pybind.cc 84.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
32
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
33 34 35
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
36
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/framework/op_info.h"
38
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
42
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
45
#include "paddle/fluid/framework/trainer.h"
X
Xin Pan 已提交
46
#include "paddle/fluid/framework/version.h"
H
hong 已提交
47
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
49
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
52
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
53
#include "paddle/fluid/platform/cpu_info.h"
54
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/platform/enforce.h"
56
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
57 58
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
59
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
61
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
63
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
64
#include "paddle/fluid/pybind/global_value_getter_setter.h"
65
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
66
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
67
#include "paddle/fluid/pybind/ir.h"
68

W
wopeizl 已提交
69
#ifndef _WIN32
D
dongdaxiang 已提交
70
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
71
#endif
72
#include "paddle/fluid/framework/data_type.h"
73 74
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
75
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
76
#include "paddle/fluid/pybind/tensor_py.h"
77
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
78
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
79
#ifndef _WIN32
Y
Yi Wang 已提交
80
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
81
#endif
Y
Yi Wang 已提交
82 83
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
84 85
#endif

86 87 88 89
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
90 91
#include "pybind11/stl.h"

92 93 94
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
95
DECLARE_bool(use_mkldnn);
96 97 98
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
99

Q
Qiao Longfei 已提交
100 101 102
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

103
namespace paddle {
104
namespace pybind {
105
bool IsCompiledWithCUDA() {
106
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
107 108 109 110 111 112
  return false;
#else
  return true;
#endif
}

113 114 115 116 117 118 119 120
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

121 122 123 124 125 126 127 128
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

129
bool IsCompiledWithBrpc() {
130
#ifndef PADDLE_WITH_DISTRIBUTE
131 132
  return false;
#endif
133 134 135 136 137 138

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
139 140
}

Y
update  
Yancey1989 已提交
141
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
142
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
143 144 145 146 147 148
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
149 150 151 152 153 154 155 156 157 158
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
      PADDLE_THROW("Save parameter [%s] is None", para.first);
    }

    const char *kIVarField = "_ivar";
    PyObject *py_ivar = GetPythonAttribute(py_obj, kIVarField);
    PADDLE_ENFORCE_NOT_NULL(py_ivar, "Can not find  ivar in Variable");

    vec_res.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    Py_DECREF(py_ivar);
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return vec_res;
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
        PADDLE_ENFORCE_NE(exe, nullptr,
                          "Parameter not Initialized, "
                          "Please set argument [executor] not None "
                          "or run startup program first");
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
        PADDLE_ENFORCE_NOT_NULL(py_var_desc);
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return;
}

291 292 293 294 295 296
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
297 298 299
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
300
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
301

302
  m.doc() = "C++ core of PaddlePaddle";
303

304 305 306 307
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

308
  BindException(&m);
Y
Yu Yang 已提交
309

310 311
  m.def("set_num_threads", &platform::SetNumThreads);

6
633WHU 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
330 331 332 333 334 335 336 337 338
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
339
           const Scope &scope, const Executor *executor) {
H
hong 已提交
340
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
341
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
342 343 344
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

345 346 347 348 349 350
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
370

371 372 373 374 375 376
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
377
  m.def(
S
sneaxiy 已提交
378
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
379 380 381 382
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
383 384 385
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
386 387 388
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
389
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
390

391
  m.def("_set_fuse_parameter_group_size",
392
        &paddle::framework::ir::SetFuseParameterGroupsSize);
393
  m.def("_set_fuse_parameter_memory_size",
394
        &paddle::framework::ir::SetFuseParameterMemorySize);
395

S
sneaxiy 已提交
396 397 398
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

399 400
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

401
  BindImperative(&m);
402

403
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
404
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
405 406
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
407
      .def("_get_dims",
408
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
409
      .def("_set_dims",
Q
qijun 已提交
410
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
411
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
412
           })
Y
yuyang18 已提交
413
      .def("_set_layout",
D
dzhwinter 已提交
414 415 416
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
417
      .def("_alloc_float",
D
dzhwinter 已提交
418
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
419
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
420
           })
Y
yuyang18 已提交
421
      .def("_alloc_float",
Y
Yu Yang 已提交
422
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
423
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
424
           })
425 426 427 428
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
429
      .def("_alloc_int",
Y
Yu Yang 已提交
430
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
431
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
432
           })
Y
yuyang18 已提交
433
      .def("_alloc_int",
D
dzhwinter 已提交
434
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
435
             self.mutable_data<int>(place);
Q
qijun 已提交
436
           })
Y
yuyang18 已提交
437
      .def("_alloc_int",
C
chengduoZH 已提交
438 439 440
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
441
      .def("_alloc_float",
C
chengduoZH 已提交
442 443 444
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
460
      .def("_clear", &Tensor::clear)
461 462 463 464 465 466
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
           py::arg("array"), py::arg("place"))
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
           py::arg("array"), py::arg("place"))
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
           py::arg("array"), py::arg("place"), R"DOC(
L
Leo Chen 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
486

