pybind.cc 185.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
49
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/framework/op_info.h"
51
#include "paddle/fluid/framework/op_registry.h"
52
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
53
#include "paddle/fluid/framework/parallel_executor.h"
54
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
56
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
57
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/framework/scope_pool.h"
59
#include "paddle/fluid/framework/selected_rows_utils.h"
60
#include "paddle/fluid/framework/tensor_util.h"
61
#include "paddle/fluid/framework/trainer.h"
62
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
63
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
64
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
65
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
66
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
67 68 69
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
70
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
71
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
72
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
73
#include "paddle/fluid/operators/py_func_op.h"
74
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
75
#include "paddle/fluid/platform/cpu_info.h"
76
#include "paddle/fluid/platform/device/device_wrapper.h"
77
#include "paddle/fluid/platform/device_context.h"
78
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
79
#include "paddle/fluid/platform/enforce.h"
80
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
81
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
82 83
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
84 85 86
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
87
#include "paddle/fluid/pybind/cuda_streams_py.h"
88
#include "paddle/fluid/pybind/distributed_py.h"
89
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
90
#include "paddle/fluid/pybind/imperative.h"
91
#include "paddle/fluid/pybind/io.h"
92 93
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
94
#include "paddle/utils/none.h"
95 96 97
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
98
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
99
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
100
#include "paddle/fluid/pybind/box_helper_py.h"
101
#include "paddle/fluid/pybind/communication.h"
102
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
103
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
104
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
105
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
106
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
107
#include "paddle/fluid/pybind/generator_py.h"
108
#include "paddle/fluid/pybind/global_value_getter_setter.h"
109
#include "paddle/fluid/pybind/gloo_context_py.h"
110
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
111
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
112
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
113
#include "paddle/fluid/pybind/ir.h"
114
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
115
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
116
#include "paddle/fluid/pybind/pybind_boost_headers.h"
117
#include "paddle/phi/backends/device_manager.h"
118

119
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
120
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
121
#endif
122
#include "paddle/fluid/framework/data_type.h"
123 124
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
125
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
126
#include "paddle/fluid/pybind/tensor_py.h"
127
#include "paddle/fluid/string/to_string.h"
128 129
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
130
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
131
#endif
132
#ifndef PADDLE_WITH_HIP
133
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
134
#endif
135
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
136 137
#endif

138
#ifdef PADDLE_WITH_ASCEND_CL
139
#include "paddle/fluid/platform/collective_helper.h"
140 141
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
142 143
#endif

144
#ifdef PADDLE_WITH_XPU
145
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
146
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
147 148
#endif

149
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
150

J
jianghaicheng 已提交
151
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
152 153
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
154
#endif
155

156 157 158 159
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
160 161 162 163
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
164
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
165 166 167
#include "paddle/fluid/pybind/fleet_py.h"
#endif

168
#include "paddle/fluid/eager/api/utils/global_utils.h"
169
#include "paddle/fluid/imperative/layout_autotune.h"
170 171
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
172 173
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
174 175
#include "pybind11/stl.h"

176
DECLARE_bool(use_mkldnn);
177

Q
Qiao Longfei 已提交
178 179
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
180 181 182
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
183

184
namespace paddle {
185
namespace pybind {
186 187

PyTypeObject *g_place_pytype = nullptr;
0
0x45f 已提交
188
PyTypeObject *g_framework_scope_pytype = nullptr;
189 190 191 192 193
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
194
PyTypeObject *g_mluplace_pytype = nullptr;
195
PyTypeObject *g_framework_tensor_pytype = nullptr;
196
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
197
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
198

199
bool IsCompiledWithCUDA() {
200 201 202 203 204 205 206
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

207 208 209 210 211 212 213 214
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

215 216
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
217 218 219 220 221 222
  return false;
#else
  return true;
#endif
}

223 224 225 226 227 228 229 230
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

231 232 233 234 235 236 237 238
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

239 240 241 242 243 244 245 246
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
247 248 249 250 251 252 253 254
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

255 256 257 258 259 260 261 262
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

263 264 265 266 267 268 269 270
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

271 272 273 274 275 276 277 278
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

279 280 281 282 283 284 285 286
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

287 288 289 290 291 292 293 294 295 296 297
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

298 299 300 301 302 303 304 305 306 307 308
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

326
bool IsCompiledWithBrpc() {
327
#ifndef PADDLE_WITH_DISTRIBUTE
328 329
  return false;
#endif
330
  return true;
331 332
}

Y
update  
Yancey1989 已提交
333
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
334
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
335 336 337 338 339 340
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
341 342 343 344 345 346 347
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
348
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
349 350
}

H
hong 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
373 374
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
R
ronnywang 已提交
375 376
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
390 391
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
392 393
    }
    vec_res.emplace_back(
394
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
395 396 397 398 399 400 401 402 403 404 405 406
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
407 408
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
409 410 411 412 413 414 415 416 417 418 419 420
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
421 422 423
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
424 425 426 427
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
428 429
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
430 431 432 433
  }
  return vec_res;
}

434
static void inline CreateVariableIfNotExit(
R
ronnywang 已提交
435 436
    const py::handle &py_handle,
    const framework::Scope &scope,
437 438 439 440 441 442
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
443 444
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
445 446 447 448 449 450 451 452 453 454 455 456 457
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
458 459 460
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
461 462 463 464 465
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
466 467 468 469 470
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
471 472
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
473
        PADDLE_ENFORCE_NOT_NULL(
R
ronnywang 已提交
474 475 476
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
477 478 479 480
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
481
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
482 483
        tensor_temp->mutable_data(
            exe->GetPlace(),
484
            framework::TransToPhiDataType(var_desc.GetDataType()));
485 486 487
      }
    }
  } else {
488 489
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
490 491 492 493 494
  }

  return;
}

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
R
ronnywang 已提交
511 512
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
513 514 515 516 517 518 519
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
520 521 522 523
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
524
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
525 526 527 528 529 530 531 532
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
533
template <typename PlaceType>
R
ronnywang 已提交
534 535 536 537
static void TensorCopyFrom(framework::Tensor *dst,
                           const framework::Tensor &src,
                           const PlaceType &place,
                           int64_t batch_size) {
Z
Zeng Jinle 已提交
538 539 540 541 542 543 544 545
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

546 547 548 549 550 551
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
552
  BindImperative(&m);
553
  BindEager(&m);
554
  BindEagerStringTensor(&m);
555 556
  BindCudaStream(&m);

Y
Yu Yang 已提交
557 558 559
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
560
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
561

562 563
  AssertStaticGraphAndDygraphGradMakerNoDiff();

564
  m.doc() = "C++ core of PaddlePaddle";
565

566 567 568 569
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

570
  BindException(&m);
Y
Yu Yang 已提交
571

572 573
  m.def("set_num_threads", &platform::SetNumThreads);

574 575
  m.def("disable_signal_handler", &DisableSignalHandler);

576 577 578 579 580 581 582 583
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

584
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
585
  m.def("cudnn_version", &platform::DnnVersion);
586 587 588 589 590 591
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
592
#endif
593

Z
Zeng Jinle 已提交
594 595 596 597
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

598 599 600 601 602 603 604 605 606 607
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
608 609
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
610 611
#endif

Z
Zeng Jinle 已提交
612 613 614 615
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
616 617 618
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
619 620

    PADDLE_ENFORCE_NOT_NULL(
R
ronnywang 已提交
621 622 623 624
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
625

6
633WHU 已提交
626 627
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
628
    framework::Tensor tensor;
6
633WHU 已提交
629

S
Siming Dai 已提交
630
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
631 632
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
633
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
634
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
635 636 637 638 639
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
640

641
  m.def("_create_loaded_parameter",
R
ronnywang 已提交
642 643
        [](const py::handle &vec_var_list,
           const Scope &scope,
644 645 646 647
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

648 649 650 651 652 653
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
654 655
  });

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

R
ronnywang 已提交
681 682 683 684 685 686
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
687

S
sneaxiy 已提交
688
  m.def(
S
sneaxiy 已提交
689
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
690 691 692 693
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
694 695 696
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

R
ronnywang 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
713
            }
R
ronnywang 已提交
714
            all_kernels_info.emplace(op_type, kernel_types);
715
          }
R
ronnywang 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
732
                }
R
ronnywang 已提交
733 734
              } else {
                kernel_types.emplace_back(kernel_type_str);
735
              }
736
            }
R
ronnywang 已提交
737 738 739
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
740
          }
R
ronnywang 已提交
741
        }
742

R
ronnywang 已提交
743 744 745 746
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
747 748 749
           Return the registered kernels in paddle.

