessary_lock_ = b;
          },
3356 3357
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3358 3359 3360 3361

                Examples:
                    .. code-block:: python

3362 3363 3364 3365 3366 3367
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3368 3369
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3370 3371 3372 3373
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3374
#ifdef WIN32
3375
            PADDLE_THROW(platform::errors::Unavailable(
3376
                "Distribution mode is not supported on Windows platform."));
3377
#endif
3378 3379
            self.num_trainers_ = num_trainers;
          })
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3392 3393 3394 3395 3396 3397
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3398 3399 3400 3401 3402 3403
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3404
      .def_property("use_hierarchical_allreduce",
3405 3406 3407 3408 3409 3410
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3411
      .def_property("hierarchical_allreduce_inter_nranks",
3412 3413 3414 3415 3416 3417 3418
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3419 3420 3421 3422 3423 3424
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3425 3426 3427 3428
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3429 3430
            self.fuse_elewise_add_act_ops_ = b;
          },
3431
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3432
                to fuse elementwise_add_op and activation_op,
3433
                it may make the execution faster. Default is False.
F
flame 已提交
3434 3435 3436 3437

                Examples:
                    .. code-block:: python

3438 3439 3440 3441 3442 3443
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3444 3445
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3446 3447 3448 3449
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3450
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3451
                              platform::errors::PreconditionNotMet(
3452 3453
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3463 3464 3465 3466 3467 3468
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3469 3470
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3496 3497 3498 3499
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3500
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3501
                              platform::errors::PreconditionNotMet(
3502 3503
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3514 3515 3516 3517 3518 3519
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3520 3521
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3522 3523 3524 3525 3526 3527
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3528 3529 3530 3531
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3532 3533
            self.fuse_relu_depthwise_conv_ = b;
          },
3534
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3535 3536 3537
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3538
                Default is False.
F
flame 已提交
3539 3540 3541 3542

                Examples:
                    .. code-block:: python

3543 3544 3545 3546 3547 3548
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3549 3550
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3551 3552 3553
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3554
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3555 3556
                    },
                    [](BuildStrategy &self, bool b) {
3557 3558 3559 3560
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3561 3562
                      self.fuse_broadcast_ops_ = b;
                    },
3563
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3564 3565 3566 3567
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3568 3569 3570 3571 3572
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3573 3574 3575 3576 3577 3578
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3579 3580
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3581 3582
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3583
                      return self.fuse_all_optimizer_ops_ == true ||
3584
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3585 3586
                    },
                    [](BuildStrategy &self, bool b) {
3587 3588 3589 3590
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3591 3592
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3593 3594 3595 3596
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3597 3598 3599 3600
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3601 3602
            self.sync_batch_norm_ = b;
          },
3603
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3604 3605 3606
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3607 3608
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3609 3610 3611 3612

                Examples:
                    .. code-block:: python

3613 3614 3615 3616 3617 3618
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3619 3620
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3621 3622
      .def_property(
          "memory_optimize",
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3633
              self.memory_optimize_ = paddle::none;
3634 3635 3636
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3637
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3638 3639
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3640 3641
            }
          },
3642
          R"DOC((bool, optional): memory opitimize aims to save total memory
3643
                consumption, set to True to enable it.
3644

3645 3646 3647
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3662 3663 3664
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3665 3666 3667
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3668
              PADDLE_THROW(platform::errors::Unavailable(
3669
                  "Distribution mode is not supported on Windows platform."));
3670 3671 3672 3673 3674
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3675 3676 3677
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3678
      .def_property(
D
dzhwinter 已提交
3679 3680 3681
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3682 3683 3684 3685
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3686 3687
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3688 3689
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3690
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3691
          },
C
chengduo 已提交
3692
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3693 3694 3695 3696 3697 3698 3699
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3700 3701 3702 3703
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3704 3705 3706 3707 3708 3709 3710 3711 3712
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3713 3714 3715 3716 3717 3718
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3719 3720 3721 3722 3723 3724 3725
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3726 3727 3728 3729 3730 3731
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3732
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3733
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3734 3735 3736 3737 3738
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3739

3740 3741 3742 3743 3744 3745
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3746
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3747
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3748
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3749
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3750 3751 3752 3753
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3754 3755 3756 3757 3758
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3759 3760 3761
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3762 3763 3764 3765
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3766 3767
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3768 3769 3770 3771 3772 3773 3774 3775
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3776
               return py::cast(
3777
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3778 3779
             } else {
               return py::cast(std::move(
3780
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3781
             }
3782 3783
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3784

J
jianghaicheng 已提交
3785 3786 3787 3788 3789 3790 3791 3792
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3793 3794
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3795 3796 3797 3798 3799
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3800
          })
J
jianghaicheng 已提交
3801 3802 3803 3804 3805 3806 3807
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3808
          })
J
jianghaicheng 已提交
3809 3810 3811 3812 3813 3814
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3815
                    })
J
jianghaicheng 已提交
3816 3817 3818 3819 3820 3821
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3822
                    })
J
jianghaicheng 已提交
3823 3824 3825 3826 3827 3828 3829
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3830
          })
J
jianghaicheng 已提交
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3845
          })
J
jianghaicheng 已提交
3846 3847 3848 3849 3850 3851
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3852
                    })
J
jianghaicheng 已提交
3853 3854 3855 3856 3857 3858
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3859
                    })
J
jianghaicheng 已提交
3860 3861 3862 3863 3864 3865
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3866
                    });
J
jianghaicheng 已提交
3867 3868
#endif

D
dongdaxiang 已提交
3869
  BindFleetWrapper(&m);
3870
  BindIO(&m);
T
Thunderbrook 已提交
3871

T
Thunderbrook 已提交
3872
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
3873
  BindHeterWrapper(&m);
3874
  BindMetrics(&m);
T
Thunderbrook 已提交
3875
#endif
T
Thunderbrook 已提交
3876
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3877
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3878
#endif
3879
  BindGlooWrapper(&m);
H
hutuxian 已提交
3880
  BindBoxHelper(&m);
H
hutuxian 已提交
3881 3882 3883
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3884
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3885
  BindNCCLWrapper(&m);
3886 3887 3888
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3889
#endif
F
flame 已提交
3890 3891
  BindGraph(&m);
  BindNode(&m);
3892
  BindPass(&m);
F
flame 已提交
3893
  BindInferenceApi(&m);
3894
  BindCompatible(&m);
3895
  BindDataset(&m);
Y
yaoxuefeng 已提交
3896
  BindGenerator(&m);
3897 3898 3899
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3900
  BindAscendDevice(&m);
3901
#endif
Y
Yanghello 已提交
3902 3903 3904
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3905

T
tangwei12 已提交
3906
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3907 3908
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3909
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3910 3911
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3912 3913 3914 3915 3916
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3917 3918 3919 3920
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3921
  BindSparseShardingTools(&m);
3922
#endif
L
Luo Tao 已提交
3923
}
3924
}  // namespace pybind
3925
}  // namespace paddle