L
Leo Chen 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
526 527 528 529
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
530
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
531
      .def("_dtype", [](Tensor &self) { return self.type(); })
532
      .def("_share_data_with", &Tensor::ShareDataWith)
533 534 535 536 537 538
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
539

L
Leo Chen 已提交
540
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
541
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
616 617 618 619 620 621 622

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
623 624

        )DOC")
625
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
626 627 628 629 630 631 632 633 634
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
635 636
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
637 638 639
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
640
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
641
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
642 643
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
644 645 646
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
647
      .def("set_lod",
648
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
649
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
650
             LoD new_lod;
651 652
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
653 654 655
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
656
             self.set_lod(new_lod);
S
sneaxiy 已提交
657 658 659 660 661
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
662 663 664 665
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
666 667 668 669 670 671 672 673 674 675

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
676
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
677
           )DOC")
678 679 680 681 682 683 684 685 686 687 688
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
689 690
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
691 692
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
693 694
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
695
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
696

L
Leo Chen 已提交
697
           For example, if recursive_sequence_lengths=[[2, 3]], which means
698
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
699
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
700 701

           Args:
L
Leo Chen 已提交
702 703 704 705
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
706 707 708 709 710 711 712 713 714 715

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
716 717
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
718
           )DOC")
719 720 721 722 723 724 725 726
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
727 728 729 730 731
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
732 733
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
734 735 736 737 738 739 740 741 742 743
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
744
           )DOC")
G
gongweibao 已提交
745
      // Set above comments of set_lod.
746 747 748 749 750 751 752 753
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
754 755
           },
           R"DOC(
L
Leo Chen 已提交
756 757
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
758 759

           Returns:
L
Leo Chen 已提交
760
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
761 762 763 764 765 766 767 768 769 770 771

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
772 773 774 775 776 777 778 779
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
780
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
781 782

           Returns:
L
Leo Chen 已提交
783
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
784 785 786 787 788 789 790 791 792 793 794

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
795 796 797 798 799 800 801
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
802
           )DOC")
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
821
      });
D
dangqingqing 已提交
822

Q
qijun 已提交
823 824 825 826 827 828 829 830 831 832 833
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
834 835
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
836 837
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
838 839 840 841 842 843 844 845 846
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
847
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
848
      .def("rows", [](SelectedRows &self) {
849 850 851 852 853
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
854
      });
Q
qijun 已提交
855

856
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
857 858 859

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
860
      .def(py::init<>())
861
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
862
      .def("set_int",
863 864
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
865 866 867 868 869 870 871
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
872
      .def("get_tensor",
873 874
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
875 876
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
877 878 879
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
880 881 882 883 884
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
885 886 887
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
888
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
889 890 891 892 893
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
894
#endif
Y
Refine  
Yu Yang 已提交
895 896
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
897
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
898 899
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
900
           py::return_value_policy::reference);
901

S
sneaxiy 已提交
902
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
903

S
sneaxiy 已提交
904 905 906 907
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
908

S
sneaxiy 已提交
909 910
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
911
      .def("push",
S
sneaxiy 已提交
912
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
913
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
914
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
915
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
916
           })
S
sneaxiy 已提交
917 918 919
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
Z
Zeng Jinle 已提交
920
      .def("kill", &LoDTensorBlockingQueue::Kill)
S
sneaxiy 已提交
921
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
922

S
sneaxiy 已提交
923
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
924 925
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
926
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
927 928 929 930
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
931
        py::return_value_policy::copy);
S
sneaxiy 已提交
932

S
sneaxiy 已提交
933
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

947
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
948 949 950 951 952 953
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
954 955
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
956
      .def("var",
957
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
958
             return self.Var(name);
Y
Yu Yang 已提交
959
           },
S
sneaxiy 已提交
960 961
           py::arg("name"),
           R"DOC(
962
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
963

964
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
965
           current scope, the variable would be created. Otherwise,
966
           return the existing variable.
S
sneaxiy 已提交
967 968

           Args:
969 970
               name (str): the variable name.