           Args:
750
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
751
           )DOC");
752

753 754 755 756 757 758
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
759 760 761 762 763
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
764

S
sneaxiy 已提交
765 766 767
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
768
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
769

770
  m.def("_set_fuse_parameter_group_size",
771
        &paddle::framework::ir::SetFuseParameterGroupsSize);
772
  m.def("_set_fuse_parameter_memory_size",
773
        &paddle::framework::ir::SetFuseParameterMemorySize);
774

S
sneaxiy 已提交
775 776 777
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

778 779
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

780 781 782
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
R
ronnywang 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
824 825 826 827 828 829 830 831 832 833 834 835 836
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
R
ronnywang 已提交
837 838 839 840 841
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
842

R
ronnywang 已提交
843 844
  py::class_<framework::Tensor> framework_tensor(
      m, "Tensor", py::buffer_protocol());
845 846 847
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
848 849
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
850 851 852 853
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
J
Jiabin Yang 已提交
854 855
      .def("_slice", &framework::Tensor::Slice)
      .def("_numel", &framework::Tensor::numel)
S
sneaxiy 已提交
856
      .def("_is_initialized",
857
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
858
      .def("_get_dims",
859
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
860
      .def("_set_dims",
861
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
862
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
863
           })
Y
yuyang18 已提交
864
      .def("_set_layout",
865
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
866 867
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
868
      .def("_alloc_float",
869
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
870
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
871
           })
872
      .def("_alloc_float",
873
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
874 875
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
876
      .def("_alloc_float",
877
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
878
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
879
           })
880 881 882 883
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
884 885 886 887
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
888
      .def("_alloc_double",
889
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
890 891
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
892
      .def("_alloc_int",
893
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
894
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
895
           })
896
      .def("_alloc_int",
897
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
898 899
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
900
      .def("_alloc_int",
901
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
902
             self.mutable_data<int>(place);
Q
qijun 已提交
903
           })
904 905 906 907
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
908
      .def("_alloc_int",
909 910
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
911 912
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
913
      .def("_alloc_float",
914 915
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
916 917
             self.mutable_data<float>(place);
           })
918
      .def("_mutable_data",
R
ronnywang 已提交
919 920
           [](framework::Tensor &self,
              paddle::platform::CPUPlace &place,
921
              paddle::framework::proto::VarType::Type type) {
922 923
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
924
           })
925
      .def("_mutable_data",
R
ronnywang 已提交
926 927
           [](framework::Tensor &self,
              paddle::platform::XPUPlace &place,
928
              paddle::framework::proto::VarType::Type type) {
929 930
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
931
           })
932
      .def("_mutable_data",
R
ronnywang 已提交
933 934
           [](framework::Tensor &self,
              paddle::platform::CUDAPlace &place,
935
              paddle::framework::proto::VarType::Type type) {
936 937
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
938 939
           })
      .def("_mutable_data",
R
ronnywang 已提交
940 941
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place,
942
              paddle::framework::proto::VarType::Type type) {
943 944
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
945
           })
946
      .def("_mutable_data",
R
ronnywang 已提交
947 948
           [](framework::Tensor &self,
              paddle::platform::MLUPlace &place,
949
              paddle::framework::proto::VarType::Type type) {
950 951
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
952
           })
953
      .def("_clear", &framework::Tensor::clear)
954
      .def("_mutable_data",
R
ronnywang 已提交
955 956
           [](framework::Tensor &self,
              paddle::platform::NPUPlace &place,
957
              paddle::framework::proto::VarType::Type type) {
958 959
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
960
           })
R
ronnywang 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("_copy_from",
           &TensorCopyFrom<paddle::platform::Place>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("batch_size") = -1)
      .def("set",
           SetTensorFromPyArray<paddle::platform::CPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::CUDAPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false)
      .def("set",
           SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
           py::arg("array"),
           py::arg("place"),
           py::arg("zero_copy") = false,
1031
           R"DOC(
1032
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
1033 1034 1035
        
        Args:
          lod (numpy.ndarray): The data to set.
1036
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
1037
          Tensor is to be set.
1038 1039
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1050
                t = fluid.Tensor()
L
Leo Chen 已提交
1051 1052
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
1053

R
ronnywang 已提交
1054 1055 1056 1057
      .def(
          "shape",
          [](framework::Tensor &self) { return vectorize(self.dims()); },
          R"DOC(
1058
           Return the shape of Tensor.
L
Leo Chen 已提交
1059 1060

           Returns:
1061
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
1062 1063 1064 1065 1066 1067 1068 1069


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

1070
                  t = fluid.Tensor()
L
Leo Chen 已提交
1071 1072 1073
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
1074
      .def("_to_dlpack",
1075
           [](framework::Tensor &self) {
6
633WHU 已提交
1076
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
1077
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
1095 1096 1097 1098
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
1099
      .def("_place", [](framework::Tensor &self) { return self.place(); })
1100 1101 1102 1103
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
1104
      .def("_layout",
1105 1106 1107 1108
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
1109
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
1110 1111 1112 1113 1114 1115
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
R
ronnywang 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
      .def("__init__",
           [](framework::Tensor &instance,
              const std::vector<std::vector<size_t>>
                  &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1),
                 true,
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
             new (&instance) framework::Tensor(new_offset_lod);
           })
1136
      .def("__init__",
1137 1138
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
1139
           })
G
gongweibao 已提交
1140
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1141 1142
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1143 1144 1145
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
R
ronnywang 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
      .def(
          "set_lod",
          [](framework::Tensor &self,
             const std::vector<std::vector<size_t>> &lod) {
            // the input lod is offset-based level-of-detail info
            LoD new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_lod, vectorize(self.dims()).front()),
                true,
                platform::errors::InvalidArgument(
                    "The provided LoD is invalid, the LoD is %s", new_lod));
            self.set_lod(new_lod);
          },
          py::arg("lod"),
          R"DOC(
1163
           Set LoD of the Tensor.
S
sneaxiy 已提交
1164 1165

           Args:
L
Leo Chen 已提交
1166 1167 1168 1169
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1170 1171 1172 1173 1174 1175 1176

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1177
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1178 1179
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1180
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1181
           )DOC")
R
ronnywang 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
      .def(
          "set_recursive_sequence_lengths",
          [](framework::Tensor &self,
             const std::vector<std::vector<size_t>>
                 &recursive_sequence_lengths) {
            // the input recursive_sequence_lengths is length-based
            // level-of-detail info
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                true,
                platform::errors::InvalidArgument(
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
                    "the LoD converted by recursive_sequence_lengths is "
                    "%s",
                    new_lod));
            self.set_lod(new_offset_lod);
          },
          py::arg("recursive_sequence_lengths"),
          R"DOC(
1208
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1209

L
Leo Chen 已提交
1210
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1211
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1212
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1213 1214

           Args:
L
Leo Chen 已提交
1215 1216 1217 1218
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1219 1220 1221 1222 1223 1224 1225

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1226
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1227 1228
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1229
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1230
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1231
           )DOC")
R
ronnywang 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
      .def(
          "lod",
          [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
            // output the offset-based lod info
            LoD lod = self.lod();
            std::vector<std::vector<size_t>> new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            return new_lod;
          },
          R"DOC(
1243
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1244 1245

           Returns:
1246
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1247
           
Z
Zeng Jinle 已提交
1248 1249 1250 1251 1252 1253
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1254
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1255 1256 1257
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1258
           )DOC")
G
gongweibao 已提交
1259
      // Set above comments of set_lod.
R
ronnywang 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
      .def(
          "recursive_sequence_lengths",
          [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
            // output the length-based lod info
            LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
            std::vector<std::vector<size_t>> new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            return new_lod;
          },
          R"DOC(
L
Leo Chen 已提交
1271
           Return the recursive sequence lengths corresponding to of the LodD 
1272
           of the Tensor.
S
sneaxiy 已提交
1273 1274

           Returns:
L
Leo Chen 已提交
1275
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1276 1277 1278 1279 1280 1281 1282

