pybind.cc 56.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
39
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
40
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
41
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
42
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
45
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
46
#include "paddle/fluid/platform/enforce.h"
47
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
50
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
53
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
54
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
55
#include "paddle/fluid/pybind/ir.h"
56 57
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
58
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
59
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
61

62
#include "paddle/fluid/string/to_string.h"
63

D
Dong Zhihong 已提交
64
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
65
#ifndef _WIN32
Y
Yi Wang 已提交
66
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
67
#endif
Y
Yi Wang 已提交
68 69
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
70 71
#endif

M
minqiyang 已提交
72 73
#include "pybind11/stl.h"

74 75 76 77
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
78 79 80
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

81
namespace paddle {
82
namespace pybind {
83
bool IsCompiledWithCUDA() {
84
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
85 86 87 88 89 90
  return false;
#else
  return true;
#endif
}

91 92 93 94 95 96 97 98
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

99 100 101 102 103 104 105 106
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

107
bool IsCompiledWithBrpc() {
108
#ifndef PADDLE_WITH_DISTRIBUTE
109 110
  return false;
#endif
111 112 113 114 115 116

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
117 118
}

Y
update  
Yancey1989 已提交
119
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
120
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
121 122 123 124 125 126
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
127 128 129 130 131 132 133 134 135 136
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

137
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
138 139 140
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
141
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
142
  m.doc() = "C++ core of PaddlePaddle";
143

144 145 146 147
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

148
  BindException(&m);
Y
Yu Yang 已提交
149

S
sneaxiy 已提交
150
  m.def(
S
sneaxiy 已提交
151
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
152 153 154 155
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
156 157 158
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

159 160 161 162 163 164 165
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
166
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
167 168
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
169
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
170

M
minqiyang 已提交
171
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
172 173 174 175 176 177 178 179
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
180
      .def("_run_backward",
X
Xin Pan 已提交
181
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
182
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
183
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
184
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
185
      .def("_grad_ivar",
M
minqiyang 已提交
186
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
187
           py::return_value_policy::reference)
M
minqiyang 已提交
188
      .def("_copy_to",
P
Paddle CI 已提交
189
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
190 191 192 193 194
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
195
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
196
      .def("_copy_to",
P
Paddle CI 已提交
197
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
198 199 200 201 202
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
203
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
204
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
205
           py::return_value_policy::reference)
206 207 208
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
209
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
210 211 212 213
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
214

215
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
216
      .def(py::init<const std::string &>())
217 218 219 220
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
221 222 223 224 225 226 227 228 229 230
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
231 232 233 234 235 236
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
237
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
238
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
239 240 241 242 243 244
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
245 246
          py::return_value_policy::reference);

X
Xin Pan 已提交
247
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
248
  layer.def(py::init<>())
X
Xin Pan 已提交
249 250 251
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
252
      });
X
Xin Pan 已提交
253

X
polish  
Xin Pan 已提交
254
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
255
      .def(py::init<>())
X
Xin Pan 已提交
256 257
      .def_static(
          "apply",
X
Xin Pan 已提交
258
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
259
              -> std::vector<imperative::VarBase *> {
260 261 262 263 264 265 266 267 268 269 270
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
271 272
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
273 274 275 276 277
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
278

279 280
  BindTracer(&m);

281 282 283
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
284
      .def("_get_dims",
285
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
286
      .def("_set_dims",
Q
qijun 已提交
287
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
288
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
289
           })
Y
yuyang18 已提交
290
      .def("_set_layout",
D
dzhwinter 已提交
291 292 293
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
294
      .def("_alloc_float",
D
dzhwinter 已提交
295
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
296
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
297
           })
Y
yuyang18 已提交
298
      .def("_alloc_float",
Y
Yu Yang 已提交
299
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
300
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
301
           })
Y
yuyang18 已提交
302
      .def("_alloc_int",
Y
Yu Yang 已提交
303
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
304
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
305
           })
Y
yuyang18 已提交
306
      .def("_alloc_int",
D
dzhwinter 已提交
307
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
308
             self.mutable_data<int>(place);
Q
qijun 已提交
309
           })
Y
yuyang18 已提交
310
      .def("_alloc_int",
C
chengduoZH 已提交
311 312 313
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
314
      .def("_alloc_float",
C
chengduoZH 已提交
315 316 317
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
318 319
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
320
      .def("set", PyCPUTensorSetFromArray<double>)
321
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
322
      .def("set", PyCPUTensorSetFromArray<bool>)
323
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
324
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
325
      .def("set", PyCPUTensorSetFromArray<int8_t>)
326
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
327 328
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
329
      .def("set", PyCUDATensorSetFromArray<double>)
330
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
331
      .def("set", PyCUDATensorSetFromArray<bool>)
332
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
333
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
334
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
335 336 337 338 339 340
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
341
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
342
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
343
#endif
344
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
345 346 347 348
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
349
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
350
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
351