S
sneaxiy 已提交
971
           Returns:
972
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
973 974 975 976
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
977
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
978
           its parent scope. Return None if not found.
979

S
sneaxiy 已提交
980 981
           Args:
               name (str): the variable name.
982

S
sneaxiy 已提交
983
           Returns:
984
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
985
           )DOC",
986
           py::return_value_policy::reference)
987
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
988 989 990 991 992 993
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
994
           py::return_value_policy::reference)
S
sneaxiy 已提交
995 996 997
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
998 999
           )DOC")
      .def("_kids", &Scope::kids);
1000

S
sneaxiy 已提交
1001 1002 1003 1004 1005 1006
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1007 1008
        R"DOC(
        Create a new scope.
1009

S
sneaxiy 已提交
1010 1011 1012
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1013 1014
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1015 1016
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1017 1018
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1019 1020 1021 1022
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1023 1024
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1025 1026 1027 1028
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1029 1030
    return ret_values;
  });
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1047 1048 1049 1050 1051 1052 1053
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });

Y
Yu Yang 已提交
1054
  m.def("prune", [](const ProgramDesc &origin,
1055
                    const std::set<std::string> &feeded_var_names,
1056
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1057
    ProgramDesc prog_with_targets(origin);
1058

1059
    for (const auto &t : targets) {
1060
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1061
    }
1062
    proto::ProgramDesc pruned_desc;
1063
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
1064
    return new ProgramDesc(pruned_desc);
1065
  });
1066 1067 1068
  m.def("prune_backward", [](const framework::ProgramDesc &program) {
    return PruneBackward(program);
  });
1069 1070 1071 1072
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1073 1074 1075
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1076 1077
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1078
  // clang-format off
Y
Yu Yang 已提交
1079
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1080 1081
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1082
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1083 1084 1085
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1086
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1087
                      -> paddle::platform::DeviceContext* {
1088
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
1089
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
1090
#else
Q
qijun 已提交
1091
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1092
#endif
C
chengduoZH 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1104
// clang-format on
P
peizhilin 已提交
1105
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
1106 1107
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1108
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1109 1110 1111 1112 1113 1114 1115 1116
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1117
    The memory of CUDAPlace with different dev_id is not accessible.
1118 1119 1120 1121 1122 1123 1124 1125
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1126 1127 1128 1129

    Examples:
        .. code-block:: python

1130
          import paddle.fluid as fluid
L
lujun 已提交
1131 1132
          gpu_place = fluid.CUDAPlace(0)

1133
        )DOC")
S
sneaxiy 已提交
1134 1135 1136
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1161 1162
             new (&self) platform::CUDAPlace(dev_id);
#else
1163 1164 1165 1166 1167 1168 1169 1170 1171
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1172 1173
#endif
           })
S
sneaxiy 已提交
1174 1175 1176 1177 1178 1179
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
1180
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1181

1182
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1183 1184
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1185 1186 1187 1188

    Examples:
        .. code-block:: python

1189
          import paddle.fluid as fluid
1190
          cpu_place = fluid.CPUPlace()to be allocated
L
lujun 已提交
1191

1192
        )DOC")
1193
      .def(py::init<>())
S
sneaxiy 已提交
1194 1195 1196 1197 1198 1199
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1200
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1201

1202
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1203 1204 1205 1206 1207 1208
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1209 1210 1211 1212

    Examples:
        .. code-block:: python

1213
          import paddle.fluid as fluid
L
lujun 已提交
1214 1215
          place = fluid.CUDAPinnedPlace()

1216
        )DOC")
S
sneaxiy 已提交
1217
      .def("__init__",
S
sneaxiy 已提交
1218
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1219 1220 1221
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
1222
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1223
           })
S
sneaxiy 已提交
1224 1225 1226 1227 1228 1229 1230 1231
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1232 1233
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1234 1235
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1236 1237 1238 1239 1240
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1241 1242
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1243 1244 1245 1246 1247 1248
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1249 1250 1251 1252
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
1253 1254
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1255 1256 1257 1258 1259
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1260
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1261
             self = gpu_place;
C
chengduoZH 已提交
1262 1263
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1264 1265
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1266
      });
Y
Yu Yang 已提交
1267