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1283
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1284 1285 1286
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1287
           )DOC")
R
ronnywang 已提交
1288 1289 1290 1291 1292 1293 1294 1295
      .def(
          "has_valid_recursive_sequence_lengths",
          [](framework::Tensor &self) -> bool {
            // Check that the lod info is valid and match the outermost
            // dimension of the Tensor data
            return CheckLoD(self.lod(), vectorize(self.dims()).front());
          },
          R"DOC(
1296
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1297 1298

           Returns:
L
Leo Chen 已提交
1299
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1300 1301 1302 1303 1304 1305 1306

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1307
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1308 1309 1310
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1311
           )DOC")
L
Leo Chen 已提交
1312
      .def("_as_type",
1313
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1314
              paddle::framework::proto::VarType::Type type) {
1315
             framework::Tensor dst;
L
Leo Chen 已提交
1316 1317 1318 1319 1320
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1334
#ifdef _WIN32
1335
           });
1336 1337
#else
           })
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
#ifdef PADDLE_WITH_CUDA
      .def("_share_buffer_with",
           [](framework::Tensor &self, const framework::Tensor src,
              py::tuple t) {
             auto *cuda_ipc_allocation =
                 dynamic_cast<memory::allocation::CudaIpcAllocation *>(
                     src.Holder().get());

             PADDLE_ENFORCE_NOT_NULL(
                 cuda_ipc_allocation,
                 platform::errors::PreconditionNotMet(
                     "Tensor is not Cuda IPC shared tensor. "
                     "Now only Tensor shared by cuda ipc could use this "
                     "api."));

             size_t size = t[0].cast<size_t>();
             auto dtype =
                 static_cast<paddle::experimental::DataType>(t[1].cast<int>());
             auto dims = phi::make_ddim(t[2].cast<std::vector<int>>());
             auto lod_info = t[3].cast<framework::LoD>();
             auto device_id = t[4].cast<int>();

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::Allocation>(
                     cuda_ipc_allocation->ptr(),
                     cuda_ipc_allocation->base_ptr(), size,
                     platform::CUDAPlace(device_id));

             self.ResetHolderWithType(shared_reader_holder, dtype);
             self.Resize(dims);
             self.set_lod(lod_info);

             VLOG(6) << "Reconstructed tensor with buffer shared!";
           },
           R"DOC(
           Deserialize GPU Tensor for existed shared Cuda IPC tensor.

           Params:
               tensor: Shared Cuda IPC tensor.
               tuple: contrains data size, data type,
                      tensor dims, lod information, device index.

       )DOC")
      .def("_share_cuda",
           [](framework::Tensor self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0.  could not pass "
                   "to shared memory. ");

             auto *holder = dynamic_cast<memory::allocation::Allocation *>(
                 self.Holder().get());
             PADDLE_ENFORCE_EQ(
                 platform::is_gpu_place(holder->place()), true,
                 platform::errors::InvalidArgument(
                     "Tensor is not on GPU. share_cuda only support GPU "
                     "Tensor, share_filename is for CPU tensor."));

             void *base_ptr = holder->base_ptr();
             ptrdiff_t offset_bytes = reinterpret_cast<char *>(holder->ptr()) -
                                      reinterpret_cast<char *>(base_ptr);

             cudaIpcMemHandle_t handle;
             PADDLE_ENFORCE_GPU_SUCCESS(cudaIpcGetMemHandle(&handle, base_ptr));

             auto _handle = py::bytes(reinterpret_cast<char *>(&handle),
                                      (py::ssize_t)CUDA_IPC_HANDLE_SIZE);

             // TODO(ZHUI): use cuda event, to avoid sync.
             const auto &device_id = paddle::platform::GetCurrentDeviceId();
             auto stream =
                 paddle::platform::stream::get_current_stream(device_id);
             stream->Synchronize();

             int type_idx = static_cast<int>(self.type());
             size_t data_size =
                 self.numel() *
                 framework::SizeOfType(
                     framework::TransToProtoVarType(self.type()));

             return py::make_tuple(_handle, (py::size_t)offset_bytes, data_size,
                                   type_idx, vectorize(self.dims()), self.lod(),
                                   device_id);
           },
           R"DOC(
           Serialize GPU Tensor by cudaIpcMemHandle.

           Returns:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()

      )DOC")
      .def("_new_shared_cuda",
           [](py::tuple t) {
             if (t.size() != 7)
               throw std::runtime_error(
                   "Invalid Tensor meta info for shared cuda tensor!");

             // 1. Create a new C++ instance
             framework::Tensor tensor;

             // 2. Rebuild Allocation from handle
             const std::string &handle = t[0].cast<std::string>();
             ptrdiff_t offset_bytes = (ptrdiff_t)t[1].cast<int64_t>();
             auto device_id = t[6].cast<int>();
             auto base_ptr = memory::allocation::GetIpcBasePtr(handle);
             size_t size = t[2].cast<size_t>();
             void *dev = base_ptr.get();
             dev = reinterpret_cast<char *>(dev) + offset_bytes;

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::CudaIpcAllocation>(
                     dev, size, device_id, std::move(base_ptr));

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_reader_holder,
                 static_cast<paddle::experimental::DataType>(t[3].cast<int>()));
             tensor.Resize(phi::make_ddim(t[4].cast<std::vector<int>>()));
             tensor.set_lod(t[5].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize GPU lod tensor from cudaIpcMemHandle.

           Params:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_cuda(metainfo))

        )DOC")
#endif
      .def("_share_filename",
           [](framework::Tensor &self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0. could not pass to "
                   "shared memory. ");

             auto holder = self.Holder();
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(holder->place()) ||
                     platform::is_cuda_pinned_place(holder->place()),
                 true, platform::errors::InvalidArgument(
                           "Tensor is not on CPU. share_filename only "
                           "support CPU Tensor."));

             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 holder.get());
             // If the tensor is not shared, allocate memory map allocation.
             if (mmap_allocation == nullptr) {
               void *data_ptr = self.data();
               size_t data_size =
                   self.numel() *
                   framework::SizeOfType(
                       framework::TransToProtoVarType(self.type()));

               int flags = memory::allocation::MAPPED_SHAREDMEM |
                           memory::allocation::MAPPED_EXCLUSIVE;
               std::string handle = memory::allocation::GetIPCName();
               auto shared_holder =
                   memory::allocation::AllocateRefcountedMemoryMapAllocation(
                       handle, flags, data_size);

               // copy data & reset holder
               if (platform::is_cuda_pinned_place(holder->place())) {
#ifdef PADDLE_WITH_CUDA
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CUDAPinnedPlace(), data_ptr, data_size);
#endif
               } else {
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CPUPlace(), data_ptr, data_size);
               }
               self.ResetHolder(shared_holder);
               mmap_allocation = shared_holder.get();
             }
             int type_idx = static_cast<int>(self.type());

             return py::make_tuple(mmap_allocation->ipc_name(),
                                   mmap_allocation->size(), type_idx,
                                   vectorize(self.dims()), self.lod());
           },
           R"DOC(
           Serialize CPU lod tensor in shared memory to tuple.
           If the tensor is not in shared memory, we will copy it first.

           Returns:
               tuple: contrains ipc name, data size, data type,
                      tensor dims and lod imformation.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()

       )DOC")
      .def("_new_shared_filename",
           [](py::tuple t) {  // __setstate__
             if (t.size() != 5)
               throw std::runtime_error("Invalid Tensor meta info state!");

             framework::Tensor tensor;

             // 2. Rebuild Allocation
             const std::string &ipc_name = t[0].cast<std::string>();
             size_t size = t[1].cast<size_t>();
             int flags = memory::allocation::MAPPED_SHAREDMEM |
                         memory::allocation::MAPPED_NOCREATE;

             auto shared_holder =
                 memory::allocation::AllocateRefcountedMemoryMapAllocation(
                     ipc_name, flags, size);

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_holder,
                 static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
             tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
             tensor.set_lod(t[4].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize CPU lod tensor from shared memory.