X
Xin Pan 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
365
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
366
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
367
     columns, hence [5, 2].
X
Xin Pan 已提交
368 369 370

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
371 372
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
396 397
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
398 399 400 401 402 403 404 405 406 407 408 409 410 411
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
412
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
413 414 415 416 417
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
418
      .def("set_lod",
419
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
420
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
421
             LoD new_lod;
422 423
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
424 425
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
426
             self.set_lod(new_lod);
S
sneaxiy 已提交
427 428 429 430 431 432 433
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
449 450 451 452
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
453
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
454 455
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
456 457

           Args:
458
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
459
           )DOC")
460 461 462 463 464 465 466 467
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
468 469 470 471 472 473 474
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
475
      // Set above comments of set_lod.
476 477 478 479 480 481 482 483
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
484 485 486 487 488
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
489
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
503

Q
qijun 已提交
504 505 506 507 508 509 510 511 512 513 514
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
515 516
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
517 518
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
519 520 521 522 523 524 525 526 527
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
528
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
529
      .def("rows", [](SelectedRows &self) {
530 531 532 533 534
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
535
      });
Q
qijun 已提交
536

537
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
538 539 540

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
541
      .def(py::init<>())
542
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
543
      .def("set_int",
544 545
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
546 547 548 549 550 551 552
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
553
      .def("get_tensor",
554 555
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
556 557
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
558 559 560
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
561 562 563 564 565
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
566 567 568
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
569
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
570 571 572 573 574
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
575
#endif
Y
Refine  
Yu Yang 已提交
576 577 578 579 580
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
581
           py::return_value_policy::reference);
582

S
sneaxiy 已提交
583
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
584

S
sneaxiy 已提交
585 586 587 588
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
589

S
sneaxiy 已提交
590 591
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
592
      .def("push",
S
sneaxiy 已提交
593
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
594
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
595
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
596
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
597
           })
S
sneaxiy 已提交
598 599 600 601
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
602

S
sneaxiy 已提交
603
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
604 605 606 607 608 609
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
610
        py::return_value_policy::copy);
S
sneaxiy 已提交
611

S
sneaxiy 已提交
612
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
632 633
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
634
      .def("var",
635
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
636
             return self.Var(name);
Y
Yu Yang 已提交
637
           },
S
sneaxiy 已提交
638 639
           py::arg("name"),
           R"DOC(
640
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
641

642
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
643
           current scope, the variable would be created. Otherwise,
644
           return the existing variable.
S
sneaxiy 已提交
645 646

           Args:
647 648
               name (str): the variable name.

S
sneaxiy 已提交
649
           Returns:
650
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
651 652 653 654
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
655
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
656
           its parent scope. Return None if not found.
657

S
sneaxiy 已提交
658 659
           Args:
               name (str): the variable name.
660

S
sneaxiy 已提交
661
           Returns:
662
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
663
           )DOC",
664
           py::return_value_policy::reference)
665
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
666 667 668 669 670 671
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
672
           py::return_value_policy::reference)
S
sneaxiy 已提交
673 674 675 676
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
677

S
sneaxiy 已提交
678 679 680 681 682 683
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
684 685
        R"DOC(
        Create a new scope.
686

S
sneaxiy 已提交
687 688 689
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
690 691
        py::return_value_policy::reference);

Y
Yu Yang 已提交
692 693
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
694 695
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
696 697 698 699 700 701 702 703 704 705
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
706 707
    return ret_values;
  });
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
724
  m.def("prune", [](const ProgramDesc &origin,
725
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
726
    ProgramDesc prog_with_targets(origin);
727
    for (const auto &t : targets) {
728
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
729
    }
730
    proto::ProgramDesc pruned_desc;
731
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
732
    return new ProgramDesc(pruned_desc);
733
  });
734 735 736 737
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
738 739 740
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
741 742
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
743
  // clang-format off
Y
Yu Yang 已提交
744
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
745 746
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
747
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
748 749 750
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
751
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
752
                      -> paddle::platform::DeviceContext* {
753
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
754
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
755
#else
Q
qijun 已提交
756
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
757
#endif
C
chengduoZH 已提交
758 759 760 761 762 763 764 765 766 767 768
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
769
// clang-format on
P
peizhilin 已提交
770
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
771 772
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
773 774 775 776 777
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
        )DOC")
S
sneaxiy 已提交
778 779 780 781 782 783 784 785 786 787 788 789
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
790 791 792 793 794 795
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
796
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
797

798 799 800 801
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
        )DOC")
802
      .def(py::init<>())
S
sneaxiy 已提交
803 804 805 806 807 808
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
809
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
810