Y
Yu Yang 已提交
1268
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
1280
      .def("run",
1281
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1282 1283 1284
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1285
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1286 1287 1288 1289 1290
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1291 1292 1293 1294 1295 1296 1297
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1298 1299
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1300
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1301
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1302 1303 1304 1305
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1306

1307 1308 1309
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1310 1311 1312 1313 1314 1315 1316 1317 1318
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1319
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1320
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1321
      .def("close", &Executor::Close)
1322 1323
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1324 1325
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1326 1327 1328 1329
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1330
             pybind11::gil_scoped_release release;
1331 1332 1333 1334 1335 1336 1337
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1350
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1351 1352 1353 1354 1355 1356 1357
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1368
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1369 1370
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1371
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1372 1373
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1374
      });
S
sneaxiy 已提交
1375

D
dzhwinter 已提交
1376
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1377
  m.def("init_glog", framework::InitGLOG);
1378
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1379 1380
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1381

1382
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1383
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1384
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1385
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1386
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1387 1388 1389 1390 1391 1392
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1393

1394
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1395
  m.def("get_fetch_variable", framework::GetFetchVariable);
1396
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1397

X
Xin Pan 已提交
1398 1399
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1400 1401 1402 1403 1404
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1405
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1406

Y
Yu Yang 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1416
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1417
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1418 1419 1420

    Examples:
        .. code-block:: python
1421

Z
Zeng Jinle 已提交
1422 1423 1424 1425
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1426 1427
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1438 1439 1440 1441 1442 1443
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1444 1445
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1446 1447 1448 1449 1450 1451
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1474

Y
Yu Yang 已提交
1475
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1476
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1477
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1478

P
peizhilin 已提交
1479
#ifndef _WIN32
D
dangqingqing 已提交
1480 1481 1482
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1483
#endif
P
peizhilin 已提交
1484
#endif
Y
Yu Yang 已提交
1485

1486 1487 1488 1489
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1490
      .value("kAll", platform::ProfilerState::kAll)
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1504
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1505
  m.def("reset_profiler", platform::ResetProfiler);
1506
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1507 1508 1509
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1510

1511 1512
  m.def("size_of_dtype", framework::SizeOfType);

1513 1514 1515
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1516 1517
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1518
      .def("has", &ir::Pass::Has)
1519 1520 1521
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1522
           })
1523
      .def(
1524
          "set",
1525 1526 1527
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1528 1529
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1544 1545
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1546
        self.Apply(graph.get());
F
flame 已提交
1547
      });
1548

X
fix  
Xin Pan 已提交
1549 1550
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1565
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1566

Y
yuyang18 已提交
1567
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1568 1569 1570 1571
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1572 1573 1574
    Examples:
        .. code-block:: python

1575
          import paddle.fluid as fluid
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1586 1587 1588
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1589 1590
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1591 1592
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1593 1594
        )DOC");

Y
yuyang18 已提交
1595
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1596 1597 1598 1599 1600
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1611
      .def_property(
1612 1613 1614 1615
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1616 1617 1618 1619
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1620 1621 1622 1623 1624
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1625 1626 1627
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1628 1629
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1630 1631 1632 1633 1634 1635 1636
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1637 1638 1639 1640
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1641 1642
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1643 1644 1645 1646 1647 1648

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1649
              )DOC")
Q
Qiao Longfei 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
1659
                user call exe.run() in python
Q
Qiao Longfei 已提交
1660
              )DOC")
1661 1662 1663 1664 1665
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1666

Y
yuyang18 已提交
1667
  exec_strategy.def_property(
Y
yuyang18 已提交
1668 1669 1670 1671 1672 1673 1674
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1675 1676
      });

C
chengduo 已提交
1677 1678 1679 1680
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1681 1682 1683
    Examples:
        .. code-block:: python

1684 1685
            import os
            import numpy as np
F
flame 已提交
1686
            import paddle.fluid as fluid
1687 1688 1689 1690 1691 1692 1693 1694 1695

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
1696
            build_strategy = fluid.BuildStrategy()
1697 1698
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
1699
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
1700 1701 1702 1703
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
1704
)DOC");
Y
yuyang18 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1721 1722
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1723
            self.reduce_ = strategy;
C
chengduo 已提交
1724
          },
1725
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
1726 1727
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
1728
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
1729 1730
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
1731
                Default is 'AllReduce'.
F
flame 已提交
1732 1733 1734 1735 1736 1737 1738 1739