           Params:
               tuple: contrains ipc file name, data size, data type,
                      tensor dims and lod information.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_filename(metainfo))

        )DOC")
      .def("_shared_incref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->incref();
             }
           },
           R"DOC(
            Increase reference count of share_filename tensor.
      )DOC")
      .def("_shared_decref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->decref();
             }
           },
           R"DOC(
            Decrease reference count of share_filename tensor.
      )DOC")
1619
      .def(py::pickle(
1620
          [](const framework::Tensor &t) {  // __getstate__
1621
            auto holder = t.Holder();
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1634 1635 1636
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1637 1638
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1639 1640 1641
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1642
              throw std::runtime_error("Invalid Tensor state!");
1643 1644

            // 1. Create a new C++ instance
1645
            framework::Tensor tensor;
1646 1647 1648 1649 1650

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1651 1652
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1653 1654

            // 3. Maintain global fd set
1655
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1656 1657
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1658 1659 1660
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1661
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1662
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1663 1664 1665 1666 1667
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1668

1669
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1670
      .def("__init__",
1671 1672
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1673
           })
Q
qijun 已提交
1674
      .def("__init__",
R
ronnywang 已提交
1675 1676
           [](phi::SelectedRows &instance,
              const std::vector<int64_t> rows,
Q
qijun 已提交
1677
              const int64_t &height) {
1678
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1679
           })
R
ronnywang 已提交
1680 1681 1682 1683
      .def(
          "get_tensor",
          [](phi::SelectedRows &self) { return self.mutable_value(); },
          py::return_value_policy::reference)
1684
      .def("numel",
1685
           [](phi::SelectedRows &self) -> int64_t {
1686 1687
             return self.value().numel();
           })
1688 1689
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1690
      .def("set_rows",
1691
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1692
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1693 1694 1695 1696 1697 1698
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1699
      .def("sync_index",
1700 1701
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1702 1703 1704 1705 1706
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1707
      });
Q
qijun 已提交
1708

1709
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1710 1711 1712

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1713
      .def(py::init<>())
1714
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1715
      .def("set_int",
1716 1717
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1718 1719 1720 1721 1722 1723 1724
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
R
ronnywang 已提交
1725 1726 1727 1728 1729 1730
      .def(
          "get_tensor",
          [](Variable &self) -> LoDTensor * {
            return self.GetMutable<LoDTensor>();
          },
          py::return_value_policy::reference)
1731 1732 1733 1734
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1735 1736 1737 1738
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
R
ronnywang 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
      .def("set_vocab",
           [](Variable &self, Vocab vocab) {
             *self.GetMutable<Vocab>() = vocab;
           })
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1769
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
R
ronnywang 已提交
1770 1771 1772 1773 1774 1775
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1776
#endif
R
ronnywang 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
                scope_vec->size(),
                0,
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1799 1800 1801 1802
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1803

S
sneaxiy 已提交
1804
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1805

0
0x45f 已提交
1806
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1820
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1821 1822 1823 1824 1825
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1826 1827 1828
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1829 1830
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
R
ronnywang 已提交
1831 1832 1833 1834 1835 1836 1837
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1838
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1839

1840
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1841
           current scope, the variable would be created. Otherwise,
1842
           return the existing variable.
S
sneaxiy 已提交
1843 1844

           Args:
1845 1846
               name (str): the variable name.

S
sneaxiy 已提交
1847
           Returns:
1848
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1849
           )DOC",
R
ronnywang 已提交
1850 1851 1852 1853
          py::return_value_policy::reference)
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1854
           R"DOC(
1855
           Find variable named :code:`name` in the current scope or
1856
           its parent scope. Return None if not found. 
1857

S
sneaxiy 已提交
1858 1859
           Args:
               name (str): the variable name.
1860

S
sneaxiy 已提交
1861
           Returns:
1862
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1863
           )DOC",
1864
           py::return_value_policy::reference)
1865
      .def("size", &Scope::Size)
R
ronnywang 已提交
1866 1867 1868
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
R
ronnywang 已提交
1880 1881 1882 1883
      .def(
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
          R"DOC(
S
sneaxiy 已提交
1884 1885 1886 1887 1888
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
R
ronnywang 已提交
1889 1890 1891
          py::return_value_policy::reference)
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1892 1893
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1894 1895
           )DOC")
      .def("_kids", &Scope::kids);
1896

R
ronnywang 已提交
1897 1898 1899 1900 1901 1902 1903 1904
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1905
        Create a new scope.
1906

S
sneaxiy 已提交
1907 1908 1909
        Returns:
            out (core._Scope): the created scope.
        )DOC",
R
ronnywang 已提交
1910
      py::return_value_policy::reference);
S
sneaxiy 已提交
1911

Y
Yu Yang 已提交
1912 1913
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1914 1915
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1916 1917 1918 1919
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1920
        PADDLE_ENFORCE_EQ(
R
ronnywang 已提交
1921 1922
            info.Proto().SerializeToString(&str),
            true,
1923 1924
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1925 1926 1927
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1928 1929
    return ret_values;
  });
1930 1931 1932 1933 1934 1935 1936 1937
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1938
              res = op_checker->GetDefaultAttrsMap();
1939 1940 1941 1942
            }
          }
          return res;
        });
R
ronnywang 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1961 1962 1963
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1964 1965 1966 1967 1968
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1969 1970 1971
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1972
  m.def("infer_no_need_buffer_slots",
R
ronnywang 已提交
1973 1974
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
R
ronnywang 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
2020 2021 2022 2023
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
2024 2025 2026
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
2027 2028
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
2029

Q
qijun 已提交
2030
  // clang-format off
Y
Yu Yang 已提交
2031
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
2032 2033
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
2034
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
2049
                  })
2050 2051 2052 2053 2054 2055 2056 2057 2058
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
2085 2086
#endif
                  })
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
2099
      .def_static("create",
D
dzhwinter 已提交
2100
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
2101
                      -> paddle::platform::DeviceContext* {
2102
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2103 2104 2105 2106
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
2107
#else
W
Wilber 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
2121 2122 2123 2124
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
2125 2126
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
2127
#endif
C
chengduoZH 已提交
2128 2129 2130 2131
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
2132
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2133 2134 2135 2136
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
2137 2138 2139 2140
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
2141
// clang-format on
2142
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
2143 2144
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
2145 2146 2147
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2148
    device_types = phi::DeviceManager::GetAllDeviceTypes();
2149
#else
R
ronnywang 已提交
2150
          VLOG(1) << string::Sprintf(
2151 2152 2153 2154
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
2155
              "PaddlePaddle by: pip install paddlepaddle\n");
2156 2157 2158 2159 2160 2161
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2162
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
2163
#else
R
ronnywang 已提交
2164
          VLOG(1) << string::Sprintf(
2165 2166 2167 2168
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
2169
              "PaddlePaddle by: pip install paddlepaddle\n");
2170 2171 2172 2173 2174 2175
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2176
    devices = phi::DeviceManager::GetAllDeviceList();
2177
#else
R
ronnywang 已提交
2178
          VLOG(1) << string::Sprintf(
2179 2180 2181 2182
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
2183
              "PaddlePaddle by: pip install paddlepaddle\n");
2184 2185 2186 2187 2188 2189
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2190
    devices = phi::DeviceManager::GetAllCustomDeviceList();
2191
#else
R
ronnywang 已提交
2192
          VLOG(1) << string::Sprintf(
2193 2194 2195 2196 2197 2198
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
2199
              "PaddlePaddle by: pip install paddlepaddle\n");
2200 2201 2202
#endif
    return devices;
  });
R
ronnywang 已提交
2203 2204
  py::class_<platform::CustomPlace>(m,
                                    "CustomPlace",
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
                                    R"DOC(
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
                                             )DOC")
      .def("__init__",
R
ronnywang 已提交
2216 2217
           [](platform::CustomPlace &self,
              const std::string &device_type,
2218 2219 2220 2221 2222 2223 2224
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
R
ronnywang 已提交
2225 2226
                   device_type,
                   dev_id);
2227 2228 2229
               std::exit(-1);
             }

2230 2231
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
2232
               int dev_count = static_cast<int>(
2233
                   phi::DeviceManager::GetDeviceCount(device_type));
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
R
ronnywang 已提交
2247 2248 2249 2250 2251
                       device_type,
                       dev_id,
                       dev_count,
                       device_type,
                       dev_count);
2252 2253 2254 2255 2256 2257 2258 2259 2260
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
R
ronnywang 已提交
2261 2262
                   device_type,
                   dev_id);
2263 2264 2265 2266 2267 2268 2269 2270
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
R
ronnywang 已提交
2271
                 "PaddlePaddle by: pip install paddlepaddle\n"
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
2286
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
2287 2288 2289 2290 2291

