pybind.cc 59.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

24
#include "paddle/fluid/framework/details/alloc_continuous_space_for_grad_pass.h"
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/garbage_collector.h"
29
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
30 31 32
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/framework/op_info.h"
34
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
35
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
40
#include "paddle/fluid/framework/version.h"
41
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
42
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
44
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
45
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/platform/enforce.h"
50
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
53
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
55
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
57
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
58
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
59
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/ir.h"
D
dongdaxiang 已提交
61
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
62 63
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
64
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
65
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/pybind/tensor_py.h"
67
#include "paddle/fluid/string/to_string.h"
68

D
Dong Zhihong 已提交
69
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
70
#ifndef _WIN32
Y
Yi Wang 已提交
71
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
72
#endif
Y
Yi Wang 已提交
73 74
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
75 76
#endif

M
minqiyang 已提交
77 78
#include "pybind11/stl.h"

79 80 81 82
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
83 84 85
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

86
namespace paddle {
87
namespace pybind {
88
bool IsCompiledWithCUDA() {
89
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
90 91 92 93 94 95
  return false;
#else
  return true;
#endif
}

96 97 98 99 100 101 102 103
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

104 105 106 107 108 109 110 111
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

112
bool IsCompiledWithBrpc() {
113
#ifndef PADDLE_WITH_DISTRIBUTE
114 115
  return false;
#endif
116 117 118 119 120 121

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
122 123
}

Y
update  
Yancey1989 已提交
124
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
125
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
126 127 128 129 130 131
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
132 133 134 135 136 137 138 139 140 141
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

142
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
143 144 145
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
146
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
147

148
  m.doc() = "C++ core of PaddlePaddle";
149

150 151 152 153
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

154
  BindException(&m);
Y
Yu Yang 已提交
155

S
sneaxiy 已提交
156
  m.def(
S
sneaxiy 已提交
157
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
158 159 160 161
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
162 163 164
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
165 166 167
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
168
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
169

170 171 172 173 174
  m.def("_set_fuse_parameter_group_size",
        &paddle::framework::details::SetFuseParameterGroupsSize);
  m.def("_set_fuse_parameter_memory_size",
        &paddle::framework::details::SetFuseParameterMemorySize);

S
sneaxiy 已提交
175 176 177
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

178 179 180 181 182 183 184
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
185
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
186 187
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
188
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
189

M
minqiyang 已提交
190
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
191 192 193 194 195 196 197 198
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
199
      .def("_run_backward",
X
Xin Pan 已提交
200
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
201
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
202
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
203
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
204
      .def("_grad_ivar",
M
minqiyang 已提交
205
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
206
           py::return_value_policy::reference)
M
minqiyang 已提交
207
      .def("_copy_to",
P
Paddle CI 已提交
208
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
209 210 211 212 213
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
214
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
215
      .def("_copy_to",
P
Paddle CI 已提交
216
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
217 218 219 220 221
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
222
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
223
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
224
           py::return_value_policy::reference)
225 226 227
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
228
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
229 230 231 232
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
233

234
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
235
      .def(py::init<const std::string &>())
236 237 238 239
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
240 241 242 243 244 245 246 247 248 249
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
250 251 252 253 254 255
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
256
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
257
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
258 259 260 261 262 263
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
264 265
          py::return_value_policy::reference);

X
Xin Pan 已提交
266
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
267
  layer.def(py::init<>())
X
Xin Pan 已提交
268 269 270
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
271
      });
X
Xin Pan 已提交
272

X
polish  
Xin Pan 已提交
273
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
274
      .def(py::init<>())
X
Xin Pan 已提交
275 276
      .def_static(
          "apply",
X
Xin Pan 已提交
277
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
278
              -> std::vector<imperative::VarBase *> {
279 280 281 282 283 284 285 286 287 288 289
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
290 291
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
292 293 294 295 296
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
297