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1740 1741 1742 1743 1744
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1745 1746
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1747
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1748
          },
1749 1750
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
1751 1752
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
1753
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
1754 1755 1756 1757 1758

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1787
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1802
                   )DOC")
Y
yuyang18 已提交
1803 1804 1805 1806
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1807 1808
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1809
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1810
          },
1811
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
1812
                writing the SSA Graph to file in the form of graphviz.
1813
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
1814 1815 1816 1817 1818 1819

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1820 1821
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1822
                    )DOC")
S
sneaxiy 已提交
1823 1824 1825 1826 1827 1828
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1829 1830
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1831 1832
            self.enable_sequential_execution_ = b;
          },
1833 1834
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
1835 1836 1837 1838 1839 1840 1841 1842

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1843 1844 1845 1846 1847 1848
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1849 1850
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1851 1852
            self.remove_unnecessary_lock_ = b;
          },
1853 1854
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
1855 1856 1857 1858 1859 1860 1861 1862

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1863 1864 1865 1866
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1867 1868 1869
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1870 1871
            self.num_trainers_ = num_trainers;
          })
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1884 1885 1886 1887 1888 1889
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1890
      .def_property("use_hierarchical_allreduce",
1891 1892 1893 1894 1895 1896
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1897
      .def_property("hierarchical_allreduce_inter_nranks",
1898 1899 1900 1901 1902 1903 1904
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1905 1906 1907 1908 1909 1910
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1911 1912
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
1913 1914
            self.fuse_elewise_add_act_ops_ = b;
          },
1915
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1916
                to fuse elementwise_add_op and activation_op,
1917
                it may make the execution faster. Default is False.
F
flame 已提交
1918 1919 1920 1921 1922 1923 1924 1925

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1926 1927 1928 1929 1930 1931
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1932 1933
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
1934 1935
            self.fuse_relu_depthwise_conv_ = b;
          },
1936
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1937 1938 1939
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
1940
                Default is False.
F
flame 已提交
1941 1942 1943 1944 1945 1946 1947 1948

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
1959
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
1960 1961 1962 1963
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
1964 1965 1966 1967 1968 1969 1970 1971 1972
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
1973 1974
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
1975 1976
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
1977 1978
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1979 1980
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
1981 1982
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1983 1984 1985 1986
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1987 1988
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
1989 1990
            self.sync_batch_norm_ = b;
          },
1991
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
1992 1993 1994
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
1995 1996
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
1997 1998 1999 2000 2001 2002 2003 2004

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2005 2006
      .def_property(
          "memory_optimize",
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
H
hong 已提交
2022 2023
                  "BuildStrategy.memory_optimize must be None, False or "
                  "True");
2024 2025
            }
          },
2026
          R"DOC((bool, optional): memory opitimize aims to save total memory
2027
                consumption, set to True to enable it.
2028

2029 2030 2031
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2032
                True means enabling and False means disabling. Default is None.)DOC")
2033 2034 2035
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2036 2037 2038 2039 2040 2041 2042 2043 2044
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2045 2046 2047
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2048
      .def_property(
D
dzhwinter 已提交
2049 2050 2051
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
2052 2053
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2054 2055 2056 2057
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2058
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2059 2060 2061 2062 2063 2064 2065
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2066 2067 2068 2069
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2070 2071 2072 2073 2074 2075 2076 2077 2078
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2079
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2080
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2081 2082 2083 2084 2085
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2086 2087

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2088
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2089
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2090
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2091 2092 2093 2094
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2095 2096 2097 2098 2099
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2100 2101 2102
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2103 2104 2105 2106
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
2107
      .def("run", [](ParallelExecutor &self,
2108
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
2109
        pybind11::gil_scoped_release release;
2110
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
2111
      });
Y
Yu Yang 已提交
2112

D
dongdaxiang 已提交
2113
  BindFleetWrapper(&m);
H
hutuxian 已提交
2114
  BindBoxHelper(&m);
W
wopeizl 已提交
2115
#ifndef _WIN32
D
dongdaxiang 已提交
2116
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2117
#endif
F
flame 已提交
2118 2119
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2120
  BindInferenceApi(&m);
2121
  BindDataset(&m);
2122 2123 2124
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
2125
}
2126
}  // namespace pybind
2127
}  // namespace paddle