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
2292
    The memory of CUDAPlace with different dev_id is not accessible.
2293 2294 2295 2296 2297 2298 2299 2300
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
2301 2302 2303 2304

    Examples:
        .. code-block:: python

2305 2306 2307
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
2308

2309 2310 2311
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
2312 2313
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
2314
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2315 2316 2317 2318 2319 2320 2321 2322
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

2323 2324
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
2325 2326 2327 2328 2329 2330 2331 2332
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
R
ronnywang 已提交
2333 2334
                     dev_id,
                     platform::GetGPUDeviceCount(),
2335
                     platform::GetGPUDeviceCount());
2336 2337 2338 2339
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
2340 2341
             new (&self) platform::CUDAPlace(dev_id);
#else
2342 2343 2344 2345 2346 2347 2348 2349 2350
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
2351 2352
#endif
           })
2353
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2354 2355
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
2356 2357 2358 2359
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
2360
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
2361
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
2362
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
2363 2364
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
2365 2366 2367
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
2368
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
2369
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
2370

2371
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
2372 2373 2374 2375 2376
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
2377 2378 2379
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
R
ronnywang 已提交
2400 2401
                     dev_id,
                     platform::GetXPUDeviceCount(),
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
2419
#ifdef PADDLE_WITH_XPU
2420 2421 2422 2423 2424 2425 2426
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
2427 2428 2429
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
2430
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
2431
      .def("__str__", string::to_string<const platform::XPUPlace &>);
2432
#ifdef PADDLE_WITH_XPU
2433 2434 2435
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
2436
      .export_values();
2437
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
2438 2439
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
L
Lijunhui 已提交
2440 2441 2442 2443 2444 2445
#ifdef PADDLE_WITH_XPU_KP
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_kp_op_support_type(op_name, version);
        });
#else
2446 2447 2448 2449
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
L
Lijunhui 已提交
2450
#endif
2451
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
2452 2453
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
2454 2455
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2456
    return platform::get_xpu_version(place.device) >
2457
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2458 2459 2460
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2461
    return platform::get_xpu_version(place.device) >
2462
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2463
  });
2464
#endif
2465

2466
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
2467
    CPUPlace is a descriptor of a device.
2468
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
2469 2470 2471 2472

    Examples:
        .. code-block:: python

2473 2474
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
2475

2476 2477 2478
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
2479 2480
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
2481
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
2482
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2483 2484 2485 2486
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
2487
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
2488
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
2489

2490 2491
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
2492 2493 2494 2495 2496 2497
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2498 2499 2500 2501

    Examples:
        .. code-block:: python

2502 2503
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2504

2505 2506 2507 2508
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2509
      .def("__init__",
S
sneaxiy 已提交
2510
           [](platform::CUDAPinnedPlace &self) {
2511
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2512 2513 2514
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2515
#endif
S
sneaxiy 已提交
2516
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2517
           })
S
sneaxiy 已提交
2518 2519 2520 2521
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2522 2523
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2524 2525
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2526 2527 2528 2529
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2530
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2531 2532
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2533
  // NPUPlace
2534
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2535 2536 2537 2538 2539 2540 2541 2542
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2543 2544 2545
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
R
ronnywang 已提交
2566 2567
                     dev_id,
                     platform::GetNPUDeviceCount(),
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2578
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2593 2594
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2595 2596
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
R
ronnywang 已提交
2683 2684
                     dev_id,
                     platform::GetMLUDeviceCount(),
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2719 2720 2721
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2722 2723 2724 2725
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2726
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2727
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2728
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2729
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2730
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2731 2732
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2733 2734
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2735 2736
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2737 2738
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2739 2740
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2741 2742 2743 2744
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2745 2746
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2747 2748 2749
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2750 2751 2752 2753 2754
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2755 2756
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
R
ronnywang 已提交
2757 2758 2759 2760
      .def("set_place",
           [](platform::Place &self, const platform::Place &other) {
             self = other;
           })
Y
Yu Yang 已提交
2761 2762 2763 2764
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2765 2766 2767 2768
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2769
      .def("set_place",
D
dzhwinter 已提交
2770
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2771
             self = gpu_place;
C
chengduoZH 已提交
2772
           })
2773 2774 2775 2776 2777
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2778 2779 2780 2781
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2782 2783 2784 2785
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2786 2787 2788 2789
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2790 2791 2792 2793
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2794 2795
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2796

Y
Yu Yang 已提交
2797
  py::class_<OperatorBase>(m, "Operator")
2798 2799 2800 2801 2802 2803 2804
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
R
ronnywang 已提交
2805 2806
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
2807 2808 2809 2810 2811 2812
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2813
      .def("run",
R
ronnywang 已提交
2814 2815
           [](OperatorBase &self,
              const Scope &scope,
2816 2817 2818 2819
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2820
      .def("run",
R
ronnywang 已提交
2821 2822
           [](OperatorBase &self,
              const Scope &scope,
2823 2824 2825 2826
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2827
      .def("run",
R
ronnywang 已提交
2828 2829
           [](OperatorBase &self,
              const Scope &scope,
2830 2831 2832 2833
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2834
      .def("run",
R
ronnywang 已提交
2835 2836
           [](OperatorBase &self,
              const Scope &scope,
2837 2838 2839 2840
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2841
      .def("run",
R
ronnywang 已提交
2842 2843
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
2844
              const platform::CUDAPinnedPlace &place) {
2845
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2846 2847
             self.Run(scope, place);
           })
2848
      .def("run",
R
ronnywang 已提交
2849 2850
           [](OperatorBase &self,
              const Scope &scope,
2851 2852 2853 2854
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2855 2856 2857 2858 2859
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
R
ronnywang 已提交
2860 2861
             return op.Outputs();
           })
Q
qijun 已提交
2862 2863
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2864
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2865
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2866 2867 2868 2869
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2870

2871 2872 2873
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2874 2875
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
R
ronnywang 已提交
2876 2877 2878 2879 2880 2881
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
2882 2883
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2884

2885 2886
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2887
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2888
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2889
      .def("close", &Executor::Close)
R
ronnywang 已提交
2890 2891
      .def("run_from_dataset",
           &Executor::RunFromDataset,
2892
           py::call_guard<py::gil_scoped_release>())
R
ronnywang 已提交
2893 2894
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
2895
           py::call_guard<py::gil_scoped_release>())
2896
      .def("init_for_dataset",
R
ronnywang 已提交
2897 2898 2899 2900
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
2901
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2902
             pybind11::gil_scoped_release release;
2903 2904 2905 2906 2907 2908 2909
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2910
      .def("run_prepared_ctx",
R
ronnywang 已提交
2911 2912 2913
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
2914
              std::map<std::string, const LoDTensor *> *feed_targets,
2915
              std::map<std::string, FetchType *> *fetch_targets,
R
ronnywang 已提交
2916 2917
              bool create_local_scope = true,
              bool create_vars = true,
2918 2919 2920
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
R
ronnywang 已提交
2921 2922 2923 2924 2925 2926 2927 2928
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
2929
           })
2930
      .def("run_prepared_ctx",
R
ronnywang 已提交
2931 2932 2933 2934 2935
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
2936 2937
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
R
ronnywang 已提交
2938 2939
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
2940
           })
2941
      .def("prepare",
R
ronnywang 已提交
2942 2943 2944
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
2945 2946 2947 2948
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
R
ronnywang 已提交
2949 2950
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
2951 2952
           })
      .def("create_variables", &Executor::CreateVariables)
R
ronnywang 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
2969

2970
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2971
      .def(py::init<>())
2972 2973 2974 2975 2976
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2977

2978
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
R
ronnywang 已提交
2979 2980 2981 2982
      .def(py::init<const platform::Place &,
                    const ProgramDesc &,
                    const ProgramDesc &,
                    Scope *>())
H
hong 已提交
2983
      .def("run",
2984
           [](StandaloneExecutor &self,
H
hong 已提交
2985
              const std::unordered_map<std::string, py::array> &input_dict,
2986
              std::vector<std::string> fetch_names) {
2987
             std::vector<framework::LoDTensor> feed_tensors;
2988
             std::vector<std::string> feed_names;
H
hong 已提交
2989 2990 2991 2992 2993