298
  BindImperative(&m);
299

300 301 302
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
S
sneaxiy 已提交
303 304
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
305
      .def("_get_dims",
306
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
307
      .def("_set_dims",
Q
qijun 已提交
308
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
309
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
310
           })
Y
yuyang18 已提交
311
      .def("_set_layout",
D
dzhwinter 已提交
312 313 314
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
315
      .def("_alloc_float",
D
dzhwinter 已提交
316
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
317
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
318
           })
Y
yuyang18 已提交
319
      .def("_alloc_float",
Y
Yu Yang 已提交
320
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
321
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
322
           })
Y
yuyang18 已提交
323
      .def("_alloc_int",
Y
Yu Yang 已提交
324
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
325
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
326
           })
Y
yuyang18 已提交
327
      .def("_alloc_int",
D
dzhwinter 已提交
328
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
329
             self.mutable_data<int>(place);
Q
qijun 已提交
330
           })
Y
yuyang18 已提交
331
      .def("_alloc_int",
C
chengduoZH 已提交
332 333 334
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
335
      .def("_alloc_float",
C
chengduoZH 已提交
336 337 338
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
339 340
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
341
      .def("set", PyCPUTensorSetFromArray<double>)
342
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
343
      .def("set", PyCPUTensorSetFromArray<bool>)
344
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
345
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
346
      .def("set", PyCPUTensorSetFromArray<int8_t>)
347
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
348 349
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
350
      .def("set", PyCUDATensorSetFromArray<double>)
351
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
352
      .def("set", PyCUDATensorSetFromArray<bool>)
353
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
354
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
355
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
356 357 358 359 360 361
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
362
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
363
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
364
#endif
365
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
366 367 368 369
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
370
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
371 372
      .def("_dtype", [](Tensor &self) { return self.type(); })
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference);
Y
Yu Yang 已提交
373

X
Xin Pan 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
387
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
388
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
389
     columns, hence [5, 2].
X
Xin Pan 已提交
390 391 392

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
393 394
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
418 419
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
420 421 422 423 424 425 426 427 428 429 430 431 432 433
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
434
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
435 436 437 438 439
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
440
      .def("set_lod",
441
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
442
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
443
             LoD new_lod;
444 445
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
446 447
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
448
             self.set_lod(new_lod);
S
sneaxiy 已提交
449 450 451 452 453 454 455
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
471 472 473 474
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
475
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
476 477
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
478 479

           Args:
480
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
481
           )DOC")
482 483 484 485 486 487 488 489
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
490 491 492 493 494 495 496
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
497
      // Set above comments of set_lod.
498 499 500 501 502 503 504 505
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
506 507 508 509 510
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
511
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
512 513 514 515 516 517 518 519 520 521 522 523
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
W
wopeizl 已提交
524 525 526 527 528 529 530
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
S
sneaxiy 已提交
531
           )DOC");
D
dangqingqing 已提交
532

Q
qijun 已提交
533 534 535 536 537 538 539 540 541 542 543
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
544 545
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
546 547
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
548 549 550 551 552 553 554 555 556
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
557
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
558
      .def("rows", [](SelectedRows &self) {
559 560 561 562 563
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
564
      });
Q
qijun 已提交
565

566
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
567 568 569

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
570
      .def(py::init<>())
571
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
572
      .def("set_int",
573 574
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
575 576 577 578 579 580 581
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
582
      .def("get_tensor",
583 584
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
585 586
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
587 588 589
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
590 591 592 593 594
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
595 596 597
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
598
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
599 600 601 602 603
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
604
#endif
Y
Refine  
Yu Yang 已提交
605 606 607 608 609
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
610
           py::return_value_policy::reference);
611

S
sneaxiy 已提交
612
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
613

S
sneaxiy 已提交
614 615 616 617
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
618

S
sneaxiy 已提交
619 620
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
621
      .def("push",
S
sneaxiy 已提交
622
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
623
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
624
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
625
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
626
           })
S
sneaxiy 已提交
627 628 629 630
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
631

S
sneaxiy 已提交
632
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
633 634
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
635
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
636 637 638 639
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
640
        py::return_value_policy::copy);
S
sneaxiy 已提交
641

S
sneaxiy 已提交
642
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
662 663
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
664
      .def("var",
665
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
666
             return self.Var(name);
Y
Yu Yang 已提交
667
           },
S
sneaxiy 已提交
668 669
           py::arg("name"),
           R"DOC(
670
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
671

672
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
673
           current scope, the variable would be created. Otherwise,
674
           return the existing variable.
S
sneaxiy 已提交
675 676

           Args:
677 678
               name (str): the variable name.