811 812 813 814
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
        )DOC")
S
sneaxiy 已提交
815
      .def("__init__",
S
sneaxiy 已提交
816
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
817 818 819
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
820
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
821
           })
S
sneaxiy 已提交
822 823 824 825 826 827 828 829
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
830 831
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
832 833
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
834 835 836 837 838
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
839 840
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
841 842 843 844 845 846
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
847 848 849 850
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
851 852
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
853 854 855 856 857
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
858
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
859
             self = gpu_place;
C
chengduoZH 已提交
860 861
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
862 863
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
864
      });
Y
Yu Yang 已提交
865

Y
Yu Yang 已提交
866 867 868
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
869
                    proto::OpDesc desc;
Y
Yu Yang 已提交
870 871 872 873 874
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
875
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
876
                  })
877
      .def("run",
878
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
879 880 881
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
882
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
883 884 885 886 887
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
888 889 890 891 892 893 894
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
895 896
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
897
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
898
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
899 900 901 902
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
903

F
fengjiayi 已提交
904
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
905
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
906
      .def("close", &Executor::Close)
S
sneaxiy 已提交
907
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
908 909
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
910
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
911 912
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
913
      });
S
sneaxiy 已提交
914

D
dzhwinter 已提交
915
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
916
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
917 918
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
919

920
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
921
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
922
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
923
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
924
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
925 926 927 928 929 930
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
931

932
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
933
  m.def("get_fetch_variable", framework::GetFetchVariable);
934
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
935

X
Xin Pan 已提交
936 937
  m.def("_is_program_version_supported", IsProgramVersionSupported);

938 939 940 941 942
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
943

Y
Yu Yang 已提交
944 945 946 947 948 949 950 951 952
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
953
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
954 955
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
956 957 958 959 960 961 962 963 964 965
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
966 967 968 969 970 971 972
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
973

D
dzhwinter 已提交
974 975 976
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
977
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
978
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
979
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
980

P
peizhilin 已提交
981
#ifndef _WIN32
D
dangqingqing 已提交
982 983 984
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
985
#endif
P
peizhilin 已提交
986
#endif
Y
Yu Yang 已提交
987

988 989 990 991
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
992
      .value("kAll", platform::ProfilerState::kAll)
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1006
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1007
  m.def("reset_profiler", platform::ResetProfiler);
1008
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1009 1010 1011
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1012

1013 1014
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1015
      .def("has", &ir::Pass::Has)
1016 1017 1018
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1019
           })
1020
      .def(
1021
          "set",
1022 1023 1024
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1025 1026
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1027 1028 1029 1030
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
1031
        optim_graph.release();
F
flame 已提交
1032
      });
1033

X
fix  
Xin Pan 已提交
1034 1035
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1050
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1051

Y
yuyang18 已提交
1052
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1053 1054 1055 1056
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1068 1069 1070

        )DOC");

Y
yuyang18 已提交
1071
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1072 1073 1074 1075 1076
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1087
      .def_property(
1088 1089 1090 1091
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1092 1093 1094 1095
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1096 1097 1098 1099 1100
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1101 1102 1103 1104
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1105 1106 1107 1108 1109 1110 1111
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1123 1124 1125 1126 1127 1128
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1129

Y
yuyang18 已提交
1130
  exec_strategy.def_property(
Y
yuyang18 已提交
1131 1132 1133 1134 1135 1136 1137
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1138 1139
      });

C
chengduo 已提交
1140 1141 1142 1143
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1155
)DOC");
Y
yuyang18 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1172
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1173
            self.reduce_ = strategy;
C
chengduo 已提交
1174 1175 1176 1177 1178 1179 1180
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1181 1182 1183 1184 1185
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1186
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1187
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1188 1189 1190 1191 1192 1193
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1194 1195 1196 1197
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1198
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1199
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1200 1201 1202 1203
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1204 1205 1206 1207 1208 1209
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1210
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1220
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1221 1222
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1223
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1224 1225 1226 1227 1228 1229
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1242 1243 1244 1245 1246 1247
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1248
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1249 1250 1251 1252 1253
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
Q
qingqing01 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1283 1284 1285 1286
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1287 1288 1289 1290
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1291
      .def_property(
D
dzhwinter 已提交
1292 1293 1294
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1295 1296 1297 1298
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1299
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1300
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1301 1302 1303 1304 1305
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1306 1307

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1308
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1309
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1310
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1311 1312 1313 1314
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1315 1316 1317 1318 1319
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1320 1321 1322 1323
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1324 1325 1326 1327 1328 1329
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1330

1331
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1332
  BindAsyncExecutor(&m);
F
flame 已提交
1333 1334
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1335
  BindInferenceApi(&m);
L
Luo Tao 已提交
1336
}
1337
}  // namespace pybind
1338
}  // namespace paddle