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2994 2995
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2996 2997
             }

2998 2999 3000 3001 3002 3003 3004 3005 3006
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
3007
              const std::unordered_map<std::string, framework::LoDTensor>
3008 3009
                  &input_dict,
              std::vector<std::string> fetch_names) {
3010
             std::vector<framework::LoDTensor> feed_tensors;
3011 3012 3013 3014 3015 3016 3017
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
3018 3019 3020 3021
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
3022
             }
W
wanghuancoder 已提交
3023
             return py::cast(std::move(ret));
3024
           })
3025
      .def("run",
R
ronnywang 已提交
3026 3027
           [](StandaloneExecutor &self,
              std::vector<std::string> feed_names,
3028
              std::vector<std::string> fetch_names) {
3029 3030
             platform::RecordEvent record_event(
                 "StandaloneExecutor:run",
R
ronnywang 已提交
3031 3032
                 platform::TracerEventType::UserDefined,
                 1);
3033 3034 3035 3036 3037 3038 3039
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
3040 3041 3042
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
3043
             std::vector<framework::LoDTensor> feed_tensors;
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

3054
             framework::interpreter::CostInfo cost_info;
3055 3056 3057 3058 3059
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
3060 3061
           });

D
dzhwinter 已提交
3062
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
3063
  m.def("init_glog", framework::InitGLOG);
3064 3065 3066 3067
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
3068
  m.def("init_devices", []() { framework::InitDevices(); });
3069 3070
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
3071
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
3072
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
3073
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
3074
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
3075
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
3076
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
3077
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
3078
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
3079
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
3080
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
3081
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
3082
  m.def("supports_bfloat16", SupportsBfloat16);
3083
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
3084 3085
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
3086
  m.def("op_supported_infos", imperative::OpSupportedInfos);
3087
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
3088
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
3089 3090 3091
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
3111 3112
  m.def("memory_stat_get_current", memory::StatGetCurrentValue);
  m.def("memory_stat_get_peak", memory::StatGetPeakValue);
R
ronnywang 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
  m.def(
      "run_cmd",
      [](const std::string &cmd,
         int time_out = -1,
         int sleep_inter = -1) -> const std::string {
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
      },
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
  m.def(
      "shell_execute_cmd",
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
         bool redirect_stderr = false) -> std::vector<std::string> {
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
      },
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
3137

3138
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3139 3140
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
3141
    return platform::GetGPUComputeCapability(place.device) >= 53;
3142
  });
3143 3144 3145 3146
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
3147
#endif
3148

S
Steffy-zxf 已提交
3149
  m.def("set_feed_variable",
R
ronnywang 已提交
3150 3151 3152
        static_cast<void (*)(
            Scope *, const LoDTensor &, const std::string &, size_t)>(
            &framework::SetFeedVariable));
S
Steffy-zxf 已提交
3153
  m.def("set_feed_variable",
R
ronnywang 已提交
3154 3155 3156
        static_cast<void (*)(
            Scope *, const Strings &, const std::string &, size_t)>(
            &framework::SetFeedVariable));
3157
  m.def("get_fetch_variable",
R
ronnywang 已提交
3158 3159
        [](const Scope &scope,
           const std::string &var_name,
3160 3161 3162
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
3163
            return py::cast(BOOST_GET(LoDTensor, var));
3164
          } else {
3165
            return py::cast(BOOST_GET(LoDTensorArray, var));
3166 3167
          }
        });
3168
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
3169

X
Xin Pan 已提交
3170 3171
  m.def("_is_program_version_supported", IsProgramVersionSupported);

3172 3173 3174 3175
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
3176
  BindCostModel(&m);
3177
  BindConstValue(&m);
3178
  BindGlobalValueGetterSetter(&m);
3179
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
3180
  BindFleetExecutor(&m);
3181
  BindTCPStore(&m);
Y
Yu Yang 已提交
3182

Y
Yu Yang 已提交
3183 3184 3185 3186 3187 3188 3189 3190 3191
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

3192
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
3193
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
3194 3195 3196

    Examples:
        .. code-block:: python
3197

Z
Zeng Jinle 已提交
3198 3199 3200
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
3201 3202 3203 3204
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
3205 3206
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
R
ronnywang 已提交
3207 3208 3209 3210
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
3211 3212 3213
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
R
ronnywang 已提交
3214 3215
             PADDLE_ENFORCE_LT(i,
                               self.size(),
3216 3217 3218
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
3219 3220 3221
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
R
ronnywang 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230
      .def(
          "append",
          [](LoDTensorArray &self, const LoDTensor &t) {
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
3231
             Append a LoDensor to LoDTensorArray.
3232 3233 3234 3235 3236 3237
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
3249
           )DOC")
R
ronnywang 已提交
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
3261

3262 3263 3264
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
R
ronnywang 已提交
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
                auto &data = BOOST_GET(LoDTensor, self[i]);
                res[i] = py::cast(std::move(data));
              } else {
                auto &data = BOOST_GET(LoDTensorArray, self[i]);
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
3286

R
ronnywang 已提交
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
      .def(
          "append",
          [](FetchList &self, const LoDTensor &t) {
            self.emplace_back();
            auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
            auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
3308 3309 3310

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
3311
        )DOC")
R
ronnywang 已提交
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
                  auto &var = BOOST_GET(LoDTensor, self[i][j]);
                  tmp[j] = py::cast(std::move(var));
                } else {
                  auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
3338

Y
Yu Yang 已提交
3339
  m.def("op_support_gpu", OpSupportGPU);
3340
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3341
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
3342
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
3343 3344 3345 3346 3347 3348 3349 3350
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
R
ronnywang 已提交
3351 3352 3353 3354 3355 3356
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
3357 3358

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
3384
      });
D
dangqingqing 已提交
3385

3386
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
3387 3388 3389
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
3390 3391 3392 3393
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
3394
#endif
P
peizhilin 已提交
3395
#endif
Y
Yu Yang 已提交
3396

3397 3398
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
3399
  m.def("npu_finalize", []() {
3400 3401
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

3402 3403 3404
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
3405
      platform::NPUDeviceGuard guard(devices[i]);
3406 3407 3408 3409
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
3430 3431 3432 3433
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

3434 3435 3436 3437
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

3438 3439 3440 3441 3442 3443
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

3444 3445 3446 3447
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
3448
      .value("kAll", platform::ProfilerState::kAll)
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

3460
  m.def("set_tracer_option", platform::SetTracerOption);
3461 3462
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
3463
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
3464
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
3465
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
3466
    PADDLE_ENFORCE_EQ(
R
ronnywang 已提交
3467 3468
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
3469 3470 3471
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
3472
    callable.inc_ref();
R
ronnywang 已提交
3473 3474 3475 3476 3477 3478 3479 3480
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
3481
  });
3482
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
3483 3484 3485
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
3486

3487
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
3488 3489
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
R
ronnywang 已提交
3490 3491
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
                     &paddle::platform::HostPythonNode::device_node_ptrs);

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
R
ronnywang 已提交
3526 3527
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
3528
           py::return_value_policy::take_ownership)
C
chenjian 已提交
3529
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
3530 3531
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
3532 3533 3534 3535 3536 3537
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
R
ronnywang 已提交
3538 3539 3540 3541 3542 3543 3544
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            return profiler->Stop();
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
3576

3577
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3578 3579
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
3580 3581
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
3582
#endif  // PADDLE_WITH_CUDA
3583 3584
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
3585

3586 3587 3588
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

3589 3590
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
3591
      .def("has", &ir::Pass::Has)
3592 3593 3594
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
3595
           })
3596
      .def(
3597
          "set",
3598 3599 3600
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
J
jianghaicheng 已提交
3601
      .def("set",
R
ronnywang 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
           [](ir::Pass &self, const std::string &name, bool val) {
             self.Set<bool>(name, new bool(val));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, int val) {
             self.Set<const int>(name, new int(val));
           })
      .def("set",
           [](ir::Pass &self,
              const std::string &name,
J
jianghaicheng 已提交
3612 3613 3614
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
3615
      .def("set",
R
ronnywang 已提交
3616 3617
           [](ir::Pass &self,
              const std::string &name,
3618 3619 3620 3621
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
R
ronnywang 已提交
3622 3623
           [](ir::Pass &self,
              const std::string &name,
3624 3625 3626 3627 3628 3629 3630
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
3631 3632
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
3633
        self.Apply(graph.get());
F
flame 已提交
3634
      });
3635