S
sneaxiy 已提交
679
           Returns:
680
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
681 682 683 684
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
685
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
686
           its parent scope. Return None if not found.
687

S
sneaxiy 已提交
688 689
           Args:
               name (str): the variable name.
690

S
sneaxiy 已提交
691
           Returns:
692
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
693
           )DOC",
694
           py::return_value_policy::reference)
695
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
696 697 698 699 700 701
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
702
           py::return_value_policy::reference)
S
sneaxiy 已提交
703 704 705
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
706 707
           )DOC")
      .def("_kids", &Scope::kids);
708

S
sneaxiy 已提交
709 710 711 712 713 714
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
715 716
        R"DOC(
        Create a new scope.
717

S
sneaxiy 已提交
718 719 720
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
721 722
        py::return_value_policy::reference);

Y
Yu Yang 已提交
723 724
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
725 726
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
727 728 729 730 731 732 733 734 735 736
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
737 738
    return ret_values;
  });
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
755
  m.def("prune", [](const ProgramDesc &origin,
756
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
757
    ProgramDesc prog_with_targets(origin);
758
    for (const auto &t : targets) {
759
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
760
    }
761
    proto::ProgramDesc pruned_desc;
762
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
763
    return new ProgramDesc(pruned_desc);
764
  });
765 766 767 768
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
769 770 771
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
772 773
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
774
  // clang-format off
Y
Yu Yang 已提交
775
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
776 777
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
778
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
779 780 781
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
782
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
783
                      -> paddle::platform::DeviceContext* {
784
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
785
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
786
#else
Q
qijun 已提交
787
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
788
#endif
C
chengduoZH 已提交
789 790 791 792 793 794 795 796 797 798 799
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
800
// clang-format on
P
peizhilin 已提交
801
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
802 803
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
804 805 806 807 808
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
        )DOC")
S
sneaxiy 已提交
809 810 811 812 813 814 815 816 817 818 819 820
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
821 822 823 824 825 826
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
827
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
828

829 830 831 832
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
        )DOC")
833
      .def(py::init<>())
S
sneaxiy 已提交
834 835 836 837 838 839
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
840
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
841

842 843 844 845
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
        )DOC")
S
sneaxiy 已提交
846
      .def("__init__",
S
sneaxiy 已提交
847
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
848 849 850
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
851
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
852
           })
S
sneaxiy 已提交
853 854 855 856 857 858 859 860
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
861 862
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
863 864
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
865 866 867 868 869
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
870 871
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
872 873 874 875 876 877
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
878 879 880 881
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
882 883
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
884 885 886 887 888
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
889
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
890
             self = gpu_place;
C
chengduoZH 已提交
891 892
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
893 894
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
895
      });
Y
Yu Yang 已提交
896

Y
Yu Yang 已提交
897 898 899
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
900
                    proto::OpDesc desc;
Y
Yu Yang 已提交
901 902 903 904 905
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
906
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
907
                  })
908
      .def("run",
909
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
910 911 912
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
913
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
914 915 916 917 918
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
919 920 921 922 923 924 925
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
926 927
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
928
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
929
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
930 931 932 933
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
934

F
fengjiayi 已提交
935
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
936
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
937
      .def("close", &Executor::Close)
D
dongdaxiang 已提交
938
      .def("run_from_dataset", &Executor::RunFromDataset)
S
sneaxiy 已提交
939
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
940 941
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
942
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
943 944
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
945
      });
S
sneaxiy 已提交
946

D
dzhwinter 已提交
947
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
948
  m.def("init_glog", framework::InitGLOG);
949
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
950 951
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
952

953
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
954
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
955
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
956
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
957
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
958 959 960 961 962 963
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
964