X
fix  
Xin Pan 已提交
3636 3637
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
3652
  // -- python binds for parallel executor.
Y
yuyang18 已提交
3653
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
3654 3655 3656 3657
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

3658 3659 3660
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
3661 3662 3663
    Examples:
        .. code-block:: python

3664 3665 3666 3667 3668 3669 3670 3671 3672
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3673

3674 3675
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3676

3677
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3678 3679
          sgd_optimizer.minimize(avg_loss)

3680
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3681 3682
          exec_strategy.num_threads = 4

3683 3684 3685
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3686 3687
        )DOC");

3688 3689 3690 3691
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3692

Y
yuyang18 已提交
3693
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3694 3695 3696 3697 3698
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3699
          },
3700 3701
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3702 3703 3704 3705 3706 3707 3708
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3722
      .def_property(
3723 3724
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3725
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3726 3727 3728
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3729 3730 3731 3732 3733
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3734 3735 3736
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3737 3738
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3739 3740 3741 3742 3743 3744 3745
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3746 3747 3748 3749
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3750
                because the temp variable's shape maybe the same between two iterations.
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3761

3762 3763 3764 3765 3766 3767 3768
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3769
              )DOC")
Q
Qiao Longfei 已提交
3770 3771 3772 3773 3774 3775 3776 3777 3778
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3791
              )DOC")
3792 3793 3794 3795 3796 3797 3798 3799
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
R
ronnywang 已提交
3800 3801 3802 3803 3804 3805
      .def_property(
          "_dry_run",
          [](const ExecutionStrategy &self) { return self.dry_run_; },
          [](ExecutionStrategy &self, bool dry_run) {
            self.dry_run_ = dry_run;
          });
C
chengduo 已提交
3806

Y
yuyang18 已提交
3807
  exec_strategy.def_property(
Y
yuyang18 已提交
3808 3809 3810 3811 3812 3813 3814
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3815 3816
      });

C
chengduo 已提交
3817 3818 3819 3820
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3821 3822 3823
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3824 3825 3826
    Examples:
        .. code-block:: python

3827
            import os
3828 3829 3830 3831
            import paddle
            import paddle.static as static

            paddle.enable_static()
3832

3833 3834
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3835

3836 3837 3838 3839
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3840

3841
            build_strategy = static.BuildStrategy()
3842 3843
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3844 3845
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3846
            program = program.with_data_parallel(loss_name=loss.name,
3847 3848
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3849
)DOC");
Y
yuyang18 已提交
3850 3851 3852

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3853 3854
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3855 3856 3857 3858 3859 3860 3861 3862
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3863
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3864 3865 3866 3867
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
R
ronnywang 已提交
3868 3869
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
3870 3871 3872
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3873
            self.reduce_ = strategy;
C
chengduo 已提交
3874
          },
3875
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3876 3877
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3878
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3879 3880
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3881
                Default is 'AllReduce'.
F
flame 已提交
3882 3883 3884 3885

                Examples:
                    .. code-block:: python

3886 3887 3888 3889 3890 3891 3892
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3893
                  )DOC")
Y
yuyang18 已提交
3894 3895 3896 3897 3898
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
R
ronnywang 已提交
3899 3900
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
3901 3902 3903
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3904
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3905
          },
3906
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3907
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3908 3909
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3910
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3911 3912 3913 3914

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3915 3916
                        import numpy
                        import os
3917 3918 3919 3920
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3921 3922

                        use_cuda = True
3923 3924
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3925 3926

                        # NOTE: If you use CPU to run the program, you need
3927
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3928 3929 3930 3931 3932 3933
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3934
                            places = static.cpu_places()
C
chengduo 已提交
3935
                        else:
3936
                            places = static.cuda_places()
C
chengduo 已提交
3937

3938 3939 3940 3941
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3942

3943
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3944

3945
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3946
                        build_strategy.gradient_scale_strategy = \
3947 3948 3949
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3950
                                          loss_name=loss.name, build_strategy=build_strategy,
3951
                                          places=places)
C
chengduo 已提交
3952 3953 3954 3955 3956 3957

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3958 3959
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3960
                   )DOC")
Y
yuyang18 已提交
3961 3962 3963 3964
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
R
ronnywang 已提交
3965 3966
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
3967 3968 3969
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3970
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3971
          },
3972
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3973
                writing the SSA Graph to file in the form of graphviz.
3974
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3975 3976 3977 3978

                Examples:
                    .. code-block:: python

3979 3980 3981 3982
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3983

3984 3985
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3986
                    )DOC")
S
sneaxiy 已提交
3987 3988 3989 3990 3991 3992
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
R
ronnywang 已提交
3993 3994
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
3995 3996 3997
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3998 3999
            self.enable_sequential_execution_ = b;
          },
4000 4001
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
4002 4003 4004 4005

                Examples:
                    .. code-block:: python

4006 4007 4008 4009 4010 4011
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4012 4013
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
4014 4015 4016 4017 4018 4019
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
R
ronnywang 已提交
4020 4021
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4022 4023 4024
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
4025 4026
            self.remove_unnecessary_lock_ = b;
          },
4027 4028
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
4029 4030 4031 4032

                Examples:
                    .. code-block:: python

4033 4034 4035 4036 4037 4038
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4039 4040
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
4041 4042 4043 4044
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
4045
#ifdef WIN32
4046
            PADDLE_THROW(platform::errors::Unavailable(
4047
                "Distribution mode is not supported on Windows platform."));
4048
#endif
4049 4050
            self.num_trainers_ = num_trainers;
          })
4051 4052 4053 4054 4055 4056 4057
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
R
ronnywang 已提交
4058 4059 4060 4061 4062 4063
      .def_property(
          "trainer_id",
          [](const BuildStrategy &self) { return self.trainer_id_; },
          [](BuildStrategy &self, int trainer_id) {
            self.trainer_id_ = trainer_id;
          })
4064 4065 4066 4067 4068 4069
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
4070 4071 4072 4073 4074 4075
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
R
ronnywang 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
      .def_property(
          "use_hierarchical_allreduce",
          [](const BuildStrategy &self) {
            return self.use_hierarchical_allreduce_;
          },
          [](BuildStrategy &self, bool use) {
            self.use_hierarchical_allreduce_ = use;
          })
      .def_property(
          "hierarchical_allreduce_inter_nranks",
          [](const BuildStrategy &self) {
            return self.hierarchical_allreduce_inter_nranks_;
          },
          [](BuildStrategy &self, int nranks) {
            self.hierarchical_allreduce_inter_nranks_ = nranks;
          })
4092

C
chengduo 已提交
4093 4094 4095 4096 4097 4098
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
R
ronnywang 已提交
4099 4100
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4101 4102 4103
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
4104 4105
            self.fuse_elewise_add_act_ops_ = b;
          },
4106
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
4107
                to fuse elementwise_add_op and activation_op,
4108
                it may make the execution faster. Default is False.
F
flame 已提交
4109 4110 4111 4112

                Examples:
                    .. code-block:: python

4113 4114 4115 4116 4117 4118
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4119 4120
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
4121 4122 4123 4124
      .def_property(
          "fuse_gemm_epilogue",
          [](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
          [](BuildStrategy &self, bool b) {
R
ronnywang 已提交
4125 4126
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_gemm_epilogue_ = b;
          },
          R"DOC((bool, optional): fuse_gemm_epilogue indicate whether
                to fuse matmul_op, elemenewist_add_op and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_gemm_epilogue = True
                     )DOC")
Z
Zhen Wang 已提交
4147 4148 4149 4150
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
R
ronnywang 已提交
4151 4152
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
Z
Zhen Wang 已提交
4153
                              platform::errors::PreconditionNotMet(
4154 4155
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
4156 4157 4158 4159 4160 4161 4162 4163 4164
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

4165 4166 4167 4168 4169 4170
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
4171 4172
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
4173 4174 4175 4176
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
R
ronnywang 已提交
4177 4178
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
Z
Zhang Ting 已提交
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
4199 4200 4201 4202
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
R
ronnywang 已提交
4203 4204
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4205
                              platform::errors::PreconditionNotMet(
4206 4207
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