965
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
966
  m.def("get_fetch_variable", framework::GetFetchVariable);
967
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
968

X
Xin Pan 已提交
969 970
  m.def("_is_program_version_supported", IsProgramVersionSupported);

971 972 973 974 975
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
976

Y
Yu Yang 已提交
977 978 979 980 981 982 983 984 985
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
986
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
987 988
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
989 990 991 992 993 994 995 996 997 998
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
999 1000 1001 1002 1003 1004 1005
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
1006

D
dzhwinter 已提交
1007 1008 1009
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1010
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1011
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1012
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1013

P
peizhilin 已提交
1014
#ifndef _WIN32
D
dangqingqing 已提交
1015 1016 1017
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1018
#endif
P
peizhilin 已提交
1019
#endif
Y
Yu Yang 已提交
1020

1021 1022 1023 1024
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1025
      .value("kAll", platform::ProfilerState::kAll)
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1039
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1040
  m.def("reset_profiler", platform::ResetProfiler);
1041
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1042 1043 1044
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1045

1046 1047
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1048
      .def("has", &ir::Pass::Has)
1049 1050 1051
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1052
           })
1053
      .def(
1054
          "set",
1055 1056 1057
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1058 1059
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1060 1061
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1062
        self.Apply(graph.get());
F
flame 已提交
1063
      });
1064

X
fix  
Xin Pan 已提交
1065 1066
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1081
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1082

Y
yuyang18 已提交
1083
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1084 1085 1086 1087
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1099 1100 1101

        )DOC");

Y
yuyang18 已提交
1102
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1103 1104 1105 1106 1107
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1118
      .def_property(
1119 1120 1121 1122
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1123 1124 1125 1126
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1127 1128 1129 1130 1131
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1132 1133 1134 1135
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1136 1137 1138 1139 1140 1141 1142
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1154
              )DOC")
Q
Qiao Longfei 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1166 1167 1168 1169 1170
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1171

Y
yuyang18 已提交
1172
  exec_strategy.def_property(
Y
yuyang18 已提交
1173 1174 1175 1176 1177 1178 1179
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1180 1181
      });

C
chengduo 已提交
1182 1183 1184 1185
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1197
)DOC");
Y
yuyang18 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1214
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1215
            self.reduce_ = strategy;
C
chengduo 已提交
1216 1217 1218 1219 1220 1221 1222
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1223 1224 1225 1226 1227
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1228
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1229
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1230 1231 1232 1233 1234 1235
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1236 1237 1238 1239
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1240
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1241
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1242 1243 1244 1245
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1246 1247 1248 1249 1250 1251
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1252
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1262
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1263 1264
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1265
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1266 1267 1268 1269 1270 1271
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1284 1285 1286 1287 1288 1289
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1290
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1291 1292 1293 1294 1295
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
                      Default False.)DOC")
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1347 1348 1349 1350
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1351 1352 1353 1354
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
Q
can run  
Qiao Longfei 已提交
1355 1356 1357
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1358
      .def_property(
D
dzhwinter 已提交
1359 1360 1361
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1362 1363 1364 1365
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1366 1367 1368 1369
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1370 1371 1372 1373
      .def_property(
          "cache_expected_kernel",
          [](const BuildStrategy &self) { return self.cache_expected_kernel_; },
          [](BuildStrategy &self, bool b) { self.cache_expected_kernel_ = b; })
1374
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1375
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1376 1377 1378 1379 1380
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1381 1382

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1383
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1384
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1385
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1386 1387 1388 1389
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1390 1391 1392 1393 1394
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1395 1396 1397 1398
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1399 1400 1401 1402 1403 1404
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1405

1406
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1407
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1408
  BindFleetWrapper(&m);
D
dongdaxiang 已提交
1409
  BindNCCLWrapper(&m);
F
flame 已提交
1410 1411
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1412
  BindInferenceApi(&m);
1413
  BindDataset(&m);
L
Luo Tao 已提交
1414
}
1415
}  // namespace pybind
1416
}  // namespace paddle