4218 4219 4220 4221 4222 4223
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
4224 4225
                        build_strategy.enable_auto_fusion = True
                    )DOC")
4226 4227 4228 4229 4230 4231
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
R
ronnywang 已提交
4232 4233
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4234 4235 4236
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4237 4238
            self.fuse_relu_depthwise_conv_ = b;
          },
4239
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
4240 4241 4242
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
4243
                Default is False.
F
flame 已提交
4244 4245 4246 4247

                Examples:
                    .. code-block:: python

4248 4249 4250 4251 4252 4253
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4254 4255
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
R
ronnywang 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) {
            return self.fuse_broadcast_ops_ == true ||
                   self.fuse_broadcast_ops_ == paddle::none;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, "
                                  "cannot be configured again."));
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC((bool, optional): fuse_broadcast_op indicates whether
4271 4272 4273 4274
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
4275 4276 4277 4278 4279
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

4280 4281 4282 4283 4284 4285
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
4286 4287
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
R
ronnywang 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
      .def_property(
          "fuse_all_optimizer_ops",
          [](const BuildStrategy &self) {
            return self.fuse_all_optimizer_ops_ == true ||
                   self.fuse_all_optimizer_ops_ == paddle::none;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, "
                                  "cannot be configured again."));
            self.fuse_all_optimizer_ops_ = b;
          })
Q
qingqing01 已提交
4302 4303 4304 4305
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
R
ronnywang 已提交
4306 4307
            PADDLE_ENFORCE_NE(self.IsFinalized(),
                              true,
4308 4309 4310
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
4311 4312
            self.sync_batch_norm_ = b;
          },
4313
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
4314 4315 4316
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
4317 4318
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
4319 4320 4321 4322

                Examples:
                    .. code-block:: python

4323 4324 4325 4326 4327 4328
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4329 4330
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
4331 4332
      .def_property(
          "memory_optimize",
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
4343
              self.memory_optimize_ = paddle::none;
4344 4345 4346
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
4347
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
4348 4349
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
4350 4351
            }
          },
4352
          R"DOC((bool, optional): memory opitimize aims to save total memory
4353
                consumption, set to True to enable it.
4354

4355 4356 4357
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
4372 4373 4374
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
4375 4376 4377
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
4378
              PADDLE_THROW(platform::errors::Unavailable(
4379
                  "Distribution mode is not supported on Windows platform."));
4380 4381 4382 4383 4384
            }
#else
            self.is_distribution_ = b;
#endif
          })
R
ronnywang 已提交
4385 4386 4387 4388
      .def_property(
          "async_mode",
          [](const BuildStrategy &self) { return self.async_mode_; },
          [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
4389
      .def_property(
D
dzhwinter 已提交
4390 4391 4392
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
4393 4394 4395 4396
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
4397 4398
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
4399 4400
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
4401
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
4402
          },
C
chengduo 已提交
4403
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
R
ronnywang 已提交
4404 4405 4406 4407 4408 4409 4410 4411
      .def_property(
          "enable_backward_optimizer_op_deps",
          [](const BuildStrategy &self) {
            return self.enable_backward_optimizer_op_deps_;
          },
          [](BuildStrategy &self, bool b) {
            self.enable_backward_optimizer_op_deps_ = b;
          })
4412 4413 4414 4415
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
4416 4417 4418 4419 4420 4421 4422 4423 4424
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
4425 4426 4427 4428 4429 4430
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
R
ronnywang 已提交
4431 4432 4433 4434 4435 4436 4437 4438
      .def_property(
          "allow_cuda_graph_capture",
          [](const BuildStrategy &self) {
            return self.allow_cuda_graph_capture_;
          },
          [](BuildStrategy &self, bool allow_cuda_graph_capture) {
            self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
          })
4439 4440 4441 4442 4443 4444
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
R
ronnywang 已提交
4445 4446 4447 4448 4449 4450
      .def(
          "_finalize_strategy_and_create_passes",
          [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
            return self.CreatePassesFromStrategy(true);
          },
          R"DOC(Allow user to customized passes. Normally model-specific
4451 4452
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
4453

4454 4455 4456 4457 4458 4459
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
4460
  pe.def(py::init<const std::vector<platform::Place> &,
R
ronnywang 已提交
4461 4462 4463 4464 4465 4466 4467
                  const std::vector<std::string> &,
                  const std::string &,
                  Scope *,
                  std::vector<Scope *> &,
                  const ExecutionStrategy &,
                  const BuildStrategy &,
                  ir::Graph *>())
Y
Yu Yang 已提交
4468 4469 4470 4471
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
R
ronnywang 已提交
4472 4473 4474 4475 4476 4477
      .def(
          "local_scopes",
          [](ParallelExecutor &self) -> std::vector<Scope *> * {
            return &self.GetLocalScopes();
          },
          py::return_value_policy::reference)
4478 4479 4480
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
4481 4482 4483 4484
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
4485 4486
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
4487 4488 4489 4490 4491 4492 4493 4494
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
4495
               return py::cast(
4496
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
4497 4498
             } else {
               return py::cast(std::move(
4499
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
4500
             }
4501 4502
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
4503

J
jianghaicheng 已提交
4504 4505
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
4506 4507 4508
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
R
ronnywang 已提交
4509 4510 4511 4512 4513 4514 4515
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
4516
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
4517 4518
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
4519
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
4530 4531 4532 4533
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
R
ronnywang 已提交
4556 4557
                         option.get_type(),
                         option_name));
4558 4559 4560 4561 4562 4563 4564
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
R
ronnywang 已提交
4565 4566
                         option_name,
                         option.first.cast<std::string>(),
4567 4568
                         option.second.cast<std::uint64_t>());
                   }
A
Allen Guo 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
R
ronnywang 已提交
4614 4615
                           option.second.get_type(),
                           option_key));
4616
                     }
R
ronnywang 已提交
4617 4618
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
4619 4620 4621 4622 4623 4624
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
R
ronnywang 已提交
4625 4626
                     element.second.get_type(),
                     option_name));
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
4657 4658
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
4659 4660 4661
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
4662 4663
#endif

4664 4665 4666 4667 4668 4669 4670 4671
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

4672
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
4673 4674 4675 4676 4677 4678 4679 4680 4681
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
4682
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
4683 4684 4685 4686 4687 4688 4689
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
  m.def("enable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .EnableLayoutAutoTune();
  });

  m.def("disable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .DisableLayoutAutoTune();
  });

  m.def("use_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance().UseLayoutAutoTune();
  });

D
dongdaxiang 已提交
4704
  BindFleetWrapper(&m);
4705
  BindIO(&m);
T
Thunderbrook 已提交
4706

T
Thunderbrook 已提交
4707
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
4708
  BindHeterWrapper(&m);
4709
  BindMetrics(&m);
T
Thunderbrook 已提交
4710
#endif
T
Thunderbrook 已提交
4711
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
4712
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
4713
#endif
4714
  BindGlooWrapper(&m);
H
hutuxian 已提交
4715
  BindBoxHelper(&m);
H
hutuxian 已提交
4716 4717 4718
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
4719
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
4720
  BindNCCLWrapper(&m);
4721 4722 4723
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
4724
#endif
F
flame 已提交
4725 4726
  BindGraph(&m);
  BindNode(&m);
4727
  BindPass(&m);
F
flame 已提交
4728
  BindInferenceApi(&m);
4729
  BindCompatible(&m);
4730
  BindDataset(&m);
Y
yaoxuefeng 已提交
4731
  BindGenerator(&m);
4732 4733 4734
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
4735 4736 4737
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
4738
  BindAscendDevice(&m);
4739
#endif
Y
Yanghello 已提交
4740 4741 4742
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
4743

T
tangwei12 已提交
4744
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
4745 4746
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
4747
  BindCommunicatorContext(&m);
T
tangwei12 已提交
4748 4749
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
4750 4751 4752 4753 4754
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
4755 4756 4757 4758
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
4759 4760 4761 4762 4763 4764
#ifdef PADDLE_WITH_HETERPS
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
4765
#endif
L
Luo Tao 已提交
4766
}
4767
}  // namespace pybind
4768
}  // namespace paddle